import std._str; import std._uint; import std._vec; import std._str.rustrt.sbuf; import std._vec.rustrt.vbuf; import std.map; import std.map.hashmap; import std.option; import std.option.some; import std.option.none; import front.ast; import driver.session; import middle.typeck; import back.x86; import back.abi; import middle.typeck.pat_ty; import util.common; import util.common.istr; import util.common.new_def_hash; import util.common.new_str_hash; import lib.llvm.llvm; import lib.llvm.builder; import lib.llvm.target_data; import lib.llvm.type_handle; import lib.llvm.mk_pass_manager; import lib.llvm.mk_target_data; import lib.llvm.mk_type_handle; import lib.llvm.llvm.ModuleRef; import lib.llvm.llvm.ValueRef; import lib.llvm.llvm.TypeRef; import lib.llvm.llvm.TypeHandleRef; import lib.llvm.llvm.BuilderRef; import lib.llvm.llvm.BasicBlockRef; import lib.llvm.False; import lib.llvm.True; state obj namegen(mutable int i) { fn next(str prefix) -> str { i += 1; ret prefix + istr(i); } } type glue_fns = rec(ValueRef activate_glue, ValueRef yield_glue, ValueRef exit_task_glue, vec[ValueRef] upcall_glues); tag arity { nullary; n_ary; } type tag_info = rec(type_handle th, mutable vec[tup(ast.def_id,arity)] variants, mutable uint size); type ty_info = rec(ValueRef take_glue, ValueRef drop_glue); state type crate_ctxt = rec(session.session sess, ModuleRef llmod, target_data td, hashmap[str, ValueRef] upcalls, hashmap[str, ValueRef] intrinsics, hashmap[str, ValueRef] item_names, hashmap[ast.def_id, ValueRef] item_ids, hashmap[ast.def_id, @ast.item] items, hashmap[ast.def_id, @tag_info] tags, hashmap[@typeck.ty, @ty_info] types, @glue_fns glues, namegen names, str path); state type fn_ctxt = rec(ValueRef llfn, ValueRef lltaskptr, hashmap[ast.def_id, ValueRef] llargs, hashmap[ast.def_id, ValueRef] lllocals, @crate_ctxt ccx); tag cleanup { clean(fn(@block_ctxt cx) -> result); } state type block_ctxt = rec(BasicBlockRef llbb, builder build, block_parent parent, bool is_scope, mutable vec[cleanup] cleanups, @fn_ctxt fcx); // FIXME: we should be able to use option.t[@block_parent] here but // the infinite-tag check in rustboot gets upset. tag block_parent { parent_none; parent_some(@block_ctxt); } state type result = rec(mutable @block_ctxt bcx, mutable ValueRef val); fn res(@block_ctxt bcx, ValueRef val) -> result { ret rec(mutable bcx = bcx, mutable val = val); } fn ty_str(TypeRef t) -> str { ret lib.llvm.type_to_str(t); } fn val_ty(ValueRef v) -> TypeRef { ret llvm.LLVMTypeOf(v); } fn val_str(ValueRef v) -> str { ret ty_str(val_ty(v)); } // LLVM type constructors. fn T_void() -> TypeRef { // Note: For the time being llvm is kinda busted here, it has the notion // of a 'void' type that can only occur as part of the signature of a // function, but no general unit type of 0-sized value. This is, afaict, // vestigial from its C heritage, and we'll be attempting to submit a // patch upstream to fix it. In the mean time we only model function // outputs (Rust functions and C functions) using T_void, and model the // Rust general purpose nil type you can construct as 1-bit (always // zero). This makes the result incorrect for now -- things like a tuple // of 10 nil values will have 10-bit size -- but it doesn't seem like we // have any other options until it's fixed upstream. ret llvm.LLVMVoidType(); } fn T_nil() -> TypeRef { // NB: See above in T_void(). ret llvm.LLVMInt1Type(); } fn T_i1() -> TypeRef { ret llvm.LLVMInt1Type(); } fn T_i8() -> TypeRef { ret llvm.LLVMInt8Type(); } fn T_i16() -> TypeRef { ret llvm.LLVMInt16Type(); } fn T_i32() -> TypeRef { ret llvm.LLVMInt32Type(); } fn T_i64() -> TypeRef { ret llvm.LLVMInt64Type(); } fn T_f32() -> TypeRef { ret llvm.LLVMFloatType(); } fn T_f64() -> TypeRef { ret llvm.LLVMDoubleType(); } fn T_bool() -> TypeRef { ret T_i1(); } fn T_int() -> TypeRef { // FIXME: switch on target type. ret T_i32(); } fn T_char() -> TypeRef { ret T_i32(); } fn T_fn(vec[TypeRef] inputs, TypeRef output) -> TypeRef { ret llvm.LLVMFunctionType(output, _vec.buf[TypeRef](inputs), _vec.len[TypeRef](inputs), False); } fn T_ptr(TypeRef t) -> TypeRef { ret llvm.LLVMPointerType(t, 0u); } fn T_struct(vec[TypeRef] elts) -> TypeRef { ret llvm.LLVMStructType(_vec.buf[TypeRef](elts), _vec.len[TypeRef](elts), False); } fn T_opaque() -> TypeRef { ret llvm.LLVMOpaqueType(); } fn T_task() -> TypeRef { ret T_struct(vec(T_int(), // Refcount T_int(), // Delegate pointer T_int(), // Stack segment pointer T_int(), // Runtime SP T_int(), // Rust SP T_int(), // GC chain T_int(), // Domain pointer T_int() // Crate cache pointer )); } fn T_tydesc() -> TypeRef { auto pvoid = T_ptr(T_i8()); auto glue_fn_ty = T_ptr(T_fn(vec(T_taskptr(), pvoid), T_void())); ret T_struct(vec(pvoid, // first_param T_int(), // size T_int(), // align glue_fn_ty, // copy_glue_off glue_fn_ty, // drop_glue_off glue_fn_ty, // free_glue_off glue_fn_ty, // sever_glue_off glue_fn_ty, // mark_glue_off glue_fn_ty, // obj_drop_glue_off glue_fn_ty)); // is_stateful } fn T_array(TypeRef t, uint n) -> TypeRef { ret llvm.LLVMArrayType(t, n); } fn T_vec(TypeRef t) -> TypeRef { ret T_struct(vec(T_int(), // Refcount T_int(), // Alloc T_int(), // Fill T_array(t, 0u) // Body elements )); } fn T_str() -> TypeRef { ret T_vec(T_i8()); } fn T_box(TypeRef t) -> TypeRef { ret T_struct(vec(T_int(), t)); } fn T_crate() -> TypeRef { ret T_struct(vec(T_int(), // ptrdiff_t image_base_off T_int(), // uintptr_t self_addr T_int(), // ptrdiff_t debug_abbrev_off T_int(), // size_t debug_abbrev_sz T_int(), // ptrdiff_t debug_info_off T_int(), // size_t debug_info_sz T_int(), // size_t activate_glue_off T_int(), // size_t yield_glue_off T_int(), // size_t unwind_glue_off T_int(), // size_t gc_glue_off T_int(), // size_t main_exit_task_glue_off T_int(), // int n_rust_syms T_int(), // int n_c_syms T_int() // int n_libs )); } fn T_double() -> TypeRef { ret llvm.LLVMDoubleType(); } fn T_taskptr() -> TypeRef { ret T_ptr(T_task()); } fn type_of(@crate_ctxt cx, @typeck.ty t) -> TypeRef { let TypeRef llty = type_of_inner(cx, t); check (llty as int != 0); llvm.LLVMAddTypeName(cx.llmod, _str.buf(typeck.ty_to_str(t)), llty); ret llty; } fn type_of_fn(@crate_ctxt cx, vec[typeck.arg] inputs, @typeck.ty output) -> TypeRef { let vec[TypeRef] atys = vec(T_taskptr()); auto fn_ty = typeck.plain_ty(typeck.ty_fn(inputs, output)); auto ty_param_count = typeck.count_ty_params(fn_ty); auto i = 0u; while (i < ty_param_count) { atys += T_tydesc(); i += 1u; } for (typeck.arg arg in inputs) { let TypeRef t = type_of(cx, arg.ty); alt (arg.mode) { case (ast.alias) { t = T_ptr(t); } case (_) { /* fall through */ } } atys += t; } auto ret_ty; if (typeck.type_is_nil(output)) { ret_ty = llvm.LLVMVoidType(); } else { ret_ty = type_of(cx, output); } ret T_fn(atys, ret_ty); } fn type_of_inner(@crate_ctxt cx, @typeck.ty t) -> TypeRef { alt (t.struct) { case (typeck.ty_nil) { ret T_nil(); } case (typeck.ty_bool) { ret T_bool(); } case (typeck.ty_int) { ret T_int(); } case (typeck.ty_uint) { ret T_int(); } case (typeck.ty_machine(?tm)) { alt (tm) { case (common.ty_i8) { ret T_i8(); } case (common.ty_u8) { ret T_i8(); } case (common.ty_i16) { ret T_i16(); } case (common.ty_u16) { ret T_i16(); } case (common.ty_i32) { ret T_i32(); } case (common.ty_u32) { ret T_i32(); } case (common.ty_i64) { ret T_i64(); } case (common.ty_u64) { ret T_i64(); } case (common.ty_f32) { ret T_f32(); } case (common.ty_f64) { ret T_f64(); } } } case (typeck.ty_char) { ret T_char(); } case (typeck.ty_str) { ret T_ptr(T_str()); } case (typeck.ty_tag(?tag_id)) { ret llvm.LLVMResolveTypeHandle(cx.tags.get(tag_id).th.llth); } case (typeck.ty_box(?t)) { ret T_ptr(T_box(type_of(cx, t))); } case (typeck.ty_vec(?t)) { ret T_ptr(T_vec(type_of(cx, t))); } case (typeck.ty_tup(?elts)) { let vec[TypeRef] tys = vec(); for (@typeck.ty elt in elts) { tys += type_of(cx, elt); } ret T_struct(tys); } case (typeck.ty_rec(?fields)) { let vec[TypeRef] tys = vec(); for (typeck.field f in fields) { tys += type_of(cx, f.ty); } ret T_struct(tys); } case (typeck.ty_fn(?args, ?out)) { ret type_of_fn(cx, args, out); } case (typeck.ty_obj(?meths)) { let vec[TypeRef] mtys = vec(); for (typeck.method m in meths) { let TypeRef mty = type_of_fn(cx, m.inputs, m.output); mtys += T_ptr(mty); } let TypeRef vtbl = T_struct(mtys); let TypeRef pair = T_struct(vec(T_ptr(vtbl), T_ptr(T_box(T_opaque())))); ret pair; } case (typeck.ty_var(_)) { log "ty_var in trans.type_of"; fail; } case (typeck.ty_param(_)) { ret T_ptr(T_i8()); } } fail; } fn type_of_arg(@crate_ctxt cx, &typeck.arg arg) -> TypeRef { auto ty = type_of(cx, arg.ty); if (arg.mode == ast.alias) { ty = T_ptr(ty); } ret ty; } // Name sanitation. LLVM will happily accept identifiers with weird names, but // gas doesn't! fn sanitize(str s) -> str { auto result = ""; for (u8 c in s) { if (c == ('@' as u8)) { result += "boxed_"; } else { auto v = vec(c); result += _str.from_bytes(v); } } ret result; } // LLVM constant constructors. fn C_null(TypeRef t) -> ValueRef { ret llvm.LLVMConstNull(t); } fn C_integral(int i, TypeRef t) -> ValueRef { // FIXME. We can't use LLVM.ULongLong with our existing minimal native // API, which only knows word-sized args. Lucky for us LLVM has a "take a // string encoding" version. Hilarious. Please fix to handle: // // ret llvm.LLVMConstInt(T_int(), t as LLVM.ULongLong, False); // ret llvm.LLVMConstIntOfString(t, _str.buf(istr(i)), 10); } fn C_nil() -> ValueRef { // NB: See comment above in T_void(). ret C_integral(0, T_i1()); } fn C_bool(bool b) -> ValueRef { if (b) { ret C_integral(1, T_bool()); } else { ret C_integral(0, T_bool()); } } fn C_int(int i) -> ValueRef { ret C_integral(i, T_int()); } fn C_str(@crate_ctxt cx, str s) -> ValueRef { auto sc = llvm.LLVMConstString(_str.buf(s), _str.byte_len(s), False); auto g = llvm.LLVMAddGlobal(cx.llmod, val_ty(sc), _str.buf(cx.names.next("str"))); llvm.LLVMSetInitializer(g, sc); llvm.LLVMSetGlobalConstant(g, True); ret g; } fn C_zero_byte_arr(uint size) -> ValueRef { auto i = 0u; let vec[ValueRef] elts = vec(); while (i < size) { elts += vec(C_integral(0, T_i8())); i += 1u; } ret llvm.LLVMConstArray(T_i8(), _vec.buf[ValueRef](elts), _vec.len[ValueRef](elts)); } fn C_struct(vec[ValueRef] elts) -> ValueRef { ret llvm.LLVMConstStruct(_vec.buf[ValueRef](elts), _vec.len[ValueRef](elts), False); } fn C_tydesc(TypeRef t) -> ValueRef { ret C_struct(vec(C_null(T_ptr(T_opaque())), // first_param llvm.LLVMSizeOf(t), // size llvm.LLVMAlignOf(t), // align C_null(T_ptr(T_opaque())), // copy_glue_off C_null(T_ptr(T_opaque())), // drop_glue_off C_null(T_ptr(T_opaque())), // free_glue_off C_null(T_ptr(T_opaque())), // sever_glue_off C_null(T_ptr(T_opaque())), // mark_glue_off C_null(T_ptr(T_opaque())), // obj_drop_glue_off C_null(T_ptr(T_opaque())))); // is_stateful } fn decl_fn(ModuleRef llmod, str name, uint cc, TypeRef llty) -> ValueRef { let ValueRef llfn = llvm.LLVMAddFunction(llmod, _str.buf(name), llty); llvm.LLVMSetFunctionCallConv(llfn, cc); ret llfn; } fn decl_cdecl_fn(ModuleRef llmod, str name, TypeRef llty) -> ValueRef { ret decl_fn(llmod, name, lib.llvm.LLVMCCallConv, llty); } fn decl_fastcall_fn(ModuleRef llmod, str name, TypeRef llty) -> ValueRef { ret decl_fn(llmod, name, lib.llvm.LLVMFastCallConv, llty); } fn decl_glue(ModuleRef llmod, str s) -> ValueRef { ret decl_cdecl_fn(llmod, s, T_fn(vec(T_taskptr()), T_void())); } fn decl_upcall(ModuleRef llmod, uint _n) -> ValueRef { // It doesn't actually matter what type we come up with here, at the // moment, as we cast the upcall function pointers to int before passing // them to the indirect upcall-invocation glue. But eventually we'd like // to call them directly, once we have a calling convention worked out. let int n = _n as int; let str s = abi.upcall_glue_name(n); let vec[TypeRef] args = vec(T_taskptr(), // taskptr T_int()) // callee + _vec.init_elt[TypeRef](T_int(), n as uint); ret decl_fastcall_fn(llmod, s, T_fn(args, T_int())); } fn get_upcall(@crate_ctxt cx, str name, int n_args) -> ValueRef { if (cx.upcalls.contains_key(name)) { ret cx.upcalls.get(name); } auto inputs = vec(T_taskptr()); inputs += _vec.init_elt[TypeRef](T_int(), n_args as uint); auto output = T_int(); auto f = decl_cdecl_fn(cx.llmod, name, T_fn(inputs, output)); cx.upcalls.insert(name, f); ret f; } fn trans_upcall(@block_ctxt cx, str name, vec[ValueRef] args) -> result { let int n = _vec.len[ValueRef](args) as int; let ValueRef llupcall = get_upcall(cx.fcx.ccx, name, n); llupcall = llvm.LLVMConstPointerCast(llupcall, T_int()); let ValueRef llglue = cx.fcx.ccx.glues.upcall_glues.(n); let vec[ValueRef] call_args = vec(cx.fcx.lltaskptr, llupcall); for (ValueRef a in args) { call_args += cx.build.ZExtOrBitCast(a, T_int()); } ret res(cx, cx.build.FastCall(llglue, call_args)); } fn trans_non_gc_free(@block_ctxt cx, ValueRef v) -> result { ret trans_upcall(cx, "upcall_free", vec(cx.build.PtrToInt(v, T_int()), C_int(0))); } fn find_scope_cx(@block_ctxt cx) -> @block_ctxt { if (cx.is_scope) { ret cx; } alt (cx.parent) { case (parent_some(?b)) { be find_scope_cx(b); } case (parent_none) { fail; } } } fn trans_malloc(@block_ctxt cx, @typeck.ty t) -> result { auto scope_cx = find_scope_cx(cx); auto ptr_ty = type_of(cx.fcx.ccx, t); auto body_ty = lib.llvm.llvm.LLVMGetElementType(ptr_ty); // FIXME: need a table to collect tydesc globals. auto tydesc = C_int(0); auto sz = cx.build.IntCast(lib.llvm.llvm.LLVMSizeOf(body_ty), T_int()); auto sub = trans_upcall(cx, "upcall_malloc", vec(sz, tydesc)); sub.val = sub.bcx.build.IntToPtr(sub.val, ptr_ty); scope_cx.cleanups += clean(bind drop_ty(_, sub.val, t)); ret sub; } // Glue and referent count twiddling fn get_ty_info(@crate_ctxt cx, @typeck.ty ty) -> @ty_info { if (!cx.types.contains_key(ty)) { make_ty_info(cx, ty); } ret cx.types.get(ty); } fn make_ty_info(@crate_ctxt cx, @typeck.ty ty) { auto tg = make_take_glue; auto take_glue = make_generic_glue(cx, ty, "take", tg); auto dg = make_drop_glue; auto drop_glue = make_generic_glue(cx, ty, "drop", dg); cx.types.insert(ty, @rec(take_glue=take_glue, drop_glue=drop_glue)); } fn make_generic_glue(@crate_ctxt cx, @typeck.ty t, str name, val_and_ty_fn helper) -> ValueRef { auto arg_t; if (typeck.type_is_structural(t)) { arg_t = T_ptr(type_of(cx, t)); } else { arg_t = type_of(cx, t); } auto llfnty = T_fn(vec(T_taskptr(), arg_t), T_void()); auto fn_name = cx.names.next("_rust_" + name) + "." + typeck.ty_to_str(t); fn_name = sanitize(fn_name); auto llfn = decl_fastcall_fn(cx.llmod, fn_name, llfnty); auto fcx = new_fn_ctxt(cx, fn_name, llfn); auto bcx = new_top_block_ctxt(fcx); auto llval = llvm.LLVMGetParam(llfn, 1u); auto res = helper(bcx, llval, t); res.bcx.build.RetVoid(); ret llfn; } fn make_take_glue(@block_ctxt cx, ValueRef v, @typeck.ty t) -> result { if (typeck.type_is_boxed(t)) { ret incr_refcnt_of_boxed(cx, v); } else if (typeck.type_is_binding(t)) { cx.fcx.ccx.sess.unimpl("binding type in trans.incr_all_refcnts"); } else if (typeck.type_is_structural(t)) { ret iter_structural_ty(cx, v, t, bind incr_all_refcnts(_, _, _)); } ret res(cx, C_nil()); } fn incr_refcnt_of_boxed(@block_ctxt cx, ValueRef box_ptr) -> result { auto rc_ptr = cx.build.GEP(box_ptr, vec(C_int(0), C_int(abi.box_rc_field_refcnt))); auto rc = cx.build.Load(rc_ptr); auto rc_adj_cx = new_sub_block_ctxt(cx, "rc++"); auto next_cx = new_sub_block_ctxt(cx, "next"); auto const_test = cx.build.ICmp(lib.llvm.LLVMIntEQ, C_int(abi.const_refcount as int), rc); cx.build.CondBr(const_test, next_cx.llbb, rc_adj_cx.llbb); rc = rc_adj_cx.build.Add(rc, C_int(1)); rc_adj_cx.build.Store(rc, rc_ptr); rc_adj_cx.build.Br(next_cx.llbb); ret res(next_cx, C_nil()); } fn make_drop_glue(@block_ctxt cx, ValueRef v, @typeck.ty t) -> result { alt (t.struct) { case (typeck.ty_str) { ret decr_refcnt_and_if_zero(cx, v, bind trans_non_gc_free(_, v), "free string", T_int(), C_int(0)); } case (typeck.ty_vec(_)) { fn hit_zero(@block_ctxt cx, ValueRef v, @typeck.ty t) -> result { auto res = iter_sequence(cx, v, t, bind drop_ty(_,_,_)); // FIXME: switch gc/non-gc on layer of the type. ret trans_non_gc_free(res.bcx, v); } ret decr_refcnt_and_if_zero(cx, v, bind hit_zero(_, v, t), "free vector", T_int(), C_int(0)); } case (typeck.ty_box(?body_ty)) { fn hit_zero(@block_ctxt cx, ValueRef v, @typeck.ty body_ty) -> result { auto body = cx.build.GEP(v, vec(C_int(0), C_int(abi.box_rc_field_body))); auto body_val = load_non_structural(cx, body, body_ty); auto res = drop_ty(cx, body_val, body_ty); // FIXME: switch gc/non-gc on layer of the type. ret trans_non_gc_free(res.bcx, v); } ret decr_refcnt_and_if_zero(cx, v, bind hit_zero(_, v, body_ty), "free box", T_int(), C_int(0)); } case (_) { if (typeck.type_is_structural(t)) { ret iter_structural_ty(cx, v, t, bind drop_ty(_, _, _)); } else if (typeck.type_is_binding(t)) { cx.fcx.ccx.sess.unimpl("binding type in " + "trans.make_drop_glue_inner"); } else if (typeck.type_is_scalar(t) || typeck.type_is_nil(t)) { ret res(cx, C_nil()); } } } cx.fcx.ccx.sess.bug("bad type in trans.make_drop_glue_inner"); fail; } fn decr_refcnt_and_if_zero(@block_ctxt cx, ValueRef box_ptr, fn(@block_ctxt cx) -> result inner, str inner_name, TypeRef t_else, ValueRef v_else) -> result { auto load_rc_cx = new_sub_block_ctxt(cx, "load rc"); auto rc_adj_cx = new_sub_block_ctxt(cx, "rc--"); auto inner_cx = new_sub_block_ctxt(cx, inner_name); auto next_cx = new_sub_block_ctxt(cx, "next"); auto null_test = cx.build.IsNull(box_ptr); cx.build.CondBr(null_test, next_cx.llbb, load_rc_cx.llbb); auto rc_ptr = load_rc_cx.build.GEP(box_ptr, vec(C_int(0), C_int(abi.box_rc_field_refcnt))); auto rc = load_rc_cx.build.Load(rc_ptr); auto const_test = load_rc_cx.build.ICmp(lib.llvm.LLVMIntEQ, C_int(abi.const_refcount as int), rc); load_rc_cx.build.CondBr(const_test, next_cx.llbb, rc_adj_cx.llbb); rc = rc_adj_cx.build.Sub(rc, C_int(1)); rc_adj_cx.build.Store(rc, rc_ptr); auto zero_test = rc_adj_cx.build.ICmp(lib.llvm.LLVMIntEQ, C_int(0), rc); rc_adj_cx.build.CondBr(zero_test, inner_cx.llbb, next_cx.llbb); auto inner_res = inner(inner_cx); inner_res.bcx.build.Br(next_cx.llbb); auto phi = next_cx.build.Phi(t_else, vec(v_else, v_else, v_else, inner_res.val), vec(cx.llbb, load_rc_cx.llbb, rc_adj_cx.llbb, inner_res.bcx.llbb)); ret res(next_cx, phi); } fn type_of_variant(@crate_ctxt cx, &ast.variant v) -> TypeRef { let vec[TypeRef] lltys = vec(); alt (typeck.ann_to_type(v.ann).struct) { case (typeck.ty_fn(?args, _)) { for (typeck.arg arg in args) { lltys += vec(type_of(cx, arg.ty)); } } case (_) { fail; } } ret T_struct(lltys); } type val_and_ty_fn = fn(@block_ctxt cx, ValueRef v, @typeck.ty t) -> result; // Iterates through the elements of a tup, rec or tag. fn iter_structural_ty(@block_ctxt cx, ValueRef v, @typeck.ty t, val_and_ty_fn f) -> result { let result r = res(cx, C_nil()); alt (t.struct) { case (typeck.ty_tup(?args)) { let int i = 0; for (@typeck.ty arg in args) { auto elt = r.bcx.build.GEP(v, vec(C_int(0), C_int(i))); r = f(r.bcx, load_non_structural(r.bcx, elt, arg), arg); i += 1; } } case (typeck.ty_rec(?fields)) { let int i = 0; for (typeck.field fld in fields) { auto llfld = r.bcx.build.GEP(v, vec(C_int(0), C_int(i))); r = f(r.bcx, load_non_structural(r.bcx, llfld, fld.ty), fld.ty); i += 1; } } case (typeck.ty_tag(?tid)) { check (cx.fcx.ccx.tags.contains_key(tid)); auto info = cx.fcx.ccx.tags.get(tid); auto n_variants = _vec.len[tup(ast.def_id,arity)](info.variants); // Look up the tag in the typechecked AST. check (cx.fcx.ccx.items.contains_key(tid)); auto tag_item = cx.fcx.ccx.items.get(tid); let vec[ast.variant] variants = vec(); // FIXME: typestate bug alt (tag_item.node) { case (ast.item_tag(_, ?vs, _, _)) { variants = vs; } case (_) { log "trans: ty_tag doesn't actually refer to a tag"; fail; } } auto lldiscrim_ptr = cx.build.GEP(v, vec(C_int(0), C_int(0))); auto llunion_ptr = cx.build.GEP(v, vec(C_int(0), C_int(1))); auto lldiscrim = cx.build.Load(lldiscrim_ptr); auto unr_cx = new_sub_block_ctxt(cx, "tag-iter-unr"); unr_cx.build.Unreachable(); auto llswitch = cx.build.Switch(lldiscrim, unr_cx.llbb, n_variants); auto next_cx = new_sub_block_ctxt(cx, "tag-iter-next"); auto i = 0u; for (tup(ast.def_id,arity) variant in info.variants) { auto variant_cx = new_sub_block_ctxt(cx, "tag-iter-variant-" + _uint.to_str(i, 10u)); llvm.LLVMAddCase(llswitch, C_int(i as int), variant_cx.llbb); alt (variant._1) { case (n_ary) { let vec[ValueRef] vals = vec(C_int(0), C_int(1), C_int(i as int)); auto llvar = variant_cx.build.GEP(v, vals); auto llvarty = type_of_variant(cx.fcx.ccx, variants.(i)); auto fn_ty = typeck.ann_to_type(variants.(i).ann); alt (fn_ty.struct) { case (typeck.ty_fn(?args, _)) { auto llvarp = variant_cx.build. TruncOrBitCast(llunion_ptr, T_ptr(llvarty)); auto j = 0u; for (typeck.arg a in args) { auto llfldp = variant_cx.build.GEP(llvarp, vec(C_int(0), C_int(j as int))); auto llfld = load_non_structural(variant_cx, llfldp, a.ty); auto res = f(variant_cx, llfld, a.ty); variant_cx = res.bcx; j += 1u; } } case (_) { fail; } } variant_cx.build.Br(next_cx.llbb); } case (nullary) { // Nothing to do. variant_cx.build.Br(next_cx.llbb); } } i += 1u; } ret res(next_cx, C_nil()); } case (_) { cx.fcx.ccx.sess.unimpl("type in iter_structural_ty"); } } ret r; } // Iterates through the elements of a vec or str. fn iter_sequence(@block_ctxt cx, ValueRef v, @typeck.ty ty, val_and_ty_fn f) -> result { fn iter_sequence_body(@block_ctxt cx, ValueRef v, @typeck.ty elt_ty, val_and_ty_fn f, bool trailing_null) -> result { auto p0 = cx.build.GEP(v, vec(C_int(0), C_int(abi.vec_elt_data))); auto lenptr = cx.build.GEP(v, vec(C_int(0), C_int(abi.vec_elt_fill))); auto llunit_ty = type_of(cx.fcx.ccx, elt_ty); auto unit_sz = llvm.LLVMConstIntCast(llvm.LLVMSizeOf(llunit_ty), T_int(), False); auto len = cx.build.Load(lenptr); if (trailing_null) { len = cx.build.Sub(len, unit_sz); } auto r = res(cx, C_nil()); auto cond_cx = new_scope_block_ctxt(cx, "sequence-iter cond"); auto body_cx = new_scope_block_ctxt(cx, "sequence-iter body"); auto next_cx = new_sub_block_ctxt(cx, "next"); cx.build.Br(cond_cx.llbb); auto ix = cond_cx.build.Phi(T_int(), vec(C_int(0)), vec(cx.llbb)); auto scaled_ix = cond_cx.build.Phi(T_int(), vec(C_int(0)), vec(cx.llbb)); auto end_test = cond_cx.build.ICmp(lib.llvm.LLVMIntNE, scaled_ix, len); cond_cx.build.CondBr(end_test, body_cx.llbb, next_cx.llbb); auto elt = body_cx.build.GEP(p0, vec(C_int(0), ix)); auto body_res = f(body_cx, load_non_structural(body_cx, elt, elt_ty), elt_ty); auto next_ix = body_res.bcx.build.Add(ix, C_int(1)); auto next_scaled_ix = body_res.bcx.build.Add(scaled_ix, unit_sz); cond_cx.build.AddIncomingToPhi(ix, vec(next_ix), vec(body_res.bcx.llbb)); cond_cx.build.AddIncomingToPhi(scaled_ix, vec(next_scaled_ix), vec(body_res.bcx.llbb)); body_res.bcx.build.Br(cond_cx.llbb); ret res(next_cx, C_nil()); } alt (ty.struct) { case (typeck.ty_vec(?et)) { ret iter_sequence_body(cx, v, et, f, false); } case (typeck.ty_str) { auto et = typeck.plain_ty(typeck.ty_machine(common.ty_u8)); ret iter_sequence_body(cx, v, et, f, true); } case (_) { fail; } } cx.fcx.ccx.sess.bug("bad type in trans.iter_sequence"); fail; } fn incr_all_refcnts(@block_ctxt cx, ValueRef v, @typeck.ty t) -> result { cx.build.FastCall(get_ty_info(cx.fcx.ccx, t).take_glue, vec(cx.fcx.lltaskptr, v)); ret res(cx, C_nil()); } fn drop_slot(@block_ctxt cx, ValueRef slot, @typeck.ty t) -> result { be drop_ty(cx, load_non_structural(cx, slot, t), t); } fn drop_ty(@block_ctxt cx, ValueRef v, @typeck.ty t) -> result { cx.build.FastCall(get_ty_info(cx.fcx.ccx, t).drop_glue, vec(cx.fcx.lltaskptr, v)); ret res(cx, C_nil()); } fn build_memcpy(@block_ctxt cx, ValueRef dst, ValueRef src, TypeRef llty) -> result { // FIXME: switch to the 64-bit variant when on such a platform. check (cx.fcx.ccx.intrinsics.contains_key("llvm.memcpy.p0i8.p0i8.i32")); auto memcpy = cx.fcx.ccx.intrinsics.get("llvm.memcpy.p0i8.p0i8.i32"); auto src_ptr = cx.build.PointerCast(src, T_ptr(T_i8())); auto dst_ptr = cx.build.PointerCast(dst, T_ptr(T_i8())); auto size = cx.build.IntCast(lib.llvm.llvm.LLVMSizeOf(llty), T_i32()); auto align = cx.build.IntCast(C_int(1), T_i32()); // FIXME: align seems like it should be // lib.llvm.llvm.LLVMAlignOf(llty); // but this makes it upset because it's not a constant. log "building memcpy"; auto volatile = C_integral(0, T_i1()); ret res(cx, cx.build.Call(memcpy, vec(dst_ptr, src_ptr, size, align, volatile))); } fn copy_ty(@block_ctxt cx, bool is_init, ValueRef dst, ValueRef src, @typeck.ty t) -> result { if (typeck.type_is_scalar(t)) { ret res(cx, cx.build.Store(src, dst)); } else if (typeck.type_is_nil(t)) { ret res(cx, C_nil()); } else if (typeck.type_is_binding(t)) { cx.fcx.ccx.sess.unimpl("binding type in trans.copy_ty"); } else if (typeck.type_is_boxed(t)) { auto r = incr_all_refcnts(cx, src, t); if (! is_init) { r = drop_ty(r.bcx, r.bcx.build.Load(dst), t); } ret res(r.bcx, r.bcx.build.Store(src, dst)); } else if (typeck.type_is_structural(t)) { auto r = incr_all_refcnts(cx, src, t); if (! is_init) { r = drop_ty(r.bcx, dst, t); } // In this one surprising case, we do a load/store on // structure types. This results in a memcpy. Usually // we talk about structures by pointers in this file. ret res(r.bcx, r.bcx.build.Store(r.bcx.build.Load(src), dst)); } cx.fcx.ccx.sess.bug("unexpected type in trans.copy_ty: " + typeck.ty_to_str(t)); fail; } impure fn trans_lit(@block_ctxt cx, &ast.lit lit, &ast.ann ann) -> result { alt (lit.node) { case (ast.lit_int(?i)) { ret res(cx, C_int(i)); } case (ast.lit_uint(?u)) { ret res(cx, C_int(u as int)); } case (ast.lit_mach_int(?tm, ?i)) { // FIXME: the entire handling of mach types falls apart // if target int width is larger than host, at the moment; // re-do the mach-int types using 'big' when that works. auto t = T_int(); alt (tm) { case (common.ty_u8) { t = T_i8(); } case (common.ty_u16) { t = T_i16(); } case (common.ty_u32) { t = T_i32(); } case (common.ty_u64) { t = T_i64(); } case (common.ty_i8) { t = T_i8(); } case (common.ty_i16) { t = T_i16(); } case (common.ty_i32) { t = T_i32(); } case (common.ty_i64) { t = T_i64(); } case (_) { cx.fcx.ccx.sess.bug("bad mach int literal type"); } } ret res(cx, C_integral(i, t)); } case (ast.lit_char(?c)) { ret res(cx, C_integral(c as int, T_char())); } case (ast.lit_bool(?b)) { ret res(cx, C_bool(b)); } case (ast.lit_nil) { ret res(cx, C_nil()); } case (ast.lit_str(?s)) { auto len = (_str.byte_len(s) as int) + 1; auto sub = trans_upcall(cx, "upcall_new_str", vec(p2i(C_str(cx.fcx.ccx, s)), C_int(len))); sub.val = sub.bcx.build.IntToPtr(sub.val, T_ptr(T_str())); auto t = node_ann_type(cx.fcx.ccx, ann); find_scope_cx(cx).cleanups += clean(bind drop_ty(_, sub.val, t)); ret sub; } } } fn target_type(@crate_ctxt cx, @typeck.ty t) -> @typeck.ty { alt (t.struct) { case (typeck.ty_int) { auto tm = typeck.ty_machine(cx.sess.get_targ_cfg().int_type); ret @rec(struct=tm with *t); } case (typeck.ty_uint) { auto tm = typeck.ty_machine(cx.sess.get_targ_cfg().uint_type); ret @rec(struct=tm with *t); } case (_) { /* fall through */ } } ret t; } fn node_ann_type(@crate_ctxt cx, &ast.ann a) -> @typeck.ty { alt (a) { case (ast.ann_none) { cx.sess.bug("missing type annotation"); } case (ast.ann_type(?t)) { ret target_type(cx, t); } } } fn node_type(@crate_ctxt cx, &ast.ann a) -> TypeRef { ret type_of(cx, node_ann_type(cx, a)); } impure fn trans_unary(@block_ctxt cx, ast.unop op, @ast.expr e, &ast.ann a) -> result { auto sub = trans_expr(cx, e); alt (op) { case (ast.bitnot) { sub.val = cx.build.Not(sub.val); ret sub; } case (ast.not) { sub.val = cx.build.Not(sub.val); ret sub; } case (ast.neg) { // FIXME: switch by signedness. sub.val = cx.build.Neg(sub.val); ret sub; } case (ast.box) { auto e_ty = typeck.expr_ty(e); auto e_val = sub.val; sub = trans_malloc(sub.bcx, node_ann_type(sub.bcx.fcx.ccx, a)); auto box = sub.val; auto rc = sub.bcx.build.GEP(box, vec(C_int(0), C_int(abi.box_rc_field_refcnt))); auto body = sub.bcx.build.GEP(box, vec(C_int(0), C_int(abi.box_rc_field_body))); sub.bcx.build.Store(C_int(1), rc); sub = copy_ty(sub.bcx, true, body, e_val, e_ty); ret res(sub.bcx, box); } case (ast.deref) { sub.val = sub.bcx.build.GEP(sub.val, vec(C_int(0), C_int(abi.box_rc_field_body))); auto e_ty = node_ann_type(sub.bcx.fcx.ccx, a); if (typeck.type_is_scalar(e_ty) || typeck.type_is_nil(e_ty)) { sub.val = sub.bcx.build.Load(sub.val); } ret sub; } } fail; } fn trans_eager_binop(@block_ctxt cx, ast.binop op, ValueRef lhs, ValueRef rhs) -> ValueRef { alt (op) { case (ast.add) { ret cx.build.Add(lhs, rhs); } case (ast.sub) { ret cx.build.Sub(lhs, rhs); } // FIXME: switch by signedness. case (ast.mul) { ret cx.build.Mul(lhs, rhs); } case (ast.div) { ret cx.build.SDiv(lhs, rhs); } case (ast.rem) { ret cx.build.SRem(lhs, rhs); } case (ast.bitor) { ret cx.build.Or(lhs, rhs); } case (ast.bitand) { ret cx.build.And(lhs, rhs); } case (ast.bitxor) { ret cx.build.Xor(lhs, rhs); } case (ast.lsl) { ret cx.build.Shl(lhs, rhs); } case (ast.lsr) { ret cx.build.LShr(lhs, rhs); } case (ast.asr) { ret cx.build.AShr(lhs, rhs); } case (_) { auto cmp = lib.llvm.LLVMIntEQ; alt (op) { case (ast.eq) { cmp = lib.llvm.LLVMIntEQ; } case (ast.ne) { cmp = lib.llvm.LLVMIntNE; } // FIXME: switch by signedness. case (ast.lt) { cmp = lib.llvm.LLVMIntSLT; } case (ast.le) { cmp = lib.llvm.LLVMIntSLE; } case (ast.ge) { cmp = lib.llvm.LLVMIntSGE; } case (ast.gt) { cmp = lib.llvm.LLVMIntSGT; } } ret cx.build.ICmp(cmp, lhs, rhs); } } fail; } impure fn trans_binary(@block_ctxt cx, ast.binop op, @ast.expr a, @ast.expr b) -> result { // First couple cases are lazy: alt (op) { case (ast.and) { // Lazy-eval and auto lhs_res = trans_expr(cx, a); auto rhs_cx = new_scope_block_ctxt(cx, "rhs"); auto rhs_res = trans_expr(rhs_cx, b); auto lhs_false_cx = new_scope_block_ctxt(cx, "lhs false"); auto lhs_false_res = res(lhs_false_cx, C_bool(false)); lhs_res.bcx.build.CondBr(lhs_res.val, rhs_cx.llbb, lhs_false_cx.llbb); ret join_results(cx, T_bool(), vec(lhs_false_res, rhs_res)); } case (ast.or) { // Lazy-eval or auto lhs_res = trans_expr(cx, a); auto rhs_cx = new_scope_block_ctxt(cx, "rhs"); auto rhs_res = trans_expr(rhs_cx, b); auto lhs_true_cx = new_scope_block_ctxt(cx, "lhs true"); auto lhs_true_res = res(lhs_true_cx, C_bool(true)); lhs_res.bcx.build.CondBr(lhs_res.val, lhs_true_cx.llbb, rhs_cx.llbb); ret join_results(cx, T_bool(), vec(lhs_true_res, rhs_res)); } case (_) { // Remaining cases are eager: auto lhs = trans_expr(cx, a); auto sub = trans_expr(lhs.bcx, b); ret res(sub.bcx, trans_eager_binop(sub.bcx, op, lhs.val, sub.val)); } } fail; } fn join_results(@block_ctxt parent_cx, TypeRef t, vec[result] ins) -> result { let vec[result] live = vec(); let vec[ValueRef] vals = vec(); let vec[BasicBlockRef] bbs = vec(); for (result r in ins) { if (! is_terminated(r.bcx)) { live += r; vals += r.val; bbs += r.bcx.llbb; } } alt (_vec.len[result](live)) { case (0u) { // No incoming edges are live, so we're in dead-code-land. // Arbitrarily pick the first dead edge, since the caller // is just going to propagate it outward. check (_vec.len[result](ins) >= 1u); ret ins.(0); } case (1u) { // Only one incoming edge is live, so we just feed that block // onward. ret live.(0); } case (_) { /* fall through */ } } // We have >1 incoming edges. Make a join block and br+phi them into it. auto join_cx = new_sub_block_ctxt(parent_cx, "join"); for (result r in live) { r.bcx.build.Br(join_cx.llbb); } auto phi = join_cx.build.Phi(t, vals, bbs); ret res(join_cx, phi); } impure fn trans_if(@block_ctxt cx, @ast.expr cond, &ast.block thn, &option.t[ast.block] els) -> result { auto cond_res = trans_expr(cx, cond); auto then_cx = new_scope_block_ctxt(cx, "then"); auto then_res = trans_block(then_cx, thn); auto else_cx = new_scope_block_ctxt(cx, "else"); auto else_res = res(else_cx, C_nil()); alt (els) { case (some[ast.block](?eblk)) { else_res = trans_block(else_cx, eblk); } case (_) { /* fall through */ } } cond_res.bcx.build.CondBr(cond_res.val, then_cx.llbb, else_cx.llbb); // FIXME: use inferred type when available. ret join_results(cx, T_nil(), vec(then_res, else_res)); } impure fn trans_while(@block_ctxt cx, @ast.expr cond, &ast.block body) -> result { auto cond_cx = new_scope_block_ctxt(cx, "while cond"); auto body_cx = new_scope_block_ctxt(cx, "while loop body"); auto next_cx = new_sub_block_ctxt(cx, "next"); auto body_res = trans_block(body_cx, body); auto cond_res = trans_expr(cond_cx, cond); body_res.bcx.build.Br(cond_cx.llbb); cond_res.bcx.build.CondBr(cond_res.val, body_cx.llbb, next_cx.llbb); cx.build.Br(cond_cx.llbb); ret res(next_cx, C_nil()); } impure fn trans_do_while(@block_ctxt cx, &ast.block body, @ast.expr cond) -> result { auto body_cx = new_scope_block_ctxt(cx, "do-while loop body"); auto next_cx = new_sub_block_ctxt(cx, "next"); auto body_res = trans_block(body_cx, body); auto cond_res = trans_expr(body_res.bcx, cond); cond_res.bcx.build.CondBr(cond_res.val, body_cx.llbb, next_cx.llbb); cx.build.Br(body_cx.llbb); ret res(next_cx, body_res.val); } // Pattern matching translation // Returns a pointer to the union part of the LLVM representation of a tag // type, cast to the appropriate type. fn get_pat_union_ptr(@block_ctxt cx, vec[@ast.pat] subpats, ValueRef llval) -> ValueRef { auto llblobptr = cx.build.GEP(llval, vec(C_int(0), C_int(1))); // Generate the union type. let vec[TypeRef] llsubpattys = vec(); for (@ast.pat subpat in subpats) { llsubpattys += vec(type_of(cx.fcx.ccx, pat_ty(subpat))); } // Recursively check subpatterns. auto llunionty = T_struct(llsubpattys); ret cx.build.TruncOrBitCast(llblobptr, T_ptr(llunionty)); } impure fn trans_pat_match(@block_ctxt cx, @ast.pat pat, ValueRef llval, @block_ctxt next_cx) -> result { alt (pat.node) { case (ast.pat_wild(_)) { ret res(cx, llval); } case (ast.pat_bind(_, _, _)) { ret res(cx, llval); } case (ast.pat_tag(?id, ?subpats, ?vdef_opt, ?ann)) { auto lltagptr = cx.build.GEP(llval, vec(C_int(0), C_int(0))); auto lltag = cx.build.Load(lltagptr); auto vdef = option.get[ast.variant_def](vdef_opt); auto variant_id = vdef._1; auto tinfo = cx.fcx.ccx.tags.get(vdef._0); auto variant_tag = 0; auto i = 0; for (tup(ast.def_id,arity) vinfo in tinfo.variants) { auto this_variant_id = vinfo._0; if (variant_id._0 == this_variant_id._0 && variant_id._1 == this_variant_id._1) { variant_tag = i; } i += 1; } auto matched_cx = new_sub_block_ctxt(cx, "matched_cx"); auto lleq = cx.build.ICmp(lib.llvm.LLVMIntEQ, lltag, C_int(variant_tag)); cx.build.CondBr(lleq, matched_cx.llbb, next_cx.llbb); if (_vec.len[@ast.pat](subpats) > 0u) { auto llunionptr = get_pat_union_ptr(matched_cx, subpats, llval); auto i = 0; for (@ast.pat subpat in subpats) { auto llsubvalptr = matched_cx.build.GEP(llunionptr, vec(C_int(0), C_int(i))); auto llsubval = load_non_structural(matched_cx, llsubvalptr, pat_ty(subpat)); auto subpat_res = trans_pat_match(matched_cx, subpat, llsubval, next_cx); matched_cx = subpat_res.bcx; } } ret res(matched_cx, llval); } } fail; } impure fn trans_pat_binding(@block_ctxt cx, @ast.pat pat, ValueRef llval) -> result { alt (pat.node) { case (ast.pat_wild(_)) { ret res(cx, llval); } case (ast.pat_bind(?id, ?def_id, ?ann)) { auto ty = node_ann_type(cx.fcx.ccx, ann); auto llty = type_of(cx.fcx.ccx, ty); auto dst = cx.build.Alloca(llty); llvm.LLVMSetValueName(dst, _str.buf(id)); cx.fcx.lllocals.insert(def_id, dst); cx.cleanups += clean(bind drop_slot(_, dst, ty)); ret copy_ty(cx, true, dst, llval, ty); } case (ast.pat_tag(_, ?subpats, _, _)) { if (_vec.len[@ast.pat](subpats) == 0u) { ret res(cx, llval); } auto llunionptr = get_pat_union_ptr(cx, subpats, llval); auto this_cx = cx; auto i = 0; for (@ast.pat subpat in subpats) { auto llsubvalptr = this_cx.build.GEP(llunionptr, vec(C_int(0), C_int(i))); auto llsubval = load_non_structural(this_cx, llsubvalptr, pat_ty(subpat)); auto subpat_res = trans_pat_binding(this_cx, subpat, llsubval); this_cx = subpat_res.bcx; i += 1; } ret res(this_cx, llval); } } } impure fn trans_alt(@block_ctxt cx, @ast.expr expr, vec[ast.arm] arms) -> result { auto expr_res = trans_expr(cx, expr); auto last_cx = new_sub_block_ctxt(expr_res.bcx, "last"); auto this_cx = expr_res.bcx; for (ast.arm arm in arms) { auto next_cx = new_sub_block_ctxt(expr_res.bcx, "next"); auto match_res = trans_pat_match(this_cx, arm.pat, expr_res.val, next_cx); auto binding_cx = new_scope_block_ctxt(match_res.bcx, "binding"); match_res.bcx.build.Br(binding_cx.llbb); auto binding_res = trans_pat_binding(binding_cx, arm.pat, expr_res.val); auto block_res = trans_block(binding_res.bcx, arm.block); if (!is_terminated(block_res.bcx)) { block_res.bcx.build.Br(last_cx.llbb); } this_cx = next_cx; } // FIXME: This is executed when none of the patterns match; it should fail // instead! this_cx.build.Br(last_cx.llbb); // FIXME: This is very wrong; we should phi together all the arm blocks, // since this is an expression. ret res(last_cx, C_nil()); } // The additional bool returned indicates whether it's mem (that is // represented as an alloca or heap, hence needs a 'load' to be used as an // immediate). fn trans_name(@block_ctxt cx, &ast.name n, &option.t[ast.def] dopt) -> tup(result, bool) { alt (dopt) { case (some[ast.def](?def)) { alt (def) { case (ast.def_arg(?did)) { check (cx.fcx.llargs.contains_key(did)); ret tup(res(cx, cx.fcx.llargs.get(did)), true); } case (ast.def_local(?did)) { check (cx.fcx.lllocals.contains_key(did)); ret tup(res(cx, cx.fcx.lllocals.get(did)), true); } case (ast.def_binding(?did)) { check (cx.fcx.lllocals.contains_key(did)); ret tup(res(cx, cx.fcx.lllocals.get(did)), true); } case (ast.def_fn(?did)) { check (cx.fcx.ccx.item_ids.contains_key(did)); ret tup(res(cx, cx.fcx.ccx.item_ids.get(did)), false); } case (ast.def_obj(?did)) { check (cx.fcx.ccx.item_ids.contains_key(did)); ret tup(res(cx, cx.fcx.ccx.item_ids.get(did)), false); } case (ast.def_variant(?tid, ?vid)) { check (cx.fcx.ccx.tags.contains_key(tid)); check (cx.fcx.ccx.item_ids.contains_key(vid)); ret tup(res(cx, cx.fcx.ccx.item_ids.get(vid)), false); } case (_) { cx.fcx.ccx.sess.unimpl("def variant in trans"); } } } case (none[ast.def]) { cx.fcx.ccx.sess.err("unresolved expr_name in trans"); } } fail; } fn trans_field(@block_ctxt cx, &ast.span sp, @ast.expr base, &ast.ident field, &ast.ann ann) -> tup(result, bool) { auto lv = trans_lval(cx, base); auto r = lv._0; auto ty = typeck.expr_ty(base); alt (ty.struct) { case (typeck.ty_tup(?fields)) { let uint ix = typeck.field_num(cx.fcx.ccx.sess, sp, field); auto v = r.bcx.build.GEP(r.val, vec(C_int(0), C_int(ix as int))); ret tup(res(r.bcx, v), lv._1); } case (typeck.ty_rec(?fields)) { let uint ix = typeck.field_idx(cx.fcx.ccx.sess, sp, field, fields); auto v = r.bcx.build.GEP(r.val, vec(C_int(0), C_int(ix as int))); ret tup(res(r.bcx, v), lv._1); } case (_) { cx.fcx.ccx.sess.unimpl("field variant in trans_field"); } } fail; } fn trans_index(@block_ctxt cx, &ast.span sp, @ast.expr base, @ast.expr idx, &ast.ann ann) -> tup(result, bool) { auto lv = trans_expr(cx, base); auto ix = trans_expr(lv.bcx, idx); auto v = lv.val; auto llunit_ty = node_type(cx.fcx.ccx, ann); auto unit_sz = ix.bcx.build.IntCast(lib.llvm.llvm.LLVMSizeOf(llunit_ty), T_int()); auto scaled_ix = ix.bcx.build.Mul(ix.val, unit_sz); auto lim = ix.bcx.build.GEP(v, vec(C_int(0), C_int(abi.vec_elt_fill))); lim = ix.bcx.build.Load(lim); auto bounds_check = ix.bcx.build.ICmp(lib.llvm.LLVMIntULT, scaled_ix, lim); auto fail_cx = new_sub_block_ctxt(ix.bcx, "fail"); auto next_cx = new_sub_block_ctxt(ix.bcx, "next"); ix.bcx.build.CondBr(bounds_check, next_cx.llbb, fail_cx.llbb); // fail: bad bounds check. auto V_expr_str = p2i(C_str(cx.fcx.ccx, "out-of-bounds access")); auto V_filename = p2i(C_str(cx.fcx.ccx, sp.filename)); auto V_line = sp.lo.line as int; auto args = vec(V_expr_str, V_filename, C_int(V_line)); auto fail_res = trans_upcall(fail_cx, "upcall_fail", args); fail_res.bcx.build.Br(next_cx.llbb); auto body = next_cx.build.GEP(v, vec(C_int(0), C_int(abi.vec_elt_data))); auto elt = next_cx.build.GEP(body, vec(C_int(0), ix.val)); ret tup(res(next_cx, elt), true); } // The additional bool returned indicates whether it's mem (that is // represented as an alloca or heap, hence needs a 'load' to be used as an // immediate). fn trans_lval(@block_ctxt cx, @ast.expr e) -> tup(result, bool) { alt (e.node) { case (ast.expr_name(?n, ?dopt, _)) { ret trans_name(cx, n, dopt); } case (ast.expr_field(?base, ?ident, ?ann)) { ret trans_field(cx, e.span, base, ident, ann); } case (ast.expr_index(?base, ?idx, ?ann)) { ret trans_index(cx, e.span, base, idx, ann); } case (_) { cx.fcx.ccx.sess.unimpl("expr variant in trans_lval"); } } fail; } impure fn trans_cast(@block_ctxt cx, @ast.expr e, &ast.ann ann) -> result { auto e_res = trans_expr(cx, e); auto llsrctype = val_ty(e_res.val); auto t = node_ann_type(cx.fcx.ccx, ann); auto lldsttype = type_of(cx.fcx.ccx, t); if (!typeck.type_is_fp(t)) { if (llvm.LLVMGetIntTypeWidth(lldsttype) > llvm.LLVMGetIntTypeWidth(llsrctype)) { if (typeck.type_is_signed(t)) { // Widening signed cast. e_res.val = e_res.bcx.build.SExtOrBitCast(e_res.val, lldsttype); } else { // Widening unsigned cast. e_res.val = e_res.bcx.build.ZExtOrBitCast(e_res.val, lldsttype); } } else { // Narrowing cast. e_res.val = e_res.bcx.build.TruncOrBitCast(e_res.val, lldsttype); } } else { cx.fcx.ccx.sess.unimpl("fp cast"); } ret e_res; } impure fn trans_args(@block_ctxt cx, &vec[@ast.expr] es, @typeck.ty fn_ty) -> tup(@block_ctxt, vec[ValueRef]) { let vec[ValueRef] vs = vec(cx.fcx.lltaskptr); let @block_ctxt bcx = cx; let vec[typeck.arg] args = vec(); // FIXME: typestate bug alt (fn_ty.struct) { case (typeck.ty_fn(?a, _)) { args = a; } case (_) { fail; } } auto i = 0u; for (@ast.expr e in es) { auto mode = args.(i).mode; auto re; if (typeck.type_is_structural(typeck.expr_ty(e))) { re = trans_expr(bcx, e); if (mode == ast.val) { // Until here we've been treating structures by pointer; // we are now passing it as an arg, so need to load it. re.val = re.bcx.build.Load(re.val); } } else { if (mode == ast.alias) { let tup(result, bool /* is a pointer? */) pair; if (typeck.is_lval(e)) { pair = trans_lval(bcx, e); } else { pair = tup(trans_expr(bcx, e), false); } if (!pair._1) { // Have to synthesize a pointer here... auto llty = val_ty(pair._0.val); auto llptr = pair._0.bcx.build.Alloca(llty); pair._0.bcx.build.Store(pair._0.val, llptr); re = res(pair._0.bcx, llptr); } else { re = pair._0; } } else { re = trans_expr(bcx, e); } } vs += re.val; bcx = re.bcx; i += 1u; } ret tup(bcx, vs); } impure fn trans_call(@block_ctxt cx, @ast.expr f, vec[@ast.expr] args, &ast.ann ann) -> result { auto f_res = trans_lval(cx, f); check (! f_res._1); auto fn_ty = typeck.expr_ty(f); auto ret_ty = typeck.ann_to_type(ann); auto args_res = trans_args(f_res._0.bcx, args, fn_ty); auto real_retval = args_res._0.build.FastCall(f_res._0.val, args_res._1); auto retval; if (typeck.type_is_nil(ret_ty)) { retval = C_nil(); } else { retval = real_retval; } // Structured returns come back as first-class values. This is nice for // LLVM but wrong for us; we treat structured values by pointer in // most of our code here. So spill it to an alloca. if (typeck.type_is_structural(ret_ty)) { auto local = args_res._0.build.Alloca(type_of(cx.fcx.ccx, ret_ty)); args_res._0.build.Store(retval, local); retval = local; } // Retval doesn't correspond to anything really tangible in the frame, but // it's a ref all the same, so we put a note here to drop it when we're // done in this scope. find_scope_cx(cx).cleanups += clean(bind drop_ty(_, retval, ret_ty)); ret res(args_res._0, retval); } impure fn trans_tup(@block_ctxt cx, vec[ast.elt] elts, &ast.ann ann) -> result { auto ty = node_ann_type(cx.fcx.ccx, ann); auto llty = type_of(cx.fcx.ccx, ty); auto tup_val = cx.build.Alloca(llty); find_scope_cx(cx).cleanups += clean(bind drop_ty(_, tup_val, ty)); let int i = 0; auto r = res(cx, C_nil()); for (ast.elt e in elts) { auto t = typeck.expr_ty(e.expr); auto src_res = trans_expr(r.bcx, e.expr); auto dst_elt = r.bcx.build.GEP(tup_val, vec(C_int(0), C_int(i))); r = copy_ty(src_res.bcx, true, dst_elt, src_res.val, t); i += 1; } ret res(r.bcx, tup_val); } impure fn trans_vec(@block_ctxt cx, vec[@ast.expr] args, &ast.ann ann) -> result { auto ty = node_ann_type(cx.fcx.ccx, ann); auto unit_ty = ty; alt (ty.struct) { case (typeck.ty_vec(?t)) { unit_ty = t; } case (_) { cx.fcx.ccx.sess.bug("non-vec type in trans_vec"); } } auto llunit_ty = type_of(cx.fcx.ccx, unit_ty); auto unit_sz = llvm.LLVMConstIntCast(llvm.LLVMSizeOf(llunit_ty), T_int(), False); auto data_sz = llvm.LLVMConstMul(C_int(_vec.len[@ast.expr](args) as int), unit_sz); // FIXME: pass tydesc properly. auto sub = trans_upcall(cx, "upcall_new_vec", vec(data_sz, C_int(0))); auto llty = type_of(cx.fcx.ccx, ty); auto vec_val = sub.bcx.build.IntToPtr(sub.val, llty); find_scope_cx(cx).cleanups += clean(bind drop_ty(_, vec_val, ty)); auto body = sub.bcx.build.GEP(vec_val, vec(C_int(0), C_int(abi.vec_elt_data))); let int i = 0; for (@ast.expr e in args) { auto src_res = trans_expr(sub.bcx, e); auto dst_elt = sub.bcx.build.GEP(body, vec(C_int(0), C_int(i))); sub = copy_ty(src_res.bcx, true, dst_elt, src_res.val, unit_ty); i += 1; } auto fill = sub.bcx.build.GEP(vec_val, vec(C_int(0), C_int(abi.vec_elt_fill))); sub.bcx.build.Store(data_sz, fill); ret res(sub.bcx, vec_val); } impure fn trans_rec(@block_ctxt cx, vec[ast.field] fields, &ast.ann ann) -> result { auto ty = node_ann_type(cx.fcx.ccx, ann); auto llty = type_of(cx.fcx.ccx, ty); auto rec_val = cx.build.Alloca(llty); find_scope_cx(cx).cleanups += clean(bind drop_ty(_, rec_val, ty)); let int i = 0; auto r = res(cx, C_nil()); for (ast.field f in fields) { auto t = typeck.expr_ty(f.expr); auto src_res = trans_expr(r.bcx, f.expr); auto dst_elt = r.bcx.build.GEP(rec_val, vec(C_int(0), C_int(i))); // FIXME: calculate copy init-ness in typestate. r = copy_ty(src_res.bcx, true, dst_elt, src_res.val, t); i += 1; } ret res(r.bcx, rec_val); } impure fn trans_expr(@block_ctxt cx, @ast.expr e) -> result { alt (e.node) { case (ast.expr_lit(?lit, ?ann)) { ret trans_lit(cx, *lit, ann); } case (ast.expr_unary(?op, ?x, ?ann)) { ret trans_unary(cx, op, x, ann); } case (ast.expr_binary(?op, ?x, ?y, _)) { ret trans_binary(cx, op, x, y); } case (ast.expr_if(?cond, ?thn, ?els, _)) { ret trans_if(cx, cond, thn, els); } case (ast.expr_while(?cond, ?body, _)) { ret trans_while(cx, cond, body); } case (ast.expr_do_while(?body, ?cond, _)) { ret trans_do_while(cx, body, cond); } case (ast.expr_alt(?expr, ?arms, _)) { ret trans_alt(cx, expr, arms); } case (ast.expr_block(?blk, _)) { auto sub_cx = new_scope_block_ctxt(cx, "block-expr body"); auto next_cx = new_sub_block_ctxt(cx, "next"); auto sub = trans_block(sub_cx, blk); cx.build.Br(sub_cx.llbb); sub.bcx.build.Br(next_cx.llbb); ret res(next_cx, sub.val); } case (ast.expr_assign(?dst, ?src, ?ann)) { auto lhs_res = trans_lval(cx, dst); check (lhs_res._1); auto rhs_res = trans_expr(lhs_res._0.bcx, src); auto t = node_ann_type(cx.fcx.ccx, ann); // FIXME: calculate copy init-ness in typestate. ret copy_ty(rhs_res.bcx, false, lhs_res._0.val, rhs_res.val, t); } case (ast.expr_assign_op(?op, ?dst, ?src, ?ann)) { auto t = node_ann_type(cx.fcx.ccx, ann); auto lhs_res = trans_lval(cx, dst); check (lhs_res._1); auto lhs_val = load_non_structural(lhs_res._0.bcx, lhs_res._0.val, t); auto rhs_res = trans_expr(lhs_res._0.bcx, src); auto v = trans_eager_binop(rhs_res.bcx, op, lhs_val, rhs_res.val); // FIXME: calculate copy init-ness in typestate. ret copy_ty(rhs_res.bcx, false, lhs_res._0.val, v, t); } case (ast.expr_call(?f, ?args, ?ann)) { ret trans_call(cx, f, args, ann); } case (ast.expr_cast(?e, _, ?ann)) { ret trans_cast(cx, e, ann); } case (ast.expr_vec(?args, ?ann)) { ret trans_vec(cx, args, ann); } case (ast.expr_tup(?args, ?ann)) { ret trans_tup(cx, args, ann); } case (ast.expr_rec(?args, ?ann)) { ret trans_rec(cx, args, ann); } // lval cases fall through to trans_lval and then // possibly load the result (if it's non-structural). case (_) { auto t = typeck.expr_ty(e); auto sub = trans_lval(cx, e); ret res(sub._0.bcx, load_non_structural(sub._0.bcx, sub._0.val, t)); } } cx.fcx.ccx.sess.unimpl("expr variant in trans_expr"); fail; } // We pass structural values around the compiler "by pointer" and // non-structural values "by value". This function selects whether // to load a pointer or pass it. fn load_non_structural(@block_ctxt cx, ValueRef v, @typeck.ty t) -> ValueRef { if (typeck.type_is_structural(t)) { ret v; } else { ret cx.build.Load(v); } } impure fn trans_log(@block_ctxt cx, @ast.expr e) -> result { auto sub = trans_expr(cx, e); auto e_ty = typeck.expr_ty(e); alt (e_ty.struct) { case (typeck.ty_str) { auto v = sub.bcx.build.PtrToInt(sub.val, T_int()); ret trans_upcall(sub.bcx, "upcall_log_str", vec(v)); } case (_) { ret trans_upcall(sub.bcx, "upcall_log_int", vec(sub.val)); } } fail; } impure fn trans_check_expr(@block_ctxt cx, @ast.expr e) -> result { auto cond_res = trans_expr(cx, e); // FIXME: need pretty-printer. auto V_expr_str = p2i(C_str(cx.fcx.ccx, "")); auto V_filename = p2i(C_str(cx.fcx.ccx, e.span.filename)); auto V_line = e.span.lo.line as int; auto args = vec(V_expr_str, V_filename, C_int(V_line)); auto fail_cx = new_sub_block_ctxt(cx, "fail"); auto fail_res = trans_upcall(fail_cx, "upcall_fail", args); auto next_cx = new_sub_block_ctxt(cx, "next"); fail_res.bcx.build.Br(next_cx.llbb); cond_res.bcx.build.CondBr(cond_res.val, next_cx.llbb, fail_cx.llbb); ret res(next_cx, C_nil()); } impure fn trans_ret(@block_ctxt cx, &option.t[@ast.expr] e) -> result { auto r = res(cx, C_nil()); alt (e) { case (some[@ast.expr](?x)) { auto t = typeck.expr_ty(x); r = trans_expr(cx, x); // A return is an implicit copy into a newborn anonymous // 'return value' in the caller frame. r.bcx = incr_all_refcnts(r.bcx, r.val, t).bcx; if (typeck.type_is_structural(t)) { // We usually treat structurals by-pointer; in particular, // trans_expr will have given us a structure pointer. But in // this case we're about to return. LLVM wants a first-class // value here (which makes sense; the frame is going away!) r.val = r.bcx.build.Load(r.val); } } case (_) { /* fall through */ } } // Run all cleanups and back out. let bool more_cleanups = true; auto cleanup_cx = cx; while (more_cleanups) { r.bcx = trans_block_cleanups(r.bcx, cleanup_cx); alt (cleanup_cx.parent) { case (parent_some(?b)) { cleanup_cx = b; } case (parent_none) { more_cleanups = false; } } } alt (e) { case (some[@ast.expr](?ex)) { if (typeck.type_is_nil(typeck.expr_ty(ex))) { r.bcx.build.RetVoid(); r.val = C_nil(); } else { r.val = r.bcx.build.Ret(r.val); } ret r; } case (_) { /* fall through */ } } // FIXME: until LLVM has a unit type, we are moving around // C_nil values rather than their void type. r.bcx.build.RetVoid(); r.val = C_nil(); ret r; } impure fn trans_stmt(@block_ctxt cx, &ast.stmt s) -> result { auto sub = res(cx, C_nil()); alt (s.node) { case (ast.stmt_log(?a)) { sub.bcx = trans_log(cx, a).bcx; } case (ast.stmt_check_expr(?a)) { sub.bcx = trans_check_expr(cx, a).bcx; } case (ast.stmt_ret(?e)) { sub.bcx = trans_ret(cx, e).bcx; } case (ast.stmt_expr(?e)) { sub.bcx = trans_expr(cx, e).bcx; } case (ast.stmt_decl(?d)) { alt (d.node) { case (ast.decl_local(?local)) { // Make a note to drop this slot on the way out. check (cx.fcx.lllocals.contains_key(local.id)); auto llptr = cx.fcx.lllocals.get(local.id); auto ty = node_ann_type(cx.fcx.ccx, local.ann); find_scope_cx(cx).cleanups += clean(bind drop_slot(_, llptr, ty)); alt (local.init) { case (some[@ast.expr](?e)) { sub = trans_expr(cx, e); sub = copy_ty(sub.bcx, true, llptr, sub.val, ty); } case (_) { auto llty = type_of(cx.fcx.ccx, ty); auto null = lib.llvm.llvm.LLVMConstNull(llty); sub = res(cx, cx.build.Store(null, llptr)); } } } } } case (_) { cx.fcx.ccx.sess.unimpl("stmt variant"); } } ret sub; } fn new_builder(BasicBlockRef llbb, str name) -> builder { let BuilderRef llbuild = llvm.LLVMCreateBuilder(); llvm.LLVMPositionBuilderAtEnd(llbuild, llbb); ret builder(llbuild); } // You probably don't want to use this one. See the // next three functions instead. fn new_block_ctxt(@fn_ctxt cx, block_parent parent, bool is_scope, str name) -> @block_ctxt { let vec[cleanup] cleanups = vec(); let BasicBlockRef llbb = llvm.LLVMAppendBasicBlock(cx.llfn, _str.buf(cx.ccx.names.next(name))); ret @rec(llbb=llbb, build=new_builder(llbb, name), parent=parent, is_scope=is_scope, mutable cleanups=cleanups, fcx=cx); } // Use this when you're at the top block of a function or the like. fn new_top_block_ctxt(@fn_ctxt fcx) -> @block_ctxt { ret new_block_ctxt(fcx, parent_none, true, "function top level"); } // Use this when you're at a curly-brace or similar lexical scope. fn new_scope_block_ctxt(@block_ctxt bcx, str n) -> @block_ctxt { ret new_block_ctxt(bcx.fcx, parent_some(bcx), true, n); } // Use this when you're making a general CFG BB within a scope. fn new_sub_block_ctxt(@block_ctxt bcx, str n) -> @block_ctxt { ret new_block_ctxt(bcx.fcx, parent_some(bcx), false, n); } fn trans_block_cleanups(@block_ctxt cx, @block_ctxt cleanup_cx) -> @block_ctxt { auto bcx = cx; if (!cleanup_cx.is_scope) { check (_vec.len[cleanup](cleanup_cx.cleanups) == 0u); } for (cleanup c in cleanup_cx.cleanups) { alt (c) { case (clean(?cfn)) { bcx = cfn(bcx).bcx; } } } ret bcx; } iter block_locals(&ast.block b) -> @ast.local { // FIXME: putting from inside an iter block doesn't work, so we can't // use the index here. for (@ast.stmt s in b.node.stmts) { alt (s.node) { case (ast.stmt_decl(?d)) { alt (d.node) { case (ast.decl_local(?local)) { put local; } case (_) { /* fall through */ } } } case (_) { /* fall through */ } } } } impure fn trans_block(@block_ctxt cx, &ast.block b) -> result { auto bcx = cx; for each (@ast.local local in block_locals(b)) { auto ty = node_type(cx.fcx.ccx, local.ann); auto val = bcx.build.Alloca(ty); cx.fcx.lllocals.insert(local.id, val); } auto r = res(bcx, C_nil()); for (@ast.stmt s in b.node.stmts) { r = trans_stmt(bcx, *s); bcx = r.bcx; // If we hit a terminator, control won't go any further so // we're in dead-code land. Stop here. if (is_terminated(bcx)) { ret r; } } alt (b.node.expr) { case (some[@ast.expr](?e)) { r = trans_expr(bcx, e); bcx = r.bcx; if (is_terminated(bcx)) { ret r; } } case (none[@ast.expr]) { r = res(bcx, C_nil()); } } bcx = trans_block_cleanups(bcx, find_scope_cx(bcx)); ret res(bcx, r.val); } fn new_fn_ctxt(@crate_ctxt cx, str name, ValueRef llfndecl) -> @fn_ctxt { let ValueRef lltaskptr = llvm.LLVMGetParam(llfndecl, 0u); let hashmap[ast.def_id, ValueRef] lllocals = new_def_hash[ValueRef](); let hashmap[ast.def_id, ValueRef] llargs = new_def_hash[ValueRef](); ret @rec(llfn=llfndecl, lltaskptr=lltaskptr, llargs=llargs, lllocals=lllocals, ccx=cx); } fn create_llargs_for_fn_args(@fn_ctxt cx, vec[ast.arg] args) { let uint arg_n = 1u; for (ast.arg arg in args) { auto llarg = llvm.LLVMGetParam(cx.llfn, arg_n); check (llarg as int != 0); cx.llargs.insert(arg.id, llarg); arg_n += 1u; } } // Recommended LLVM style, strange though this is, is to copy from args to // allocas immediately upon entry; this permits us to GEP into structures we // were passed and whatnot. Apparently mem2reg will mop up. fn copy_args_to_allocas(@block_ctxt cx, vec[ast.arg] args, vec[typeck.arg] arg_tys) { let uint arg_n = 0u; for (ast.arg aarg in args) { if (aarg.mode != ast.alias) { auto arg_t = type_of_arg(cx.fcx.ccx, arg_tys.(arg_n)); auto alloca = cx.build.Alloca(arg_t); auto argval = cx.fcx.llargs.get(aarg.id); cx.build.Store(argval, alloca); // Overwrite the llargs entry for this arg with its alloca. cx.fcx.llargs.insert(aarg.id, alloca); } arg_n += 1u; } } fn is_terminated(@block_ctxt cx) -> bool { auto inst = llvm.LLVMGetLastInstruction(cx.llbb); ret llvm.LLVMIsATerminatorInst(inst) as int != 0; } fn arg_tys_of_fn(ast.ann ann) -> vec[typeck.arg] { alt (typeck.ann_to_type(ann).struct) { case (typeck.ty_fn(?arg_tys, _)) { ret arg_tys; } } fail; } fn ret_ty_of_fn(ast.ann ann) -> @typeck.ty { alt (typeck.ann_to_type(ann).struct) { case (typeck.ty_fn(_, ?ret_ty)) { ret ret_ty; } } fail; } impure fn trans_fn(@crate_ctxt cx, &ast._fn f, ast.def_id fid, &ast.ann ann) { auto llfndecl = cx.item_ids.get(fid); cx.item_names.insert(cx.path, llfndecl); auto fcx = new_fn_ctxt(cx, cx.path, llfndecl); create_llargs_for_fn_args(fcx, f.inputs); auto bcx = new_top_block_ctxt(fcx); copy_args_to_allocas(bcx, f.inputs, arg_tys_of_fn(ann)); auto res = trans_block(bcx, f.body); if (!is_terminated(res.bcx)) { // FIXME: until LLVM has a unit type, we are moving around // C_nil values rather than their void type. res.bcx.build.RetVoid(); } } impure fn trans_vtbl(@crate_ctxt cx, &ast._obj ob) -> ValueRef { let vec[ValueRef] methods = vec(); for (@ast.method m in ob.methods) { trans_fn(cx, m.node.meth, m.node.id, m.node.ann); methods += cx.item_ids.get(m.node.id); } ret C_struct(methods); } fn trans_obj(@crate_ctxt cx, &ast._obj ob, ast.def_id oid, &ast.ann ann) { auto llctor_decl = cx.item_ids.get(oid); cx.item_names.insert(cx.path, llctor_decl); // Translate obj ctor fields to function arguments. let vec[ast.arg] fn_args = vec(); for (ast.obj_field f in ob.fields) { fn_args += vec(rec(mode=ast.alias, ty=f.ty, ident=f.ident, id=f.id)); } auto fcx = new_fn_ctxt(cx, cx.path, llctor_decl); create_llargs_for_fn_args(fcx, fn_args); auto bcx = new_top_block_ctxt(fcx); copy_args_to_allocas(bcx, fn_args, arg_tys_of_fn(ann)); auto pair = bcx.build.Alloca(type_of(cx, ret_ty_of_fn(ann))); bcx.build.Ret(pair); } fn trans_tag_variant(@crate_ctxt cx, ast.def_id tag_id, &ast.variant variant, int index) { if (_vec.len[ast.variant_arg](variant.args) == 0u) { ret; // nullary constructors are just constants } // Translate variant arguments to function arguments. let vec[ast.arg] fn_args = vec(); auto i = 0u; for (ast.variant_arg varg in variant.args) { fn_args += vec(rec(mode=ast.alias, ty=varg.ty, ident="arg" + _uint.to_str(i, 10u), id=varg.id)); } auto var_ty = typeck.ann_to_type(variant.ann); auto llfnty = type_of(cx, var_ty); let str s = cx.names.next("_rust_tag") + "." + cx.path; let ValueRef llfn = decl_fastcall_fn(cx.llmod, s, llfnty); cx.item_ids.insert(variant.id, llfn); let ValueRef llfndecl = cx.item_ids.get(variant.id); cx.item_names.insert(cx.path, llfndecl); auto fcx = new_fn_ctxt(cx, cx.path, llfndecl); create_llargs_for_fn_args(fcx, fn_args); auto bcx = new_top_block_ctxt(fcx); auto arg_tys = arg_tys_of_fn(variant.ann); copy_args_to_allocas(bcx, fn_args, arg_tys); auto info = cx.tags.get(tag_id); auto lltagty = T_struct(vec(T_int(), T_array(T_i8(), info.size))); // FIXME: better name. llvm.LLVMAddTypeName(cx.llmod, _str.buf("tag"), lltagty); auto lltagptr = bcx.build.Alloca(lltagty); auto lldiscrimptr = bcx.build.GEP(lltagptr, vec(C_int(0), C_int(0))); bcx.build.Store(C_int(index), lldiscrimptr); auto llblobptr = bcx.build.GEP(lltagptr, vec(C_int(0), C_int(1))); // First, generate the union type. let vec[TypeRef] llargtys = vec(); for (typeck.arg arg in arg_tys) { llargtys += vec(type_of(cx, arg.ty)); } auto llunionty = T_struct(llargtys); auto llunionptr = bcx.build.TruncOrBitCast(llblobptr, T_ptr(llunionty)); i = 0u; for (ast.variant_arg va in variant.args) { auto llargval = bcx.build.Load(fcx.llargs.get(va.id)); auto lldestptr = bcx.build.GEP(llunionptr, vec(C_int(0), C_int(i as int))); bcx.build.Store(llargval, lldestptr); i += 1u; } auto lltagval = bcx.build.Load(lltagptr); bcx = trans_block_cleanups(bcx, find_scope_cx(bcx)); bcx.build.Ret(lltagval); } impure fn trans_item(@crate_ctxt cx, &ast.item item) { alt (item.node) { case (ast.item_fn(?name, ?f, _, ?fid, ?ann)) { auto sub_cx = @rec(path=cx.path + "." + name with *cx); trans_fn(sub_cx, f, fid, ann); } case (ast.item_obj(?name, ?ob, _, ?oid, ?ann)) { auto sub_cx = @rec(path=cx.path + "." + name with *cx); trans_obj(sub_cx, ob, oid, ann); } case (ast.item_mod(?name, ?m, _)) { auto sub_cx = @rec(path=cx.path + "." + name with *cx); trans_mod(sub_cx, m); } case (ast.item_tag(?name, ?variants, _, ?tag_id)) { auto sub_cx = @rec(path=cx.path + "." + name with *cx); auto i = 0; for (ast.variant variant in variants) { trans_tag_variant(sub_cx, tag_id, variant, i); i += 1; } } case (_) { /* fall through */ } } } impure fn trans_mod(@crate_ctxt cx, &ast._mod m) { for (@ast.item item in m.items) { trans_item(cx, *item); } } fn collect_item(&@crate_ctxt cx, @ast.item i) -> @crate_ctxt { alt (i.node) { case (ast.item_fn(?name, ?f, _, ?fid, ?ann)) { // TODO: type-params cx.items.insert(fid, i); auto llty = node_type(cx, ann); let str s = cx.names.next("_rust_fn") + "." + name; let ValueRef llfn = decl_fastcall_fn(cx.llmod, s, llty); cx.item_ids.insert(fid, llfn); } case (ast.item_obj(?name, ?ob, _, ?oid, ?ann)) { // TODO: type-params cx.items.insert(oid, i); auto llty = node_type(cx, ann); let str s = cx.names.next("_rust_obj_ctor") + "." + name; let ValueRef llfn = decl_fastcall_fn(cx.llmod, s, llty); cx.item_ids.insert(oid, llfn); } case (ast.item_const(?name, _, _, ?cid, _)) { cx.items.insert(cid, i); } case (ast.item_mod(?name, ?m, ?mid)) { cx.items.insert(mid, i); } case (ast.item_tag(_, ?variants, _, ?tag_id)) { auto vi = new_def_hash[uint](); auto navi = new_def_hash[uint](); let vec[tup(ast.def_id,arity)] variant_info = vec(); cx.tags.insert(tag_id, @rec(th=mk_type_handle(), mutable variants=variant_info, mutable size=0u)); cx.items.insert(tag_id, i); } case (_) { /* fall through */ } } ret cx; } fn collect_items(@crate_ctxt cx, @ast.crate crate) { let fold.ast_fold[@crate_ctxt] fld = fold.new_identity_fold[@crate_ctxt](); fld = @rec( update_env_for_item = bind collect_item(_,_) with *fld ); fold.fold_crate[@crate_ctxt](cx, fld, crate); } // The tag type resolution pass, which determines all the LLVM types that // correspond to each tag type in the crate. fn resolve_tag_types_for_item(&@crate_ctxt cx, @ast.item i) -> @crate_ctxt { alt (i.node) { case (ast.item_tag(_, ?variants, _, ?tag_id)) { auto max_align = 0u; auto max_size = 0u; auto info = cx.tags.get(tag_id); let vec[tup(ast.def_id,arity)] variant_info = vec(); for (ast.variant variant in variants) { auto arity_info; if (_vec.len[ast.variant_arg](variant.args) > 0u) { auto llvariantty = type_of_variant(cx, variant); auto align = llvm.LLVMPreferredAlignmentOfType(cx.td.lltd, llvariantty); auto size = llvm.LLVMStoreSizeOfType(cx.td.lltd, llvariantty) as uint; if (max_align < align) { max_align = align; } if (max_size < size) { max_size = size; } arity_info = n_ary; } else { arity_info = nullary; } variant_info += vec(tup(variant.id, arity_info)); } info.variants = variant_info; info.size = max_size; // FIXME: alignment is wrong here, manually insert padding I // guess :( auto tag_ty = T_struct(vec(T_int(), T_array(T_i8(), max_size))); auto th = cx.tags.get(tag_id).th.llth; llvm.LLVMRefineType(llvm.LLVMResolveTypeHandle(th), tag_ty); } case (_) { // fall through } } ret cx; } fn resolve_tag_types(@crate_ctxt cx, @ast.crate crate) { let fold.ast_fold[@crate_ctxt] fld = fold.new_identity_fold[@crate_ctxt](); fld = @rec( update_env_for_item = bind resolve_tag_types_for_item(_,_) with *fld ); fold.fold_crate[@crate_ctxt](cx, fld, crate); } // The constant translation pass. fn trans_constant(&@crate_ctxt cx, @ast.item it) -> @crate_ctxt { alt (it.node) { case (ast.item_tag(_, ?variants, _, ?tag_id)) { auto info = cx.tags.get(tag_id); auto tag_ty = llvm.LLVMResolveTypeHandle(info.th.llth); check (llvm.LLVMCountStructElementTypes(tag_ty) == 2u); auto elts = vec(0 as TypeRef, 0 as TypeRef); llvm.LLVMGetStructElementTypes(tag_ty, _vec.buf[TypeRef](elts)); auto union_ty = elts.(1); auto i = 0u; while (i < _vec.len[tup(ast.def_id,arity)](info.variants)) { auto variant_info = info.variants.(i); alt (variant_info._1) { case (nullary) { // Nullary tags become constants. auto union_val = C_zero_byte_arr(info.size as uint); auto val = C_struct(vec(C_int(i as int), union_val)); // FIXME: better name auto gvar = llvm.LLVMAddGlobal(cx.llmod, val_ty(val), _str.buf("tag")); llvm.LLVMSetInitializer(gvar, val); llvm.LLVMSetGlobalConstant(gvar, True); cx.item_ids.insert(variant_info._0, gvar); } case (n_ary) { // N-ary tags are treated as functions and generated // later. } } i += 1u; } } case (ast.item_const(?name, _, ?expr, ?cid, ?ann)) { // FIXME: The whole expr-translation system needs cloning to deal // with consts. auto v = C_int(1); cx.item_ids.insert(cid, v); } case (_) { // empty } } ret cx; } fn trans_constants(@crate_ctxt cx, @ast.crate crate) { let fold.ast_fold[@crate_ctxt] fld = fold.new_identity_fold[@crate_ctxt](); fld = @rec(update_env_for_item = bind trans_constant(_,_) with *fld); fold.fold_crate[@crate_ctxt](cx, fld, crate); } fn p2i(ValueRef v) -> ValueRef { ret llvm.LLVMConstPtrToInt(v, T_int()); } fn trans_exit_task_glue(@crate_ctxt cx) { let vec[TypeRef] T_args = vec(); let vec[ValueRef] V_args = vec(); auto llfn = cx.glues.exit_task_glue; let ValueRef lltaskptr = llvm.LLVMGetParam(llfn, 0u); auto fcx = @rec(llfn=llfn, lltaskptr=lltaskptr, llargs=new_def_hash[ValueRef](), lllocals=new_def_hash[ValueRef](), ccx=cx); auto bcx = new_top_block_ctxt(fcx); trans_upcall(bcx, "upcall_exit", V_args); bcx.build.RetVoid(); } fn create_typedefs(@crate_ctxt cx) { llvm.LLVMAddTypeName(cx.llmod, _str.buf("rust_crate"), T_crate()); llvm.LLVMAddTypeName(cx.llmod, _str.buf("rust_task"), T_task()); llvm.LLVMAddTypeName(cx.llmod, _str.buf("rust_tydesc"), T_tydesc()); } fn crate_constant(@crate_ctxt cx) -> ValueRef { let ValueRef crate_ptr = llvm.LLVMAddGlobal(cx.llmod, T_crate(), _str.buf("rust_crate")); let ValueRef crate_addr = p2i(crate_ptr); let ValueRef activate_glue_off = llvm.LLVMConstSub(p2i(cx.glues.activate_glue), crate_addr); let ValueRef yield_glue_off = llvm.LLVMConstSub(p2i(cx.glues.yield_glue), crate_addr); let ValueRef exit_task_glue_off = llvm.LLVMConstSub(p2i(cx.glues.exit_task_glue), crate_addr); let ValueRef crate_val = C_struct(vec(C_null(T_int()), // ptrdiff_t image_base_off p2i(crate_ptr), // uintptr_t self_addr C_null(T_int()), // ptrdiff_t debug_abbrev_off C_null(T_int()), // size_t debug_abbrev_sz C_null(T_int()), // ptrdiff_t debug_info_off C_null(T_int()), // size_t debug_info_sz activate_glue_off, // size_t activate_glue_off yield_glue_off, // size_t yield_glue_off C_null(T_int()), // size_t unwind_glue_off C_null(T_int()), // size_t gc_glue_off exit_task_glue_off, // size_t main_exit_task_glue_off C_null(T_int()), // int n_rust_syms C_null(T_int()), // int n_c_syms C_null(T_int()) // int n_libs )); llvm.LLVMSetInitializer(crate_ptr, crate_val); ret crate_ptr; } fn trans_main_fn(@crate_ctxt cx, ValueRef llcrate) { auto T_main_args = vec(T_int(), T_int()); auto T_rust_start_args = vec(T_int(), T_int(), T_int(), T_int()); auto main_name; if (_str.eq(std.os.target_os(), "win32")) { main_name = "WinMain@16"; } else { main_name = "main"; } auto llmain = decl_cdecl_fn(cx.llmod, main_name, T_fn(T_main_args, T_int())); auto llrust_start = decl_cdecl_fn(cx.llmod, "rust_start", T_fn(T_rust_start_args, T_int())); auto llargc = llvm.LLVMGetParam(llmain, 0u); auto llargv = llvm.LLVMGetParam(llmain, 1u); check (cx.item_names.contains_key("_rust.main")); auto llrust_main = cx.item_names.get("_rust.main"); // // Emit the moral equivalent of: // // main(int argc, char **argv) { // rust_start(&_rust.main, &crate, argc, argv); // } // let BasicBlockRef llbb = llvm.LLVMAppendBasicBlock(llmain, _str.buf("")); auto b = new_builder(llbb, ""); auto start_args = vec(p2i(llrust_main), p2i(llcrate), llargc, llargv); b.Ret(b.Call(llrust_start, start_args)); } fn declare_intrinsics(ModuleRef llmod) -> hashmap[str,ValueRef] { let vec[TypeRef] T_trap_args = vec(); let vec[TypeRef] T_memcpy32_args = vec(T_ptr(T_i8()), T_ptr(T_i8()), T_i32(), T_i32(), T_i1()); let vec[TypeRef] T_memcpy64_args = vec(T_ptr(T_i8()), T_ptr(T_i8()), T_i32(), T_i32(), T_i1()); auto trap = decl_cdecl_fn(llmod, "llvm.trap", T_fn(T_trap_args, T_void())); auto memcpy32 = decl_cdecl_fn(llmod, "llvm.memcpy.p0i8.p0i8.i32", T_fn(T_memcpy32_args, T_void())); auto memcpy64 = decl_cdecl_fn(llmod, "llvm.memcpy.p0i8.p0i8.i64", T_fn(T_memcpy64_args, T_void())); auto intrinsics = new_str_hash[ValueRef](); intrinsics.insert("llvm.trap", trap); intrinsics.insert("llvm.memcpy.p0i8.p0i8.i32", memcpy32); intrinsics.insert("llvm.memcpy.p0i8.p0i8.i64", memcpy64); ret intrinsics; } fn check_module(ModuleRef llmod) { auto pm = mk_pass_manager(); llvm.LLVMAddVerifierPass(pm.llpm); llvm.LLVMRunPassManager(pm.llpm, llmod); // TODO: run the linter here also, once there are llvm-c bindings for it. } fn trans_crate(session.session sess, @ast.crate crate, str output) { auto llmod = llvm.LLVMModuleCreateWithNameInContext(_str.buf("rust_out"), llvm.LLVMGetGlobalContext()); llvm.LLVMSetDataLayout(llmod, _str.buf(x86.get_data_layout())); llvm.LLVMSetTarget(llmod, _str.buf(x86.get_target_triple())); auto td = mk_target_data(x86.get_data_layout()); llvm.LLVMSetModuleInlineAsm(llmod, _str.buf(x86.get_module_asm())); auto intrinsics = declare_intrinsics(llmod); auto glues = @rec(activate_glue = decl_glue(llmod, abi.activate_glue_name()), yield_glue = decl_glue(llmod, abi.yield_glue_name()), /* * Note: the signature passed to decl_cdecl_fn here * looks unusual because it is. It corresponds neither * to an upcall signature nor a normal rust-ABI * signature. In fact it is a fake signature, that * exists solely to acquire the task pointer as an * argument to the upcall. It so happens that the * runtime sets up the task pointer as the sole incoming * argument to the frame that we return into when * returning to the exit task glue. So this is the * signature required to retrieve it. */ exit_task_glue = decl_cdecl_fn(llmod, abi.exit_task_glue_name(), T_fn(vec(T_taskptr()), T_void())), upcall_glues = _vec.init_fn[ValueRef](bind decl_upcall(llmod, _), abi.n_upcall_glues as uint)); auto hasher = typeck.hash_ty; auto eqer = typeck.eq_ty; auto types = map.mk_hashmap[@typeck.ty,@ty_info](hasher, eqer); auto cx = @rec(sess = sess, llmod = llmod, td = td, upcalls = new_str_hash[ValueRef](), intrinsics = intrinsics, item_names = new_str_hash[ValueRef](), item_ids = new_def_hash[ValueRef](), items = new_def_hash[@ast.item](), tags = new_def_hash[@tag_info](), types = types, glues = glues, names = namegen(0), path = "_rust"); create_typedefs(cx); collect_items(cx, crate); resolve_tag_types(cx, crate); trans_constants(cx, crate); trans_mod(cx, crate.node.module); trans_exit_task_glue(cx); trans_main_fn(cx, crate_constant(cx)); check_module(llmod); llvm.LLVMWriteBitcodeToFile(llmod, _str.buf(output)); llvm.LLVMDisposeModule(llmod); } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C ../.. 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: //