// Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // The Rust HIR. pub use self::BindingMode::*; pub use self::BinOp_::*; pub use self::BlockCheckMode::*; pub use self::CaptureClause::*; pub use self::Decl_::*; pub use self::Expr_::*; pub use self::FunctionRetTy::*; pub use self::ForeignItem_::*; pub use self::Item_::*; pub use self::Mutability::*; pub use self::PathListItem_::*; pub use self::PrimTy::*; pub use self::Stmt_::*; pub use self::TraitItem_::*; pub use self::Ty_::*; pub use self::TyParamBound::*; pub use self::UnOp::*; pub use self::UnsafeSource::*; pub use self::ViewPath_::*; pub use self::Visibility::{Public, Inherited}; pub use self::PathParameters::*; use hir::def::Def; use hir::def_id::DefId; use util::nodemap::{NodeMap, FnvHashSet}; use syntax::codemap::{self, mk_sp, respan, Span, Spanned, ExpnId}; use syntax::abi::Abi; use syntax::ast::{Name, NodeId, DUMMY_NODE_ID, TokenTree, AsmDialect}; use syntax::ast::{Attribute, Lit, StrStyle, FloatTy, IntTy, UintTy, MetaItem}; use syntax::attr::{ThinAttributes, ThinAttributesExt}; use syntax::parse::token::{keywords, InternedString}; use syntax::ptr::P; use std::collections::BTreeMap; use std::fmt; /// HIR doesn't commit to a concrete storage type and have its own alias for a vector. /// It can be `Vec`, `P<[T]>` or potentially `Box<[T]>`, or some other container with similar /// behavior. Unlike AST, HIR is mostly a static structure, so we can use an owned slice instead /// of `Vec` to avoid keeping extra capacity. pub type HirVec = P<[T]>; macro_rules! hir_vec { ($elem:expr; $n:expr) => ( $crate::hir::HirVec::from(vec![$elem; $n]) ); ($($x:expr),*) => ( $crate::hir::HirVec::from(vec![$($x),*]) ); ($($x:expr,)*) => (hir_vec![$($x),*]) } pub mod check_attr; pub mod def; pub mod def_id; pub mod fold; pub mod intravisit; pub mod lowering; pub mod map; pub mod pat_util; pub mod print; pub mod svh; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)] pub struct Lifetime { pub id: NodeId, pub span: Span, pub name: Name, } impl fmt::Debug for Lifetime { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "lifetime({}: {})", self.id, print::lifetime_to_string(self)) } } /// A lifetime definition, eg `'a: 'b+'c+'d` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct LifetimeDef { pub lifetime: Lifetime, pub bounds: HirVec, } /// A "Path" is essentially Rust's notion of a name; for instance: /// std::cmp::PartialEq . It's represented as a sequence of identifiers, /// along with a bunch of supporting information. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)] pub struct Path { pub span: Span, /// A `::foo` path, is relative to the crate root rather than current /// module (like paths in an import). pub global: bool, /// The segments in the path: the things separated by `::`. pub segments: HirVec, } impl fmt::Debug for Path { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "path({})", print::path_to_string(self)) } } impl fmt::Display for Path { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", print::path_to_string(self)) } } impl Path { /// Convert a span and an identifier to the corresponding /// 1-segment path. pub fn from_name(s: Span, name: Name) -> Path { Path { span: s, global: false, segments: hir_vec![PathSegment { name: name, parameters: PathParameters::none() }], } } } /// A segment of a path: an identifier, an optional lifetime, and a set of /// types. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct PathSegment { /// The identifier portion of this path segment. pub name: Name, /// Type/lifetime parameters attached to this path. They come in /// two flavors: `Path` and `Path(A,B) -> C`. Note that /// this is more than just simple syntactic sugar; the use of /// parens affects the region binding rules, so we preserve the /// distinction. pub parameters: PathParameters, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum PathParameters { /// The `<'a, A,B,C>` in `foo::bar::baz::<'a, A,B,C>` AngleBracketedParameters(AngleBracketedParameterData), /// The `(A,B)` and `C` in `Foo(A,B) -> C` ParenthesizedParameters(ParenthesizedParameterData), } impl PathParameters { pub fn none() -> PathParameters { AngleBracketedParameters(AngleBracketedParameterData { lifetimes: HirVec::new(), types: HirVec::new(), bindings: HirVec::new(), }) } pub fn is_empty(&self) -> bool { match *self { AngleBracketedParameters(ref data) => data.is_empty(), // Even if the user supplied no types, something like // `X()` is equivalent to `X<(),()>`. ParenthesizedParameters(..) => false, } } pub fn has_lifetimes(&self) -> bool { match *self { AngleBracketedParameters(ref data) => !data.lifetimes.is_empty(), ParenthesizedParameters(_) => false, } } pub fn has_types(&self) -> bool { match *self { AngleBracketedParameters(ref data) => !data.types.is_empty(), ParenthesizedParameters(..) => true, } } /// Returns the types that the user wrote. Note that these do not necessarily map to the type /// parameters in the parenthesized case. pub fn types(&self) -> HirVec<&P> { match *self { AngleBracketedParameters(ref data) => { data.types.iter().collect() } ParenthesizedParameters(ref data) => { data.inputs .iter() .chain(data.output.iter()) .collect() } } } pub fn lifetimes(&self) -> HirVec<&Lifetime> { match *self { AngleBracketedParameters(ref data) => { data.lifetimes.iter().collect() } ParenthesizedParameters(_) => { HirVec::new() } } } pub fn bindings(&self) -> HirVec<&TypeBinding> { match *self { AngleBracketedParameters(ref data) => { data.bindings.iter().collect() } ParenthesizedParameters(_) => { HirVec::new() } } } } /// A path like `Foo<'a, T>` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct AngleBracketedParameterData { /// The lifetime parameters for this path segment. pub lifetimes: HirVec, /// The type parameters for this path segment, if present. pub types: HirVec>, /// Bindings (equality constraints) on associated types, if present. /// E.g., `Foo`. pub bindings: HirVec, } impl AngleBracketedParameterData { fn is_empty(&self) -> bool { self.lifetimes.is_empty() && self.types.is_empty() && self.bindings.is_empty() } } /// A path like `Foo(A,B) -> C` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct ParenthesizedParameterData { /// Overall span pub span: Span, /// `(A,B)` pub inputs: HirVec>, /// `C` pub output: Option>, } /// The AST represents all type param bounds as types. /// typeck::collect::compute_bounds matches these against /// the "special" built-in traits (see middle::lang_items) and /// detects Copy, Send and Sync. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum TyParamBound { TraitTyParamBound(PolyTraitRef, TraitBoundModifier), RegionTyParamBound(Lifetime), } /// A modifier on a bound, currently this is only used for `?Sized`, where the /// modifier is `Maybe`. Negative bounds should also be handled here. #[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum TraitBoundModifier { None, Maybe, } pub type TyParamBounds = HirVec; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct TyParam { pub name: Name, pub id: NodeId, pub bounds: TyParamBounds, pub default: Option>, pub span: Span, } /// Represents lifetimes and type parameters attached to a declaration /// of a function, enum, trait, etc. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Generics { pub lifetimes: HirVec, pub ty_params: HirVec, pub where_clause: WhereClause, } impl Generics { pub fn empty() -> Generics { Generics { lifetimes: HirVec::new(), ty_params: HirVec::new(), where_clause: WhereClause { id: DUMMY_NODE_ID, predicates: HirVec::new(), }, } } pub fn is_lt_parameterized(&self) -> bool { !self.lifetimes.is_empty() } pub fn is_type_parameterized(&self) -> bool { !self.ty_params.is_empty() } pub fn is_parameterized(&self) -> bool { self.is_lt_parameterized() || self.is_type_parameterized() } } /// A `where` clause in a definition #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct WhereClause { pub id: NodeId, pub predicates: HirVec, } /// A single predicate in a `where` clause #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum WherePredicate { /// A type binding, eg `for<'c> Foo: Send+Clone+'c` BoundPredicate(WhereBoundPredicate), /// A lifetime predicate, e.g. `'a: 'b+'c` RegionPredicate(WhereRegionPredicate), /// An equality predicate (unsupported) EqPredicate(WhereEqPredicate), } /// A type bound, eg `for<'c> Foo: Send+Clone+'c` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct WhereBoundPredicate { pub span: Span, /// Any lifetimes from a `for` binding pub bound_lifetimes: HirVec, /// The type being bounded pub bounded_ty: P, /// Trait and lifetime bounds (`Clone+Send+'static`) pub bounds: TyParamBounds, } /// A lifetime predicate, e.g. `'a: 'b+'c` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct WhereRegionPredicate { pub span: Span, pub lifetime: Lifetime, pub bounds: HirVec, } /// An equality predicate (unsupported), e.g. `T=int` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct WhereEqPredicate { pub id: NodeId, pub span: Span, pub path: Path, pub ty: P, } pub type CrateConfig = HirVec>; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Debug)] pub struct Crate { pub module: Mod, pub attrs: HirVec, pub config: CrateConfig, pub span: Span, pub exported_macros: HirVec, // NB: We use a BTreeMap here so that `visit_all_items` iterates // over the ids in increasing order. In principle it should not // matter what order we visit things in, but in *practice* it // does, because it can affect the order in which errors are // detected, which in turn can make compile-fail tests yield // slightly different results. pub items: BTreeMap, } impl Crate { pub fn item(&self, id: NodeId) -> &Item { &self.items[&id] } /// Visits all items in the crate in some determinstic (but /// unspecified) order. If you just need to process every item, /// but don't care about nesting, this method is the best choice. /// /// If you do care about nesting -- usually because your algorithm /// follows lexical scoping rules -- then you want a different /// approach. You should override `visit_nested_item` in your /// visitor and then call `intravisit::walk_crate` instead. pub fn visit_all_items<'hir, V>(&'hir self, visitor: &mut V) where V: intravisit::Visitor<'hir> { for (_, item) in &self.items { visitor.visit_item(item); } } } /// A macro definition, in this crate or imported from another. /// /// Not parsed directly, but created on macro import or `macro_rules!` expansion. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct MacroDef { pub name: Name, pub attrs: HirVec, pub id: NodeId, pub span: Span, pub imported_from: Option, pub export: bool, pub use_locally: bool, pub allow_internal_unstable: bool, pub body: HirVec, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Block { /// Statements in a block pub stmts: HirVec, /// An expression at the end of the block /// without a semicolon, if any pub expr: Option>, pub id: NodeId, /// Distinguishes between `unsafe { ... }` and `{ ... }` pub rules: BlockCheckMode, pub span: Span, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)] pub struct Pat { pub id: NodeId, pub node: PatKind, pub span: Span, } impl fmt::Debug for Pat { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "pat({}: {})", self.id, print::pat_to_string(self)) } } impl Pat { // FIXME(#19596) this is a workaround, but there should be a better way fn walk_(&self, it: &mut G) -> bool where G: FnMut(&Pat) -> bool { if !it(self) { return false; } match self.node { PatKind::Binding(_, _, Some(ref p)) => p.walk_(it), PatKind::Struct(_, ref fields, _) => { fields.iter().all(|field| field.node.pat.walk_(it)) } PatKind::TupleStruct(_, ref s, _) | PatKind::Tuple(ref s, _) => { s.iter().all(|p| p.walk_(it)) } PatKind::Box(ref s) | PatKind::Ref(ref s, _) => { s.walk_(it) } PatKind::Vec(ref before, ref slice, ref after) => { before.iter().all(|p| p.walk_(it)) && slice.iter().all(|p| p.walk_(it)) && after.iter().all(|p| p.walk_(it)) } PatKind::Wild | PatKind::Lit(_) | PatKind::Range(_, _) | PatKind::Binding(..) | PatKind::Path(..) | PatKind::QPath(_, _) => { true } } } pub fn walk(&self, mut it: F) -> bool where F: FnMut(&Pat) -> bool { self.walk_(&mut it) } } /// A single field in a struct pattern /// /// Patterns like the fields of Foo `{ x, ref y, ref mut z }` /// are treated the same as` x: x, y: ref y, z: ref mut z`, /// except is_shorthand is true #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct FieldPat { /// The identifier for the field pub name: Name, /// The pattern the field is destructured to pub pat: P, pub is_shorthand: bool, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum BindingMode { BindByRef(Mutability), BindByValue(Mutability), } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum PatKind { /// Represents a wildcard pattern (`_`) Wild, /// A fresh binding `ref mut binding @ OPT_SUBPATTERN`. Binding(BindingMode, Spanned, Option>), /// A struct or struct variant pattern, e.g. `Variant {x, y, ..}`. /// The `bool` is `true` in the presence of a `..`. Struct(Path, HirVec>, bool), /// A tuple struct/variant pattern `Variant(x, y, .., z)`. /// If the `..` pattern fragment is present, then `Option` denotes its position. /// 0 <= position <= subpats.len() TupleStruct(Path, HirVec>, Option), /// A path pattern. /// Such pattern can be resolved to a unit struct/variant or a constant. Path(Path), /// An associated const named using the qualified path `::CONST` or /// `::CONST`. Associated consts from inherent impls can be /// referred to as simply `T::CONST`, in which case they will end up as /// PatKind::Path, and the resolver will have to sort that out. QPath(QSelf, Path), /// A tuple pattern `(a, b)`. /// If the `..` pattern fragment is present, then `Option` denotes its position. /// 0 <= position <= subpats.len() Tuple(HirVec>, Option), /// A `box` pattern Box(P), /// A reference pattern, e.g. `&mut (a, b)` Ref(P, Mutability), /// A literal Lit(P), /// A range pattern, e.g. `1...2` Range(P, P), /// `[a, b, ..i, y, z]` is represented as: /// `PatKind::Vec(box [a, b], Some(i), box [y, z])` Vec(HirVec>, Option>, HirVec>), } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum Mutability { MutMutable, MutImmutable, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum BinOp_ { /// The `+` operator (addition) BiAdd, /// The `-` operator (subtraction) BiSub, /// The `*` operator (multiplication) BiMul, /// The `/` operator (division) BiDiv, /// The `%` operator (modulus) BiRem, /// The `&&` operator (logical and) BiAnd, /// The `||` operator (logical or) BiOr, /// The `^` operator (bitwise xor) BiBitXor, /// The `&` operator (bitwise and) BiBitAnd, /// The `|` operator (bitwise or) BiBitOr, /// The `<<` operator (shift left) BiShl, /// The `>>` operator (shift right) BiShr, /// The `==` operator (equality) BiEq, /// The `<` operator (less than) BiLt, /// The `<=` operator (less than or equal to) BiLe, /// The `!=` operator (not equal to) BiNe, /// The `>=` operator (greater than or equal to) BiGe, /// The `>` operator (greater than) BiGt, } impl BinOp_ { pub fn as_str(self) -> &'static str { match self { BiAdd => "+", BiSub => "-", BiMul => "*", BiDiv => "/", BiRem => "%", BiAnd => "&&", BiOr => "||", BiBitXor => "^", BiBitAnd => "&", BiBitOr => "|", BiShl => "<<", BiShr => ">>", BiEq => "==", BiLt => "<", BiLe => "<=", BiNe => "!=", BiGe => ">=", BiGt => ">", } } pub fn is_lazy(self) -> bool { match self { BiAnd | BiOr => true, _ => false, } } pub fn is_shift(self) -> bool { match self { BiShl | BiShr => true, _ => false, } } pub fn is_comparison(self) -> bool { match self { BiEq | BiLt | BiLe | BiNe | BiGt | BiGe => true, BiAnd | BiOr | BiAdd | BiSub | BiMul | BiDiv | BiRem | BiBitXor | BiBitAnd | BiBitOr | BiShl | BiShr => false, } } /// Returns `true` if the binary operator takes its arguments by value pub fn is_by_value(self) -> bool { !self.is_comparison() } } pub type BinOp = Spanned; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum UnOp { /// The `*` operator for dereferencing UnDeref, /// The `!` operator for logical inversion UnNot, /// The `-` operator for negation UnNeg, } impl UnOp { pub fn as_str(self) -> &'static str { match self { UnDeref => "*", UnNot => "!", UnNeg => "-", } } /// Returns `true` if the unary operator takes its argument by value pub fn is_by_value(self) -> bool { match self { UnNeg | UnNot => true, _ => false, } } } /// A statement pub type Stmt = Spanned; impl fmt::Debug for Stmt_ { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { // Sadness. let spanned = codemap::dummy_spanned(self.clone()); write!(f, "stmt({}: {})", spanned.node.id(), print::stmt_to_string(&spanned)) } } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)] pub enum Stmt_ { /// Could be an item or a local (let) binding: StmtDecl(P, NodeId), /// Expr without trailing semi-colon (must have unit type): StmtExpr(P, NodeId), /// Expr with trailing semi-colon (may have any type): StmtSemi(P, NodeId), } impl Stmt_ { pub fn attrs(&self) -> &[Attribute] { match *self { StmtDecl(ref d, _) => d.node.attrs(), StmtExpr(ref e, _) | StmtSemi(ref e, _) => e.attrs.as_attr_slice(), } } pub fn id(&self) -> NodeId { match *self { StmtDecl(_, id) => id, StmtExpr(_, id) => id, StmtSemi(_, id) => id, } } } // FIXME (pending discussion of #1697, #2178...): local should really be // a refinement on pat. /// Local represents a `let` statement, e.g., `let : = ;` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Local { pub pat: P, pub ty: Option>, /// Initializer expression to set the value, if any pub init: Option>, pub id: NodeId, pub span: Span, pub attrs: ThinAttributes, } pub type Decl = Spanned; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum Decl_ { /// A local (let) binding: DeclLocal(P), /// An item binding: DeclItem(ItemId), } impl Decl_ { pub fn attrs(&self) -> &[Attribute] { match *self { DeclLocal(ref l) => l.attrs.as_attr_slice(), DeclItem(_) => &[] } } } /// represents one arm of a 'match' #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Arm { pub attrs: HirVec, pub pats: HirVec>, pub guard: Option>, pub body: P, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Field { pub name: Spanned, pub expr: P, pub span: Span, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum BlockCheckMode { DefaultBlock, UnsafeBlock(UnsafeSource), PushUnsafeBlock(UnsafeSource), PopUnsafeBlock(UnsafeSource), // Within this block (but outside a PopUnstableBlock), we suspend checking of stability. PushUnstableBlock, PopUnstableBlock, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum UnsafeSource { CompilerGenerated, UserProvided, } /// An expression #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)] pub struct Expr { pub id: NodeId, pub node: Expr_, pub span: Span, pub attrs: ThinAttributes, } impl fmt::Debug for Expr { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "expr({}: {})", self.id, print::expr_to_string(self)) } } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum Expr_ { /// A `box x` expression. ExprBox(P), /// An array (`[a, b, c, d]`) ExprVec(HirVec>), /// A function call /// /// The first field resolves to the function itself, /// and the second field is the list of arguments ExprCall(P, HirVec>), /// A method call (`x.foo::(a, b, c, d)`) /// /// The `Spanned` is the identifier for the method name. /// The vector of `Ty`s are the ascripted type parameters for the method /// (within the angle brackets). /// /// The first element of the vector of `Expr`s is the expression that evaluates /// to the object on which the method is being called on (the receiver), /// and the remaining elements are the rest of the arguments. /// /// Thus, `x.foo::(a, b, c, d)` is represented as /// `ExprMethodCall(foo, [Bar, Baz], [x, a, b, c, d])`. ExprMethodCall(Spanned, HirVec>, HirVec>), /// A tuple (`(a, b, c ,d)`) ExprTup(HirVec>), /// A binary operation (For example: `a + b`, `a * b`) ExprBinary(BinOp, P, P), /// A unary operation (For example: `!x`, `*x`) ExprUnary(UnOp, P), /// A literal (For example: `1`, `"foo"`) ExprLit(P), /// A cast (`foo as f64`) ExprCast(P, P), ExprType(P, P), /// An `if` block, with an optional else block /// /// `if expr { block } else { expr }` ExprIf(P, P, Option>), /// A while loop, with an optional label /// /// `'label: while expr { block }` ExprWhile(P, P, Option>), /// Conditionless loop (can be exited with break, continue, or return) /// /// `'label: loop { block }` ExprLoop(P, Option>), /// A `match` block, with a source that indicates whether or not it is /// the result of a desugaring, and if so, which kind. ExprMatch(P, HirVec, MatchSource), /// A closure (for example, `move |a, b, c| {a + b + c}`). /// /// The final span is the span of the argument block `|...|` ExprClosure(CaptureClause, P, P, Span), /// A block (`{ ... }`) ExprBlock(P), /// An assignment (`a = foo()`) ExprAssign(P, P), /// An assignment with an operator /// /// For example, `a += 1`. ExprAssignOp(BinOp, P, P), /// Access of a named struct field (`obj.foo`) ExprField(P, Spanned), /// Access of an unnamed field of a struct or tuple-struct /// /// For example, `foo.0`. ExprTupField(P, Spanned), /// An indexing operation (`foo[2]`) ExprIndex(P, P), /// Variable reference, possibly containing `::` and/or type /// parameters, e.g. foo::bar::. /// /// Optionally "qualified", /// e.g. ` as SomeTrait>::SomeType`. ExprPath(Option, Path), /// A referencing operation (`&a` or `&mut a`) ExprAddrOf(Mutability, P), /// A `break`, with an optional label to break ExprBreak(Option>), /// A `continue`, with an optional label ExprAgain(Option>), /// A `return`, with an optional value to be returned ExprRet(Option>), /// Inline assembly (from `asm!`), with its outputs and inputs. ExprInlineAsm(InlineAsm, Vec>, Vec>), /// A struct literal expression. /// /// For example, `Foo {x: 1, y: 2}`, or /// `Foo {x: 1, .. base}`, where `base` is the `Option`. ExprStruct(Path, HirVec, Option>), /// A vector literal constructed from one repeated element. /// /// For example, `[1; 5]`. The first expression is the element /// to be repeated; the second is the number of times to repeat it. ExprRepeat(P, P), } /// The explicit Self type in a "qualified path". The actual /// path, including the trait and the associated item, is stored /// separately. `position` represents the index of the associated /// item qualified with this Self type. /// /// as a::b::Trait>::AssociatedItem /// ^~~~~ ~~~~~~~~~~~~~~^ /// ty position = 3 /// /// >::AssociatedItem /// ^~~~~ ^ /// ty position = 0 #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct QSelf { pub ty: P, pub position: usize, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum MatchSource { Normal, IfLetDesugar { contains_else_clause: bool, }, WhileLetDesugar, ForLoopDesugar, TryDesugar, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum CaptureClause { CaptureByValue, CaptureByRef, } // NB: If you change this, you'll probably want to change the corresponding // type structure in middle/ty.rs as well. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct MutTy { pub ty: P, pub mutbl: Mutability, } /// Represents a method's signature in a trait declaration, /// or in an implementation. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct MethodSig { pub unsafety: Unsafety, pub constness: Constness, pub abi: Abi, pub decl: P, pub generics: Generics, } /// Represents an item declaration within a trait declaration, /// possibly including a default implementation. A trait item is /// either required (meaning it doesn't have an implementation, just a /// signature) or provided (meaning it has a default implementation). #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct TraitItem { pub id: NodeId, pub name: Name, pub attrs: HirVec, pub node: TraitItem_, pub span: Span, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum TraitItem_ { ConstTraitItem(P, Option>), MethodTraitItem(MethodSig, Option>), TypeTraitItem(TyParamBounds, Option>), } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct ImplItem { pub id: NodeId, pub name: Name, pub vis: Visibility, pub defaultness: Defaultness, pub attrs: HirVec, pub node: ImplItemKind, pub span: Span, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum ImplItemKind { Const(P, P), Method(MethodSig, P), Type(P), } // Bind a type to an associated type: `A=Foo`. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct TypeBinding { pub id: NodeId, pub name: Name, pub ty: P, pub span: Span, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)] pub struct Ty { pub id: NodeId, pub node: Ty_, pub span: Span, } impl fmt::Debug for Ty { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "type({})", print::ty_to_string(self)) } } /// Not represented directly in the AST, referred to by name through a ty_path. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum PrimTy { TyInt(IntTy), TyUint(UintTy), TyFloat(FloatTy), TyStr, TyBool, TyChar, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct BareFnTy { pub unsafety: Unsafety, pub abi: Abi, pub lifetimes: HirVec, pub decl: P, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] /// The different kinds of types recognized by the compiler pub enum Ty_ { TyVec(P), /// A fixed length array (`[T; n]`) TyFixedLengthVec(P, P), /// A raw pointer (`*const T` or `*mut T`) TyPtr(MutTy), /// A reference (`&'a T` or `&'a mut T`) TyRptr(Option, MutTy), /// A bare function (e.g. `fn(usize) -> bool`) TyBareFn(P), /// A tuple (`(A, B, C, D,...)`) TyTup(HirVec>), /// A path (`module::module::...::Type`), optionally /// "qualified", e.g. ` as SomeTrait>::SomeType`. /// /// Type parameters are stored in the Path itself TyPath(Option, Path), /// Something like `A+B`. Note that `B` must always be a path. TyObjectSum(P, TyParamBounds), /// A type like `for<'a> Foo<&'a Bar>` TyPolyTraitRef(TyParamBounds), /// Unused for now TyTypeof(P), /// TyInfer means the type should be inferred instead of it having been /// specified. This can appear anywhere in a type. TyInfer, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct InlineAsmOutput { pub constraint: InternedString, pub is_rw: bool, pub is_indirect: bool, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct InlineAsm { pub asm: InternedString, pub asm_str_style: StrStyle, pub outputs: HirVec, pub inputs: HirVec, pub clobbers: HirVec, pub volatile: bool, pub alignstack: bool, pub dialect: AsmDialect, pub expn_id: ExpnId, } /// represents an argument in a function header #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Arg { pub ty: P, pub pat: P, pub id: NodeId, } /// Alternative representation for `Arg`s describing `self` parameter of methods. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum SelfKind { /// `self`, `mut self` Value(Mutability), /// `&'lt self`, `&'lt mut self` Region(Option, Mutability), /// `self: TYPE`, `mut self: TYPE` Explicit(P, Mutability), } pub type ExplicitSelf = Spanned; impl Arg { pub fn to_self(&self) -> Option { if let PatKind::Binding(BindByValue(mutbl), name, _) = self.pat.node { if name.node == keywords::SelfValue.name() { return match self.ty.node { TyInfer => Some(respan(self.pat.span, SelfKind::Value(mutbl))), TyRptr(lt, MutTy{ref ty, mutbl}) if ty.node == TyInfer => { Some(respan(self.pat.span, SelfKind::Region(lt, mutbl))) } _ => Some(respan(mk_sp(self.pat.span.lo, self.ty.span.hi), SelfKind::Explicit(self.ty.clone(), mutbl))) } } } None } pub fn is_self(&self) -> bool { if let PatKind::Binding(_, name, _) = self.pat.node { name.node == keywords::SelfValue.name() } else { false } } } /// Represents the header (not the body) of a function declaration #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct FnDecl { pub inputs: HirVec, pub output: FunctionRetTy, pub variadic: bool, } impl FnDecl { pub fn get_self(&self) -> Option { self.inputs.get(0).and_then(Arg::to_self) } pub fn has_self(&self) -> bool { self.inputs.get(0).map(Arg::is_self).unwrap_or(false) } } #[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum Unsafety { Unsafe, Normal, } #[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum Constness { Const, NotConst, } #[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum Defaultness { Default, Final, } impl Defaultness { pub fn is_final(&self) -> bool { *self == Defaultness::Final } pub fn is_default(&self) -> bool { *self == Defaultness::Default } } impl fmt::Display for Unsafety { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(match *self { Unsafety::Normal => "normal", Unsafety::Unsafe => "unsafe", }, f) } } #[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)] pub enum ImplPolarity { /// `impl Trait for Type` Positive, /// `impl !Trait for Type` Negative, } impl fmt::Debug for ImplPolarity { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match *self { ImplPolarity::Positive => "positive".fmt(f), ImplPolarity::Negative => "negative".fmt(f), } } } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum FunctionRetTy { /// Functions with return type `!`that always /// raise an error or exit (i.e. never return to the caller) NoReturn(Span), /// Return type is not specified. /// /// Functions default to `()` and /// closures default to inference. Span points to where return /// type would be inserted. DefaultReturn(Span), /// Everything else Return(P), } impl FunctionRetTy { pub fn span(&self) -> Span { match *self { NoReturn(span) => span, DefaultReturn(span) => span, Return(ref ty) => ty.span, } } } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Mod { /// A span from the first token past `{` to the last token until `}`. /// For `mod foo;`, the inner span ranges from the first token /// to the last token in the external file. pub inner: Span, pub item_ids: HirVec, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct ForeignMod { pub abi: Abi, pub items: HirVec, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct EnumDef { pub variants: HirVec, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Variant_ { pub name: Name, pub attrs: HirVec, pub data: VariantData, /// Explicit discriminant, eg `Foo = 1` pub disr_expr: Option>, } pub type Variant = Spanned; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum PathListItem_ { PathListIdent { name: Name, /// renamed in list, eg `use foo::{bar as baz};` rename: Option, id: NodeId, }, PathListMod { /// renamed in list, eg `use foo::{self as baz};` rename: Option, id: NodeId, }, } impl PathListItem_ { pub fn id(&self) -> NodeId { match *self { PathListIdent { id, .. } | PathListMod { id, .. } => id, } } pub fn name(&self) -> Option { match *self { PathListIdent { name, .. } => Some(name), PathListMod { .. } => None, } } pub fn rename(&self) -> Option { match *self { PathListIdent { rename, .. } | PathListMod { rename, .. } => rename, } } } pub type PathListItem = Spanned; pub type ViewPath = Spanned; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum ViewPath_ { /// `foo::bar::baz as quux` /// /// or just /// /// `foo::bar::baz` (with `as baz` implicitly on the right) ViewPathSimple(Name, Path), /// `foo::bar::*` ViewPathGlob(Path), /// `foo::bar::{a,b,c}` ViewPathList(Path, HirVec), } /// TraitRef's appear in impls. /// /// resolve maps each TraitRef's ref_id to its defining trait; that's all /// that the ref_id is for. The impl_id maps to the "self type" of this impl. /// If this impl is an ItemImpl, the impl_id is redundant (it could be the /// same as the impl's node id). #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct TraitRef { pub path: Path, pub ref_id: NodeId, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct PolyTraitRef { /// The `'a` in `<'a> Foo<&'a T>` pub bound_lifetimes: HirVec, /// The `Foo<&'a T>` in `<'a> Foo<&'a T>` pub trait_ref: TraitRef, pub span: Span, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum Visibility { Public, Crate, Restricted { path: P, id: NodeId }, Inherited, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct StructField { pub span: Span, pub name: Name, pub vis: Visibility, pub id: NodeId, pub ty: P, pub attrs: HirVec, } impl StructField { // Still necessary in couple of places pub fn is_positional(&self) -> bool { let first = self.name.as_str().as_bytes()[0]; first >= b'0' && first <= b'9' } } /// Fields and Ids of enum variants and structs /// /// For enum variants: `NodeId` represents both an Id of the variant itself (relevant for all /// variant kinds) and an Id of the variant's constructor (not relevant for `Struct`-variants). /// One shared Id can be successfully used for these two purposes. /// Id of the whole enum lives in `Item`. /// /// For structs: `NodeId` represents an Id of the structure's constructor, so it is not actually /// used for `Struct`-structs (but still presents). Structures don't have an analogue of "Id of /// the variant itself" from enum variants. /// Id of the whole struct lives in `Item`. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum VariantData { Struct(HirVec, NodeId), Tuple(HirVec, NodeId), Unit(NodeId), } impl VariantData { pub fn fields(&self) -> &[StructField] { match *self { VariantData::Struct(ref fields, _) | VariantData::Tuple(ref fields, _) => fields, _ => &[], } } pub fn id(&self) -> NodeId { match *self { VariantData::Struct(_, id) | VariantData::Tuple(_, id) | VariantData::Unit(id) => id, } } pub fn is_struct(&self) -> bool { if let VariantData::Struct(..) = *self { true } else { false } } pub fn is_tuple(&self) -> bool { if let VariantData::Tuple(..) = *self { true } else { false } } pub fn is_unit(&self) -> bool { if let VariantData::Unit(..) = *self { true } else { false } } } // The bodies for items are stored "out of line", in a separate // hashmap in the `Crate`. Here we just record the node-id of the item // so it can fetched later. #[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct ItemId { pub id: NodeId, } // FIXME (#3300): Should allow items to be anonymous. Right now // we just use dummy names for anon items. /// An item /// /// The name might be a dummy name in case of anonymous items #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Item { pub name: Name, pub attrs: HirVec, pub id: NodeId, pub node: Item_, pub vis: Visibility, pub span: Span, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum Item_ { /// An`extern crate` item, with optional original crate name, /// /// e.g. `extern crate foo` or `extern crate foo_bar as foo` ItemExternCrate(Option), /// A `use` or `pub use` item ItemUse(P), /// A `static` item ItemStatic(P, Mutability, P), /// A `const` item ItemConst(P, P), /// A function declaration ItemFn(P, Unsafety, Constness, Abi, Generics, P), /// A module ItemMod(Mod), /// An external module ItemForeignMod(ForeignMod), /// A type alias, e.g. `type Foo = Bar` ItemTy(P, Generics), /// An enum definition, e.g. `enum Foo {C, D}` ItemEnum(EnumDef, Generics), /// A struct definition, e.g. `struct Foo {x: A}` ItemStruct(VariantData, Generics), /// Represents a Trait Declaration ItemTrait(Unsafety, Generics, TyParamBounds, HirVec), // Default trait implementations /// /// `impl Trait for .. {}` ItemDefaultImpl(Unsafety, TraitRef), /// An implementation, eg `impl Trait for Foo { .. }` ItemImpl(Unsafety, ImplPolarity, Generics, Option, // (optional) trait this impl implements P, // self HirVec), } impl Item_ { pub fn descriptive_variant(&self) -> &str { match *self { ItemExternCrate(..) => "extern crate", ItemUse(..) => "use", ItemStatic(..) => "static item", ItemConst(..) => "constant item", ItemFn(..) => "function", ItemMod(..) => "module", ItemForeignMod(..) => "foreign module", ItemTy(..) => "type alias", ItemEnum(..) => "enum", ItemStruct(..) => "struct", ItemTrait(..) => "trait", ItemImpl(..) | ItemDefaultImpl(..) => "item", } } } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct ForeignItem { pub name: Name, pub attrs: HirVec, pub node: ForeignItem_, pub id: NodeId, pub span: Span, pub vis: Visibility, } /// An item within an `extern` block #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum ForeignItem_ { /// A foreign function ForeignItemFn(P, Generics), /// A foreign static item (`static ext: u8`), with optional mutability /// (the boolean is true when mutable) ForeignItemStatic(P, bool), } impl ForeignItem_ { pub fn descriptive_variant(&self) -> &str { match *self { ForeignItemFn(..) => "foreign function", ForeignItemStatic(..) => "foreign static item", } } } /// A free variable referred to in a function. #[derive(Copy, Clone, RustcEncodable, RustcDecodable)] pub struct Freevar { /// The variable being accessed free. pub def: Def, // First span where it is accessed (there can be multiple). pub span: Span } pub type FreevarMap = NodeMap>; pub type CaptureModeMap = NodeMap; #[derive(Clone)] pub struct TraitCandidate { pub def_id: DefId, pub import_id: Option, } // Trait method resolution pub type TraitMap = NodeMap>; // Map from the NodeId of a glob import to a list of items which are actually // imported. pub type GlobMap = NodeMap>;