//! The Rust AST Visitor. Extracts useful information and massages it into a form //! usable for `clean`. use rustc::hir::{self, Node}; use rustc::hir::def::Def; use rustc::hir::def_id::{DefId, LOCAL_CRATE}; use rustc::middle::privacy::AccessLevel; use rustc::util::nodemap::{FxHashSet, FxHashMap}; use syntax::ast; use syntax::attr; use syntax::ext::base::MacroKind; use syntax::source_map::Spanned; use syntax_pos::{self, Span}; use std::mem; use crate::core; use crate::clean::{self, AttributesExt, NestedAttributesExt, def_id_to_path}; use crate::doctree::*; // Looks to me like the first two of these are actually // output parameters, maybe only mutated once; perhaps // better simply to have the visit method return a tuple // containing them? // Also, is there some reason that this doesn't use the 'visit' // framework from syntax?. pub struct RustdocVisitor<'a, 'tcx> { pub module: Module, pub attrs: hir::HirVec, pub cx: &'a core::DocContext<'tcx>, view_item_stack: FxHashSet, inlining: bool, /// Are the current module and all of its parents public? inside_public_path: bool, exact_paths: Option>>, } impl<'a, 'tcx> RustdocVisitor<'a, 'tcx> { pub fn new( cx: &'a core::DocContext<'tcx> ) -> RustdocVisitor<'a, 'tcx> { // If the root is re-exported, terminate all recursion. let mut stack = FxHashSet::default(); stack.insert(hir::CRATE_HIR_ID); RustdocVisitor { module: Module::new(None), attrs: hir::HirVec::new(), cx, view_item_stack: stack, inlining: false, inside_public_path: true, exact_paths: Some(FxHashMap::default()), } } fn store_path(&mut self, did: DefId) { // We can't use the entry API, as that keeps the mutable borrow of `self` active // when we try to use `cx`. let exact_paths = self.exact_paths.as_mut().unwrap(); if exact_paths.get(&did).is_none() { let path = def_id_to_path(self.cx, did, self.cx.crate_name.clone()); exact_paths.insert(did, path); } } fn stability(&self, id: hir::HirId) -> Option { self.cx.tcx.hir().opt_local_def_id_from_hir_id(id) .and_then(|def_id| self.cx.tcx.lookup_stability(def_id)).cloned() } fn deprecation(&self, id: hir::HirId) -> Option { self.cx.tcx.hir().opt_local_def_id_from_hir_id(id) .and_then(|def_id| self.cx.tcx.lookup_deprecation(def_id)) } pub fn visit(&mut self, krate: &hir::Crate) { self.attrs = krate.attrs.clone(); self.module = self.visit_mod_contents(krate.span, krate.attrs.clone(), Spanned { span: syntax_pos::DUMMY_SP, node: hir::VisibilityKind::Public }, hir::CRATE_HIR_ID, &krate.module, None); // Attach the crate's exported macros to the top-level module: let macro_exports: Vec<_> = krate.exported_macros.iter().map(|def| self.visit_local_macro(def, None)).collect(); self.module.macros.extend(macro_exports); self.module.is_crate = true; self.cx.renderinfo.borrow_mut().exact_paths = self.exact_paths.take().unwrap(); } pub fn visit_variant_data(&mut self, item: &hir::Item, name: ast::Name, sd: &hir::VariantData, generics: &hir::Generics) -> Struct { debug!("Visiting struct"); let struct_type = struct_type_from_def(&*sd); Struct { id: item.hir_id, struct_type, name, vis: item.vis.clone(), stab: self.stability(item.hir_id), depr: self.deprecation(item.hir_id), attrs: item.attrs.clone(), generics: generics.clone(), fields: sd.fields().iter().cloned().collect(), whence: item.span } } pub fn visit_union_data(&mut self, item: &hir::Item, name: ast::Name, sd: &hir::VariantData, generics: &hir::Generics) -> Union { debug!("Visiting union"); let struct_type = struct_type_from_def(&*sd); Union { id: item.hir_id, struct_type, name, vis: item.vis.clone(), stab: self.stability(item.hir_id), depr: self.deprecation(item.hir_id), attrs: item.attrs.clone(), generics: generics.clone(), fields: sd.fields().iter().cloned().collect(), whence: item.span } } pub fn visit_enum_def(&mut self, it: &hir::Item, name: ast::Name, def: &hir::EnumDef, params: &hir::Generics) -> Enum { debug!("Visiting enum"); Enum { name, variants: def.variants.iter().map(|v| Variant { name: v.node.ident.name, id: v.node.id, attrs: v.node.attrs.clone(), stab: self.stability(v.node.id), depr: self.deprecation(v.node.id), def: v.node.data.clone(), whence: v.span, }).collect(), vis: it.vis.clone(), stab: self.stability(it.hir_id), depr: self.deprecation(it.hir_id), generics: params.clone(), attrs: it.attrs.clone(), id: it.hir_id, whence: it.span, } } pub fn visit_fn(&mut self, om: &mut Module, item: &hir::Item, name: ast::Name, fd: &hir::FnDecl, header: hir::FnHeader, gen: &hir::Generics, body: hir::BodyId) { debug!("Visiting fn"); let macro_kind = item.attrs.iter().filter_map(|a| { if a.check_name("proc_macro") { Some(MacroKind::Bang) } else if a.check_name("proc_macro_derive") { Some(MacroKind::Derive) } else if a.check_name("proc_macro_attribute") { Some(MacroKind::Attr) } else { None } }).next(); match macro_kind { Some(kind) => { let name = if kind == MacroKind::Derive { item.attrs.lists("proc_macro_derive") .filter_map(|mi| mi.ident()) .next() .expect("proc-macro derives require a name") .name } else { name }; let mut helpers = Vec::new(); for mi in item.attrs.lists("proc_macro_derive") { if !mi.check_name("attributes") { continue; } if let Some(list) = mi.meta_item_list() { for inner_mi in list { if let Some(ident) = inner_mi.ident() { helpers.push(ident.name); } } } } om.proc_macros.push(ProcMacro { name, id: item.hir_id, kind, helpers, attrs: item.attrs.clone(), whence: item.span, stab: self.stability(item.hir_id), depr: self.deprecation(item.hir_id), }); } None => { om.fns.push(Function { id: item.hir_id, vis: item.vis.clone(), stab: self.stability(item.hir_id), depr: self.deprecation(item.hir_id), attrs: item.attrs.clone(), decl: fd.clone(), name, whence: item.span, generics: gen.clone(), header, body, }); } } } pub fn visit_mod_contents(&mut self, span: Span, attrs: hir::HirVec, vis: hir::Visibility, id: hir::HirId, m: &hir::Mod, name: Option) -> Module { let mut om = Module::new(name); om.where_outer = span; om.where_inner = m.inner; om.attrs = attrs; om.vis = vis.clone(); om.stab = self.stability(id); om.depr = self.deprecation(id); om.id = self.cx.tcx.hir().hir_to_node_id(id); // Keep track of if there were any private modules in the path. let orig_inside_public_path = self.inside_public_path; self.inside_public_path &= vis.node.is_pub(); for i in &m.item_ids { let item = self.cx.tcx.hir().expect_item_by_hir_id(i.id); self.visit_item(item, None, &mut om); } self.inside_public_path = orig_inside_public_path; om } /// Tries to resolve the target of a `pub use` statement and inlines the /// target if it is defined locally and would not be documented otherwise, /// or when it is specifically requested with `please_inline`. /// (the latter is the case when the import is marked `doc(inline)`) /// /// Cross-crate inlining occurs later on during crate cleaning /// and follows different rules. /// /// Returns `true` if the target has been inlined. fn maybe_inline_local(&mut self, id: hir::HirId, def: Def, renamed: Option, glob: bool, om: &mut Module, please_inline: bool) -> bool { fn inherits_doc_hidden(cx: &core::DocContext<'_>, mut node: hir::HirId) -> bool { while let Some(id) = cx.tcx.hir().get_enclosing_scope(node) { node = id; if cx.tcx.hir().attrs_by_hir_id(node).lists("doc").has_word("hidden") { return true; } if node == hir::CRATE_HIR_ID { break; } } false } debug!("maybe_inline_local def: {:?}", def); let tcx = self.cx.tcx; let def_did = if let Some(did) = def.opt_def_id() { did } else { return false; }; let use_attrs = tcx.hir().attrs_by_hir_id(id); // Don't inline `doc(hidden)` imports so they can be stripped at a later stage. let is_no_inline = use_attrs.lists("doc").has_word("no_inline") || use_attrs.lists("doc").has_word("hidden"); // For cross-crate impl inlining we need to know whether items are // reachable in documentation -- a previously nonreachable item can be // made reachable by cross-crate inlining which we're checking here. // (this is done here because we need to know this upfront). if !def_did.is_local() && !is_no_inline { let attrs = clean::inline::load_attrs(self.cx, def_did); let self_is_hidden = attrs.lists("doc").has_word("hidden"); match def { Def::Trait(did) | Def::Struct(did) | Def::Union(did) | Def::Enum(did) | Def::ForeignTy(did) | Def::TyAlias(did) if !self_is_hidden => { self.cx.renderinfo .borrow_mut() .access_levels.map .insert(did, AccessLevel::Public); }, Def::Mod(did) => if !self_is_hidden { crate::visit_lib::LibEmbargoVisitor::new(self.cx).visit_mod(did); }, _ => {}, } return false } let def_hir_id = match tcx.hir().as_local_hir_id(def_did) { Some(n) => n, None => return false }; let is_private = !self.cx.renderinfo.borrow().access_levels.is_public(def_did); let is_hidden = inherits_doc_hidden(self.cx, def_hir_id); // Only inline if requested or if the item would otherwise be stripped. if (!please_inline && !is_private && !is_hidden) || is_no_inline { return false } if !self.view_item_stack.insert(def_hir_id) { return false } let ret = match tcx.hir().get_by_hir_id(def_hir_id) { Node::Item(&hir::Item { node: hir::ItemKind::Mod(ref m), .. }) if glob => { let prev = mem::replace(&mut self.inlining, true); for i in &m.item_ids { let i = self.cx.tcx.hir().expect_item_by_hir_id(i.id); self.visit_item(i, None, om); } self.inlining = prev; true } Node::Item(it) if !glob => { let prev = mem::replace(&mut self.inlining, true); self.visit_item(it, renamed, om); self.inlining = prev; true } Node::ForeignItem(it) if !glob => { // Generate a fresh `extern {}` block if we want to inline a foreign item. om.foreigns.push(hir::ForeignMod { abi: tcx.hir().get_foreign_abi_by_hir_id(it.hir_id), items: vec![hir::ForeignItem { ident: renamed.unwrap_or(it.ident), .. it.clone() }].into(), }); true } Node::MacroDef(def) if !glob => { om.macros.push(self.visit_local_macro(def, renamed.map(|i| i.name))); true } _ => false, }; self.view_item_stack.remove(&def_hir_id); ret } pub fn visit_item(&mut self, item: &hir::Item, renamed: Option, om: &mut Module) { debug!("Visiting item {:?}", item); let ident = renamed.unwrap_or(item.ident); if item.vis.node.is_pub() { let def_id = self.cx.tcx.hir().local_def_id_from_hir_id(item.hir_id); self.store_path(def_id); } match item.node { hir::ItemKind::ForeignMod(ref fm) => { // If inlining we only want to include public functions. om.foreigns.push(if self.inlining { hir::ForeignMod { abi: fm.abi, items: fm.items.iter().filter(|i| i.vis.node.is_pub()).cloned().collect(), } } else { fm.clone() }); } // If we're inlining, skip private items. _ if self.inlining && !item.vis.node.is_pub() => {} hir::ItemKind::GlobalAsm(..) => {} hir::ItemKind::ExternCrate(orig_name) => { let def_id = self.cx.tcx.hir().local_def_id_from_hir_id(item.hir_id); om.extern_crates.push(ExternCrate { cnum: self.cx.tcx.extern_mod_stmt_cnum(def_id) .unwrap_or(LOCAL_CRATE), name: ident.name, path: orig_name.map(|x|x.to_string()), vis: item.vis.clone(), attrs: item.attrs.clone(), whence: item.span, }) } hir::ItemKind::Use(_, hir::UseKind::ListStem) => {} hir::ItemKind::Use(ref path, kind) => { let is_glob = kind == hir::UseKind::Glob; // Struct and variant constructors and proc macro stubs always show up alongside // their definitions, we've already processed them so just discard these. match path.def { Def::Ctor(..) | Def::SelfCtor(..) | Def::Macro(_, MacroKind::ProcMacroStub) => return, _ => {} } // If there was a private module in the current path then don't bother inlining // anything as it will probably be stripped anyway. if item.vis.node.is_pub() && self.inside_public_path { let please_inline = item.attrs.iter().any(|item| { match item.meta_item_list() { Some(ref list) if item.check_name("doc") => { list.iter().any(|i| i.check_name("inline")) } _ => false, } }); let ident = if is_glob { None } else { Some(ident) }; if self.maybe_inline_local(item.hir_id, path.def, ident, is_glob, om, please_inline) { return; } } om.imports.push(Import { name: ident.name, id: item.hir_id, vis: item.vis.clone(), attrs: item.attrs.clone(), path: (**path).clone(), glob: is_glob, whence: item.span, }); } hir::ItemKind::Mod(ref m) => { om.mods.push(self.visit_mod_contents(item.span, item.attrs.clone(), item.vis.clone(), item.hir_id, m, Some(ident.name))); }, hir::ItemKind::Enum(ref ed, ref gen) => om.enums.push(self.visit_enum_def(item, ident.name, ed, gen)), hir::ItemKind::Struct(ref sd, ref gen) => om.structs.push(self.visit_variant_data(item, ident.name, sd, gen)), hir::ItemKind::Union(ref sd, ref gen) => om.unions.push(self.visit_union_data(item, ident.name, sd, gen)), hir::ItemKind::Fn(ref fd, header, ref gen, body) => self.visit_fn(om, item, ident.name, &**fd, header, gen, body), hir::ItemKind::Ty(ref ty, ref gen) => { let t = Typedef { ty: ty.clone(), gen: gen.clone(), name: ident.name, id: item.hir_id, attrs: item.attrs.clone(), whence: item.span, vis: item.vis.clone(), stab: self.stability(item.hir_id), depr: self.deprecation(item.hir_id), }; om.typedefs.push(t); }, hir::ItemKind::Existential(ref exist_ty) => { let t = Existential { exist_ty: exist_ty.clone(), name: ident.name, id: item.hir_id, attrs: item.attrs.clone(), whence: item.span, vis: item.vis.clone(), stab: self.stability(item.hir_id), depr: self.deprecation(item.hir_id), }; om.existentials.push(t); }, hir::ItemKind::Static(ref ty, ref mut_, ref exp) => { let s = Static { type_: ty.clone(), mutability: mut_.clone(), expr: exp.clone(), id: item.hir_id, name: ident.name, attrs: item.attrs.clone(), whence: item.span, vis: item.vis.clone(), stab: self.stability(item.hir_id), depr: self.deprecation(item.hir_id), }; om.statics.push(s); }, hir::ItemKind::Const(ref ty, ref exp) => { let s = Constant { type_: ty.clone(), expr: exp.clone(), id: item.hir_id, name: ident.name, attrs: item.attrs.clone(), whence: item.span, vis: item.vis.clone(), stab: self.stability(item.hir_id), depr: self.deprecation(item.hir_id), }; om.constants.push(s); }, hir::ItemKind::Trait(is_auto, unsafety, ref gen, ref b, ref item_ids) => { let items = item_ids.iter() .map(|ti| self.cx.tcx.hir().trait_item(ti.id).clone()) .collect(); let t = Trait { is_auto, unsafety, name: ident.name, items, generics: gen.clone(), bounds: b.iter().cloned().collect(), id: item.hir_id, attrs: item.attrs.clone(), whence: item.span, vis: item.vis.clone(), stab: self.stability(item.hir_id), depr: self.deprecation(item.hir_id), }; om.traits.push(t); }, hir::ItemKind::TraitAlias(ref gen, ref b) => { let t = TraitAlias { name: ident.name, generics: gen.clone(), bounds: b.iter().cloned().collect(), id: item.hir_id, attrs: item.attrs.clone(), whence: item.span, vis: item.vis.clone(), stab: self.stability(item.hir_id), depr: self.deprecation(item.hir_id), }; om.trait_aliases.push(t); }, hir::ItemKind::Impl(unsafety, polarity, defaultness, ref gen, ref tr, ref ty, ref item_ids) => { // Don't duplicate impls when inlining or if it's implementing a trait, we'll pick // them up regardless of where they're located. if !self.inlining && tr.is_none() { let items = item_ids.iter() .map(|ii| self.cx.tcx.hir().impl_item(ii.id).clone()) .collect(); let i = Impl { unsafety, polarity, defaultness, generics: gen.clone(), trait_: tr.clone(), for_: ty.clone(), items, attrs: item.attrs.clone(), id: item.hir_id, whence: item.span, vis: item.vis.clone(), stab: self.stability(item.hir_id), depr: self.deprecation(item.hir_id), }; om.impls.push(i); } }, } } // Convert each `exported_macro` into a doc item. fn visit_local_macro( &self, def: &hir::MacroDef, renamed: Option ) -> Macro { debug!("visit_local_macro: {}", def.name); let tts = def.body.trees().collect::>(); // Extract the spans of all matchers. They represent the "interface" of the macro. let matchers = tts.chunks(4).map(|arm| arm[0].span()).collect(); Macro { def_id: self.cx.tcx.hir().local_def_id_from_hir_id(def.hir_id), attrs: def.attrs.clone(), name: renamed.unwrap_or(def.name), whence: def.span, matchers, stab: self.stability(def.hir_id), depr: self.deprecation(def.hir_id), imported_from: None, } } }