// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A map type - **deprecated**, use `core::hashmap` instead #[forbid(deprecated_mode)]; use core::cmp::Eq; use core::hash::Hash; use core::io::WriterUtil; use core::io; use core::ops; use core::to_str::ToStr; use core::mutable::Mut; use core::prelude::*; use core::to_bytes::IterBytes; use core::uint; use core::vec; /// A convenience type to treat a hashmap as a set pub type Set = HashMap; pub type HashMap = chained::T; pub mod util { pub struct Rational { // : int::positive(*.den); num: int, den: int, } pub pure fn rational_leq(x: Rational, y: Rational) -> bool { // NB: Uses the fact that rationals have positive denominators WLOG: x.num * y.den <= y.num * x.den } } // FIXME (#2344): package this up and export it as a datatype usable for // external code that doesn't want to pay the cost of a box. pub mod chained { use super::util; use core::io; use core::ops; use core::option; use core::prelude::*; use core::uint; use core::vec; const initial_capacity: uint = 32u; // 2^5 struct Entry { hash: uint, key: K, value: V, mut next: Option<@Entry> } struct HashMap_ { mut count: uint, mut chains: ~[mut Option<@Entry>] } pub type T = @HashMap_; enum SearchResult { NotFound, FoundFirst(uint, @Entry), FoundAfter(@Entry, @Entry) } priv impl T { pure fn search_rem(k: &K, h: uint, idx: uint, e_root: @Entry) -> SearchResult { let mut e0 = e_root; let mut comp = 1u; // for logging loop { match copy e0.next { None => { debug!("search_tbl: absent, comp %u, hash %u, idx %u", comp, h, idx); return NotFound; } Some(e1) => { comp += 1u; unsafe { if e1.hash == h && e1.key == *k { debug!("search_tbl: present, comp %u, \ hash %u, idx %u", comp, h, idx); return FoundAfter(e0, e1); } else { e0 = e1; } } } } }; } pure fn search_tbl(k: &K, h: uint) -> SearchResult { let idx = h % vec::len(self.chains); match copy self.chains[idx] { None => { debug!("search_tbl: none, comp %u, hash %u, idx %u", 0u, h, idx); return NotFound; } Some(e) => { unsafe { if e.hash == h && e.key == *k { debug!("search_tbl: present, comp %u, hash %u, \ idx %u", 1u, h, idx); return FoundFirst(idx, e); } else { return self.search_rem(k, h, idx, e); } } } } } fn rehash() { let n_old_chains = self.chains.len(); let n_new_chains: uint = uint::next_power_of_two(n_old_chains+1u); let new_chains = chains(n_new_chains); for self.each_entry |entry| { let idx = entry.hash % n_new_chains; entry.next = new_chains[idx]; new_chains[idx] = Some(entry); } self.chains = move new_chains; } pure fn each_entry(blk: fn(@Entry) -> bool) { // n.b. we can't use vec::iter() here because self.chains // is stored in a mutable location. let mut i = 0u, n = self.chains.len(); while i < n { let mut chain = self.chains[i]; loop { chain = match chain { None => break, Some(entry) => { let next = entry.next; if !blk(entry) { return; } next } } } i += 1u; } } } impl T { pure fn size() -> uint { self.count } pure fn contains_key(k: K) -> bool { self.contains_key_ref(&k) } pure fn contains_key_ref(k: &K) -> bool { let hash = k.hash_keyed(0,0) as uint; match self.search_tbl(k, hash) { NotFound => false, FoundFirst(*) | FoundAfter(*) => true } } fn insert(k: K, v: V) -> bool { let hash = k.hash_keyed(0,0) as uint; match self.search_tbl(&k, hash) { NotFound => { self.count += 1u; let idx = hash % vec::len(self.chains); let old_chain = self.chains[idx]; self.chains[idx] = Some(@Entry { hash: hash, key: k, value: v, next: old_chain}); // consider rehashing if more 3/4 full let nchains = vec::len(self.chains); let load = util::Rational { num: (self.count + 1u) as int, den: nchains as int, }; if !util::rational_leq(load, util::Rational {num:3, den:4}) { self.rehash(); } return true; } FoundFirst(idx, entry) => { self.chains[idx] = Some(@Entry { hash: hash, key: k, value: v, next: entry.next}); return false; } FoundAfter(prev, entry) => { prev.next = Some(@Entry { hash: hash, key: k, value: v, next: entry.next}); return false; } } } pure fn find(k: K) -> Option { unsafe { match self.search_tbl(&k, k.hash_keyed(0,0) as uint) { NotFound => None, FoundFirst(_, entry) => Some(entry.value), FoundAfter(_, entry) => Some(entry.value) } } } fn update_with_key(key: K, newval: V, ff: fn(K, V, V) -> V) -> bool { /* match self.find(key) { None => return self.insert(key, val), Some(copy orig) => return self.insert(key, ff(key, orig, val)) } */ let hash = key.hash_keyed(0,0) as uint; match self.search_tbl(&key, hash) { NotFound => { self.count += 1u; let idx = hash % vec::len(self.chains); let old_chain = self.chains[idx]; self.chains[idx] = Some(@Entry { hash: hash, key: key, value: newval, next: old_chain}); // consider rehashing if more 3/4 full let nchains = vec::len(self.chains); let load = util::Rational { num: (self.count + 1u) as int, den: nchains as int, }; if !util::rational_leq(load, util::Rational {num:3, den:4}) { self.rehash(); } return true; } FoundFirst(idx, entry) => { self.chains[idx] = Some(@Entry { hash: hash, key: key, value: ff(key, entry.value, newval), next: entry.next}); return false; } FoundAfter(prev, entry) => { prev.next = Some(@Entry { hash: hash, key: key, value: ff(key, entry.value, newval), next: entry.next}); return false; } } } fn update(key: K, newval: V, ff: fn(V, V) -> V) -> bool { return self.update_with_key(key, newval, |_k, v, v1| ff(v,v1)); } pure fn get(k: K) -> V { let opt_v = self.find(k); if opt_v.is_none() { die!(fmt!("Key not found in table: %?", k)); } option::unwrap(move opt_v) } fn remove(k: K) -> bool { match self.search_tbl(&k, k.hash_keyed(0,0) as uint) { NotFound => false, FoundFirst(idx, entry) => { self.count -= 1u; self.chains[idx] = entry.next; true } FoundAfter(eprev, entry) => { self.count -= 1u; eprev.next = entry.next; true } } } fn clear() { self.count = 0u; self.chains = chains(initial_capacity); } pure fn each(blk: fn(key: K, value: V) -> bool) { self.each_ref(|k, v| blk(*k, *v)) } pure fn each_key(blk: fn(key: K) -> bool) { self.each_key_ref(|p| blk(*p)) } pure fn each_value(blk: fn(value: V) -> bool) { self.each_value_ref(|p| blk(*p)) } pure fn each_ref(blk: fn(key: &K, value: &V) -> bool) { for self.each_entry |entry| { if !blk(&entry.key, &entry.value) { break; } } } pure fn each_key_ref(blk: fn(key: &K) -> bool) { self.each_ref(|k, _v| blk(k)) } pure fn each_value_ref(blk: fn(value: &V) -> bool) { self.each_ref(|_k, v| blk(v)) } } impl T { fn to_writer(wr: io::Writer) { if self.count == 0u { wr.write_str(~"{}"); return; } wr.write_str(~"{ "); let mut first = true; for self.each_entry |entry| { if !first { wr.write_str(~", "); } first = false; wr.write_str(entry.key.to_str()); wr.write_str(~": "); wr.write_str((copy entry.value).to_str()); }; wr.write_str(~" }"); } } impl T: ToStr { pure fn to_str() -> ~str { unsafe { // Meh -- this should be safe do io::with_str_writer |wr| { self.to_writer(wr) } } } } impl T: ops::Index { pure fn index(&self, k: K) -> V { unsafe { self.get(k) } } } fn chains(nchains: uint) -> ~[mut Option<@Entry>] { vec::cast_to_mut(vec::from_elem(nchains, None)) } pub fn mk() -> T { let slf: T = @HashMap_ {count: 0u, chains: chains(initial_capacity)}; slf } } /* Function: hashmap Construct a hashmap. */ pub fn HashMap() -> HashMap { chained::mk() } /// Convenience function for adding keys to a hashmap with nil type keys pub fn set_add(set: Set, key: K) -> bool { set.insert(key, ()) } /// Convert a set into a vector. pub pure fn vec_from_set(s: Set) -> ~[T] { do vec::build_sized(s.size()) |push| { for s.each_key() |k| { push(k); } } } /// Construct a hashmap from a vector pub fn hash_from_vec( items: &[(K, V)]) -> HashMap { let map = HashMap(); for vec::each(items) |item| { match *item { (copy key, copy value) => { map.insert(key, value); } } } map } #[cfg(test)] mod tests { use core::option::None; use core::option; use core::uint; use super::*; #[test] fn test_simple() { debug!("*** starting test_simple"); pure fn eq_uint(x: &uint, y: &uint) -> bool { *x == *y } pure fn uint_id(x: &uint) -> uint { *x } debug!("uint -> uint"); let hm_uu: HashMap = HashMap::(); assert (hm_uu.insert(10u, 12u)); assert (hm_uu.insert(11u, 13u)); assert (hm_uu.insert(12u, 14u)); assert (hm_uu.get(11u) == 13u); assert (hm_uu.get(12u) == 14u); assert (hm_uu.get(10u) == 12u); assert (!hm_uu.insert(12u, 14u)); assert (hm_uu.get(12u) == 14u); assert (!hm_uu.insert(12u, 12u)); assert (hm_uu.get(12u) == 12u); let ten: ~str = ~"ten"; let eleven: ~str = ~"eleven"; let twelve: ~str = ~"twelve"; debug!("str -> uint"); let hm_su: HashMap<~str, uint> = HashMap::<~str, uint>(); assert (hm_su.insert(~"ten", 12u)); assert (hm_su.insert(eleven, 13u)); assert (hm_su.insert(~"twelve", 14u)); assert (hm_su.get(eleven) == 13u); assert (hm_su.get(~"eleven") == 13u); assert (hm_su.get(~"twelve") == 14u); assert (hm_su.get(~"ten") == 12u); assert (!hm_su.insert(~"twelve", 14u)); assert (hm_su.get(~"twelve") == 14u); assert (!hm_su.insert(~"twelve", 12u)); assert (hm_su.get(~"twelve") == 12u); debug!("uint -> str"); let hm_us: HashMap = HashMap::(); assert (hm_us.insert(10u, ~"twelve")); assert (hm_us.insert(11u, ~"thirteen")); assert (hm_us.insert(12u, ~"fourteen")); assert hm_us.get(11u) == ~"thirteen"; assert hm_us.get(12u) == ~"fourteen"; assert hm_us.get(10u) == ~"twelve"; assert (!hm_us.insert(12u, ~"fourteen")); assert hm_us.get(12u) == ~"fourteen"; assert (!hm_us.insert(12u, ~"twelve")); assert hm_us.get(12u) == ~"twelve"; debug!("str -> str"); let hm_ss: HashMap<~str, ~str> = HashMap::<~str, ~str>(); assert (hm_ss.insert(ten, ~"twelve")); assert (hm_ss.insert(eleven, ~"thirteen")); assert (hm_ss.insert(twelve, ~"fourteen")); assert hm_ss.get(~"eleven") == ~"thirteen"; assert hm_ss.get(~"twelve") == ~"fourteen"; assert hm_ss.get(~"ten") == ~"twelve"; assert (!hm_ss.insert(~"twelve", ~"fourteen")); assert hm_ss.get(~"twelve") == ~"fourteen"; assert (!hm_ss.insert(~"twelve", ~"twelve")); assert hm_ss.get(~"twelve") == ~"twelve"; debug!("*** finished test_simple"); } /** * Force map growth */ #[test] fn test_growth() { debug!("*** starting test_growth"); let num_to_insert: uint = 64u; pure fn eq_uint(x: &uint, y: &uint) -> bool { *x == *y } pure fn uint_id(x: &uint) -> uint { *x } debug!("uint -> uint"); let hm_uu: HashMap = HashMap::(); let mut i: uint = 0u; while i < num_to_insert { assert (hm_uu.insert(i, i * i)); debug!("inserting %u -> %u", i, i*i); i += 1u; } debug!("-----"); i = 0u; while i < num_to_insert { debug!("get(%u) = %u", i, hm_uu.get(i)); assert (hm_uu.get(i) == i * i); i += 1u; } assert (hm_uu.insert(num_to_insert, 17u)); assert (hm_uu.get(num_to_insert) == 17u); debug!("-----"); i = 0u; while i < num_to_insert { debug!("get(%u) = %u", i, hm_uu.get(i)); assert (hm_uu.get(i) == i * i); i += 1u; } debug!("str -> str"); let hm_ss: HashMap<~str, ~str> = HashMap::<~str, ~str>(); i = 0u; while i < num_to_insert { assert hm_ss.insert(uint::to_str(i, 2u), uint::to_str(i * i, 2u)); debug!("inserting \"%s\" -> \"%s\"", uint::to_str(i, 2u), uint::to_str(i*i, 2u)); i += 1u; } debug!("-----"); i = 0u; while i < num_to_insert { debug!("get(\"%s\") = \"%s\"", uint::to_str(i, 2u), hm_ss.get(uint::to_str(i, 2u))); assert hm_ss.get(uint::to_str(i, 2u)) == uint::to_str(i * i, 2u); i += 1u; } assert (hm_ss.insert(uint::to_str(num_to_insert, 2u), uint::to_str(17u, 2u))); assert hm_ss.get(uint::to_str(num_to_insert, 2u)) == uint::to_str(17u, 2u); debug!("-----"); i = 0u; while i < num_to_insert { debug!("get(\"%s\") = \"%s\"", uint::to_str(i, 2u), hm_ss.get(uint::to_str(i, 2u))); assert hm_ss.get(uint::to_str(i, 2u)) == uint::to_str(i * i, 2u); i += 1u; } debug!("*** finished test_growth"); } #[test] fn test_removal() { debug!("*** starting test_removal"); let num_to_insert: uint = 64u; let hm: HashMap = HashMap::(); let mut i: uint = 0u; while i < num_to_insert { assert (hm.insert(i, i * i)); debug!("inserting %u -> %u", i, i*i); i += 1u; } assert (hm.size() == num_to_insert); debug!("-----"); debug!("removing evens"); i = 0u; while i < num_to_insert { let v = hm.remove(i); assert v; i += 2u; } assert (hm.size() == num_to_insert / 2u); debug!("-----"); i = 1u; while i < num_to_insert { debug!("get(%u) = %u", i, hm.get(i)); assert (hm.get(i) == i * i); i += 2u; } debug!("-----"); i = 1u; while i < num_to_insert { debug!("get(%u) = %u", i, hm.get(i)); assert (hm.get(i) == i * i); i += 2u; } debug!("-----"); i = 0u; while i < num_to_insert { assert (hm.insert(i, i * i)); debug!("inserting %u -> %u", i, i*i); i += 2u; } assert (hm.size() == num_to_insert); debug!("-----"); i = 0u; while i < num_to_insert { debug!("get(%u) = %u", i, hm.get(i)); assert (hm.get(i) == i * i); i += 1u; } debug!("-----"); assert (hm.size() == num_to_insert); i = 0u; while i < num_to_insert { debug!("get(%u) = %u", i, hm.get(i)); assert (hm.get(i) == i * i); i += 1u; } debug!("*** finished test_removal"); } #[test] fn test_contains_key() { let key = ~"k"; let map = HashMap::<~str, ~str>(); assert (!map.contains_key(key)); map.insert(key, ~"val"); assert (map.contains_key(key)); } #[test] fn test_find() { let key = ~"k"; let map = HashMap::<~str, ~str>(); assert (option::is_none(&map.find(key))); map.insert(key, ~"val"); assert (option::get(map.find(key)) == ~"val"); } #[test] fn test_clear() { let key = ~"k"; let map = HashMap::<~str, ~str>(); map.insert(key, ~"val"); assert (map.size() == 1); assert (map.contains_key(key)); map.clear(); assert (map.size() == 0); assert (!map.contains_key(key)); } #[test] fn test_hash_from_vec() { let map = hash_from_vec(~[ (~"a", 1), (~"b", 2), (~"c", 3) ]); assert map.size() == 3u; assert map.get(~"a") == 1; assert map.get(~"b") == 2; assert map.get(~"c") == 3; } #[test] fn test_update_with_key() { let map = HashMap::<~str, uint>(); // given a new key, initialize it with this new count, given // given an existing key, add more to its count fn addMoreToCount(_k: ~str, v0: uint, v1: uint) -> uint { v0 + v1 } fn addMoreToCount_simple(v0: uint, v1: uint) -> uint { v0 + v1 } // count the number of several types of animal, // adding in groups as we go map.update(~"cat", 1, addMoreToCount_simple); map.update_with_key(~"mongoose", 1, addMoreToCount); map.update(~"cat", 7, addMoreToCount_simple); map.update_with_key(~"ferret", 3, addMoreToCount); map.update_with_key(~"cat", 2, addMoreToCount); // check the total counts assert 10 == option::get(map.find(~"cat")); assert 3 == option::get(map.find(~"ferret")); assert 1 == option::get(map.find(~"mongoose")); // sadly, no mythical animals were counted! assert None == map.find(~"unicorn"); } }