import std._int; import std._str; import std._uint; import std._vec; import std._str.rustrt.sbuf; import std._vec.rustrt.vbuf; import std.map; import std.map.hashmap; import std.option; import std.option.some; import std.option.none; import front.ast; import driver.session; import middle.ty; import back.x86; import back.abi; import middle.ty.pat_ty; import middle.ty.plain_ty; import util.common; import util.common.istr; import util.common.new_def_hash; import util.common.new_str_hash; import lib.llvm.llvm; import lib.llvm.builder; import lib.llvm.target_data; import lib.llvm.type_handle; import lib.llvm.type_names; import lib.llvm.mk_pass_manager; import lib.llvm.mk_target_data; import lib.llvm.mk_type_handle; import lib.llvm.mk_type_names; import lib.llvm.llvm.ModuleRef; import lib.llvm.llvm.ValueRef; import lib.llvm.llvm.TypeRef; import lib.llvm.llvm.TypeHandleRef; import lib.llvm.llvm.BuilderRef; import lib.llvm.llvm.BasicBlockRef; import lib.llvm.False; import lib.llvm.True; state obj namegen(mutable int i) { fn next(str prefix) -> str { i += 1; ret prefix + istr(i); } } type glue_fns = rec(ValueRef activate_glue, ValueRef yield_glue, ValueRef exit_task_glue, vec[ValueRef] upcall_glues, ValueRef no_op_type_glue, ValueRef memcpy_glue, ValueRef bzero_glue, ValueRef vec_append_glue); type tydesc_info = rec(ValueRef tydesc, ValueRef take_glue, ValueRef drop_glue); state type crate_ctxt = rec(session.session sess, ModuleRef llmod, target_data td, type_names tn, ValueRef crate_ptr, hashmap[str, ValueRef] upcalls, hashmap[str, ValueRef] intrinsics, hashmap[str, ValueRef] item_names, hashmap[str, ValueRef] native_fns, hashmap[ast.def_id, ValueRef] item_ids, hashmap[ast.def_id, @ast.item] items, hashmap[ast.def_id, @ast.native_item] native_items, // TODO: hashmap[tup(tag_id,subtys), @tag_info] hashmap[@ty.t, uint] tag_sizes, hashmap[ast.def_id, ValueRef] discrims, hashmap[ast.def_id, ValueRef] fn_pairs, hashmap[ast.def_id, ValueRef] consts, hashmap[ast.def_id,()] obj_methods, hashmap[@ty.t, @tydesc_info] tydescs, vec[ast.ty_param] obj_typarams, vec[ast.obj_field] obj_fields, @glue_fns glues, namegen names, str path); state type fn_ctxt = rec(ValueRef llfn, ValueRef lltaskptr, ValueRef llenv, ValueRef llretptr, mutable option.t[ValueRef] llself, mutable option.t[ValueRef] lliterbody, hashmap[ast.def_id, ValueRef] llargs, hashmap[ast.def_id, ValueRef] llobjfields, hashmap[ast.def_id, ValueRef] lllocals, hashmap[ast.def_id, ValueRef] llupvars, hashmap[ast.def_id, ValueRef] lltydescs, @crate_ctxt ccx); tag cleanup { clean(fn(@block_ctxt cx) -> result); } tag block_kind { SCOPE_BLOCK; NON_SCOPE_BLOCK; } state type block_ctxt = rec(BasicBlockRef llbb, builder build, block_parent parent, block_kind kind, mutable vec[cleanup] cleanups, @fn_ctxt fcx); // FIXME: we should be able to use option.t[@block_parent] here but // the infinite-tag check in rustboot gets upset. tag block_parent { parent_none; parent_some(@block_ctxt); } state type result = rec(mutable @block_ctxt bcx, mutable ValueRef val); fn sep() -> str { ret "_"; } fn res(@block_ctxt bcx, ValueRef val) -> result { ret rec(mutable bcx = bcx, mutable val = val); } fn ty_str(type_names tn, TypeRef t) -> str { ret lib.llvm.type_to_str(tn, t); } fn val_ty(ValueRef v) -> TypeRef { ret llvm.LLVMTypeOf(v); } fn val_str(type_names tn, ValueRef v) -> str { ret ty_str(tn, val_ty(v)); } // LLVM type constructors. fn T_void() -> TypeRef { // Note: For the time being llvm is kinda busted here, it has the notion // of a 'void' type that can only occur as part of the signature of a // function, but no general unit type of 0-sized value. This is, afaict, // vestigial from its C heritage, and we'll be attempting to submit a // patch upstream to fix it. In the mean time we only model function // outputs (Rust functions and C functions) using T_void, and model the // Rust general purpose nil type you can construct as 1-bit (always // zero). This makes the result incorrect for now -- things like a tuple // of 10 nil values will have 10-bit size -- but it doesn't seem like we // have any other options until it's fixed upstream. ret llvm.LLVMVoidType(); } fn T_nil() -> TypeRef { // NB: See above in T_void(). ret llvm.LLVMInt1Type(); } fn T_i1() -> TypeRef { ret llvm.LLVMInt1Type(); } fn T_i8() -> TypeRef { ret llvm.LLVMInt8Type(); } fn T_i16() -> TypeRef { ret llvm.LLVMInt16Type(); } fn T_i32() -> TypeRef { ret llvm.LLVMInt32Type(); } fn T_i64() -> TypeRef { ret llvm.LLVMInt64Type(); } fn T_f32() -> TypeRef { ret llvm.LLVMFloatType(); } fn T_f64() -> TypeRef { ret llvm.LLVMDoubleType(); } fn T_bool() -> TypeRef { ret T_i1(); } fn T_int() -> TypeRef { // FIXME: switch on target type. ret T_i32(); } fn T_char() -> TypeRef { ret T_i32(); } fn T_fn(vec[TypeRef] inputs, TypeRef output) -> TypeRef { ret llvm.LLVMFunctionType(output, _vec.buf[TypeRef](inputs), _vec.len[TypeRef](inputs), False); } fn T_fn_pair(type_names tn, TypeRef tfn) -> TypeRef { ret T_struct(vec(T_ptr(tfn), T_opaque_closure_ptr(tn))); } fn T_ptr(TypeRef t) -> TypeRef { ret llvm.LLVMPointerType(t, 0u); } fn T_struct(vec[TypeRef] elts) -> TypeRef { ret llvm.LLVMStructType(_vec.buf[TypeRef](elts), _vec.len[TypeRef](elts), False); } fn T_opaque() -> TypeRef { ret llvm.LLVMOpaqueType(); } fn T_task(type_names tn) -> TypeRef { auto s = "task"; if (tn.name_has_type(s)) { ret tn.get_type(s); } auto t = T_struct(vec(T_int(), // Refcount T_int(), // Delegate pointer T_int(), // Stack segment pointer T_int(), // Runtime SP T_int(), // Rust SP T_int(), // GC chain T_int(), // Domain pointer T_int() // Crate cache pointer )); tn.associate(s, t); ret t; } fn T_glue_fn(type_names tn) -> TypeRef { auto s = "glue_fn"; if (tn.name_has_type(s)) { ret tn.get_type(s); } // Bit of a kludge: pick the fn typeref out of the tydesc.. let vec[TypeRef] tydesc_elts = _vec.init_elt[TypeRef](T_nil(), 10u); llvm.LLVMGetStructElementTypes(T_tydesc(tn), _vec.buf[TypeRef](tydesc_elts)); auto t = llvm.LLVMGetElementType (tydesc_elts.(abi.tydesc_field_drop_glue_off)); tn.associate(s, t); ret t; } fn T_tydesc(type_names tn) -> TypeRef { auto s = "tydesc"; if (tn.name_has_type(s)) { ret tn.get_type(s); } auto th = mk_type_handle(); auto abs_tydesc = llvm.LLVMResolveTypeHandle(th.llth); auto tydescpp = T_ptr(T_ptr(abs_tydesc)); auto pvoid = T_ptr(T_i8()); auto glue_fn_ty = T_ptr(T_fn(vec(T_ptr(T_nil()), T_taskptr(tn), T_ptr(T_nil()), tydescpp, pvoid), T_void())); auto tydesc = T_struct(vec(tydescpp, // first_param T_int(), // size T_int(), // align glue_fn_ty, // take_glue_off glue_fn_ty, // drop_glue_off glue_fn_ty, // free_glue_off glue_fn_ty, // sever_glue_off glue_fn_ty, // mark_glue_off glue_fn_ty, // obj_drop_glue_off glue_fn_ty)); // is_stateful llvm.LLVMRefineType(abs_tydesc, tydesc); auto t = llvm.LLVMResolveTypeHandle(th.llth); tn.associate(s, t); ret t; } fn T_array(TypeRef t, uint n) -> TypeRef { ret llvm.LLVMArrayType(t, n); } fn T_vec(TypeRef t) -> TypeRef { ret T_struct(vec(T_int(), // Refcount T_int(), // Alloc T_int(), // Fill T_array(t, 0u) // Body elements )); } fn T_opaque_vec_ptr() -> TypeRef { ret T_ptr(T_vec(T_int())); } fn T_str() -> TypeRef { ret T_vec(T_i8()); } fn T_box(TypeRef t) -> TypeRef { ret T_struct(vec(T_int(), t)); } fn T_crate(type_names tn) -> TypeRef { auto s = "crate"; if (tn.name_has_type(s)) { ret tn.get_type(s); } auto t = T_struct(vec(T_int(), // ptrdiff_t image_base_off T_int(), // uintptr_t self_addr T_int(), // ptrdiff_t debug_abbrev_off T_int(), // size_t debug_abbrev_sz T_int(), // ptrdiff_t debug_info_off T_int(), // size_t debug_info_sz T_int(), // size_t activate_glue_off T_int(), // size_t yield_glue_off T_int(), // size_t unwind_glue_off T_int(), // size_t gc_glue_off T_int(), // size_t main_exit_task_glue_off T_int(), // int n_rust_syms T_int(), // int n_c_syms T_int(), // int n_libs T_int() // uintptr_t abi_tag )); tn.associate(s, t); ret t; } fn T_double() -> TypeRef { ret llvm.LLVMDoubleType(); } fn T_taskptr(type_names tn) -> TypeRef { ret T_ptr(T_task(tn)); } // This type must never be used directly; it must always be cast away. fn T_typaram(type_names tn) -> TypeRef { auto s = "typaram"; if (tn.name_has_type(s)) { ret tn.get_type(s); } auto t = T_i8(); tn.associate(s, t); ret t; } fn T_typaram_ptr(type_names tn) -> TypeRef { ret T_ptr(T_typaram(tn)); } fn T_closure_ptr(type_names tn, TypeRef lltarget_ty, TypeRef llbindings_ty, uint n_ty_params) -> TypeRef { // NB: keep this in sync with code in trans_bind; we're making // an LLVM typeref structure that has the same "shape" as the ty.t // it constructs. ret T_ptr(T_box(T_struct(vec(T_ptr(T_tydesc(tn)), lltarget_ty, llbindings_ty, T_captured_tydescs(tn, n_ty_params)) ))); } fn T_opaque_closure_ptr(type_names tn) -> TypeRef { auto s = "*closure"; if (tn.name_has_type(s)) { ret tn.get_type(s); } auto t = T_closure_ptr(tn, T_struct(vec(T_ptr(T_nil()), T_ptr(T_nil()))), T_nil(), 0u); tn.associate(s, t); ret t; } fn T_tag(type_names tn, uint size) -> TypeRef { auto s = "tag_" + _uint.to_str(size, 10u); if (tn.name_has_type(s)) { ret tn.get_type(s); } auto t = T_struct(vec(T_int(), T_array(T_i8(), size))); tn.associate(s, t); ret t; } fn T_opaque_tag(type_names tn) -> TypeRef { auto s = "tag"; if (tn.name_has_type(s)) { ret tn.get_type(s); } auto t = T_struct(vec(T_int(), T_i8())); tn.associate(s, t); ret t; } fn T_opaque_tag_ptr(type_names tn) -> TypeRef { ret T_ptr(T_opaque_tag(tn)); } fn T_captured_tydescs(type_names tn, uint n) -> TypeRef { ret T_struct(_vec.init_elt[TypeRef](T_ptr(T_tydesc(tn)), n)); } fn T_obj_ptr(type_names tn, uint n_captured_tydescs) -> TypeRef { // This function is not publicly exposed because it returns an incomplete // type. The dynamically-sized fields follow the captured tydescs. fn T_obj(type_names tn, uint n_captured_tydescs) -> TypeRef { ret T_struct(vec(T_ptr(T_tydesc(tn)), T_captured_tydescs(tn, n_captured_tydescs))); } ret T_ptr(T_box(T_obj(tn, n_captured_tydescs))); } fn T_opaque_obj_ptr(type_names tn) -> TypeRef { ret T_obj_ptr(tn, 0u); } // This function now fails if called on a type with dynamic size (as its // return value was always meaningless in that case anyhow). Beware! // // TODO: Enforce via a predicate. fn type_of(@crate_ctxt cx, @ty.t t) -> TypeRef { if (ty.type_has_dynamic_size(t)) { log "type_of() called on a type with dynamic size: " + ty.ty_to_str(t); fail; } ret type_of_inner(cx, t, false); } fn type_of_explicit_args(@crate_ctxt cx, vec[ty.arg] inputs) -> vec[TypeRef] { let vec[TypeRef] atys = vec(); for (ty.arg arg in inputs) { if (ty.type_has_dynamic_size(arg.ty)) { check (arg.mode == ast.alias); atys += vec(T_typaram_ptr(cx.tn)); } else { let TypeRef t; alt (arg.mode) { case (ast.alias) { t = T_ptr(type_of_inner(cx, arg.ty, true)); } case (_) { t = type_of_inner(cx, arg.ty, false); } } atys += vec(t); } } ret atys; } // NB: must keep 4 fns in sync: // // - type_of_fn_full // - create_llargs_for_fn_args. // - new_fn_ctxt // - trans_args fn type_of_fn_full(@crate_ctxt cx, ast.proto proto, option.t[TypeRef] obj_self, vec[ty.arg] inputs, @ty.t output, uint ty_param_count) -> TypeRef { let vec[TypeRef] atys = vec(); // Arg 0: Output pointer. if (ty.type_has_dynamic_size(output)) { atys += vec(T_typaram_ptr(cx.tn)); } else { atys += vec(T_ptr(type_of_inner(cx, output, false))); } // Arg 1: Task pointer. atys += vec(T_taskptr(cx.tn)); // Arg 2: Env (closure-bindings / self-obj) alt (obj_self) { case (some[TypeRef](?t)) { check (t as int != 0); atys += vec(t); } case (_) { atys += vec(T_opaque_closure_ptr(cx.tn)); } } // Args >3: ty params, if not acquired via capture... if (obj_self == none[TypeRef]) { auto i = 0u; while (i < ty_param_count) { atys += vec(T_ptr(T_tydesc(cx.tn))); i += 1u; } } if (proto == ast.proto_iter) { // If it's an iter, the 'output' type of the iter is actually the // *input* type of the function we're given as our iter-block // argument. atys += vec(T_fn_pair(cx.tn, type_of_fn_full(cx, ast.proto_fn, none[TypeRef], vec(rec(mode=ast.val, ty=output)), plain_ty(ty.ty_nil), 0u))); } // ... then explicit args. atys += type_of_explicit_args(cx, inputs); ret T_fn(atys, llvm.LLVMVoidType()); } fn type_of_fn(@crate_ctxt cx, ast.proto proto, vec[ty.arg] inputs, @ty.t output, uint ty_param_count) -> TypeRef { ret type_of_fn_full(cx, proto, none[TypeRef], inputs, output, ty_param_count); } fn type_of_native_fn(@crate_ctxt cx, ast.native_abi abi, vec[ty.arg] inputs, @ty.t output, uint ty_param_count) -> TypeRef { let vec[TypeRef] atys = vec(); if (abi == ast.native_abi_rust) { atys += vec(T_taskptr(cx.tn)); auto t = ty.ty_native_fn(abi, inputs, output); auto i = 0u; while (i < ty_param_count) { atys += vec(T_ptr(T_tydesc(cx.tn))); i += 1u; } } atys += type_of_explicit_args(cx, inputs); ret T_fn(atys, type_of_inner(cx, output, false)); } fn type_of_inner(@crate_ctxt cx, @ty.t t, bool boxed) -> TypeRef { let TypeRef llty = 0 as TypeRef; alt (t.struct) { case (ty.ty_native) { llty = T_ptr(T_i8()); } case (ty.ty_nil) { llty = T_nil(); } case (ty.ty_bool) { llty = T_bool(); } case (ty.ty_int) { llty = T_int(); } case (ty.ty_uint) { llty = T_int(); } case (ty.ty_machine(?tm)) { alt (tm) { case (common.ty_i8) { llty = T_i8(); } case (common.ty_u8) { llty = T_i8(); } case (common.ty_i16) { llty = T_i16(); } case (common.ty_u16) { llty = T_i16(); } case (common.ty_i32) { llty = T_i32(); } case (common.ty_u32) { llty = T_i32(); } case (common.ty_i64) { llty = T_i64(); } case (common.ty_u64) { llty = T_i64(); } case (common.ty_f32) { llty = T_f32(); } case (common.ty_f64) { llty = T_f64(); } } } case (ty.ty_char) { llty = T_char(); } case (ty.ty_str) { llty = T_ptr(T_str()); } case (ty.ty_tag(_, _)) { if (boxed) { llty = T_opaque_tag(cx.tn); } else { auto size = static_size_of_tag(cx, t); llty = T_tag(cx.tn, size); } } case (ty.ty_box(?mt)) { llty = T_ptr(T_box(type_of_inner(cx, mt.ty, true))); } case (ty.ty_vec(?mt)) { llty = T_ptr(T_vec(type_of_inner(cx, mt.ty, true))); } case (ty.ty_tup(?elts)) { let vec[TypeRef] tys = vec(); for (ty.mt elt in elts) { tys += vec(type_of_inner(cx, elt.ty, boxed)); } llty = T_struct(tys); } case (ty.ty_rec(?fields)) { let vec[TypeRef] tys = vec(); for (ty.field f in fields) { tys += vec(type_of_inner(cx, f.mt.ty, boxed)); } llty = T_struct(tys); } case (ty.ty_fn(?proto, ?args, ?out)) { llty = T_fn_pair(cx.tn, type_of_fn(cx, proto, args, out, 0u)); } case (ty.ty_native_fn(?abi, ?args, ?out)) { auto nft = type_of_native_fn(cx, abi, args, out, 0u); llty = T_fn_pair(cx.tn, nft); } case (ty.ty_obj(?meths)) { auto th = mk_type_handle(); auto self_ty = llvm.LLVMResolveTypeHandle(th.llth); let vec[TypeRef] mtys = vec(); for (ty.method m in meths) { let TypeRef mty = type_of_fn_full(cx, m.proto, some[TypeRef](self_ty), m.inputs, m.output, 0u); mtys += vec(T_ptr(mty)); } let TypeRef vtbl = T_struct(mtys); let TypeRef pair = T_struct(vec(T_ptr(vtbl), T_opaque_obj_ptr(cx.tn))); auto abs_pair = llvm.LLVMResolveTypeHandle(th.llth); llvm.LLVMRefineType(abs_pair, pair); abs_pair = llvm.LLVMResolveTypeHandle(th.llth); llty = abs_pair; } case (ty.ty_var(_)) { log "ty_var in trans.type_of"; fail; } case (ty.ty_param(_)) { llty = T_i8(); } case (ty.ty_type) { llty = T_ptr(T_tydesc(cx.tn)); } } check (llty as int != 0); llvm.LLVMAddTypeName(cx.llmod, _str.buf(ty.ty_to_str(t)), llty); ret llty; } fn type_of_arg(@crate_ctxt cx, &ty.arg arg) -> TypeRef { alt (arg.ty.struct) { case (ty.ty_param(_)) { if (arg.mode == ast.alias) { ret T_typaram_ptr(cx.tn); } } case (_) { // fall through } } auto typ; if (arg.mode == ast.alias) { typ = T_ptr(type_of_inner(cx, arg.ty, true)); } else { typ = type_of_inner(cx, arg.ty, false); } ret typ; } // Name sanitation. LLVM will happily accept identifiers with weird names, but // gas doesn't! fn sanitize(str s) -> str { auto result = ""; for (u8 c in s) { if (c == ('@' as u8)) { result += "boxed_"; } else { if (c == (',' as u8)) { result += "_"; } else { if (c == ('{' as u8) || c == ('(' as u8)) { result += "_of_"; } else { if (c != 10u8 && c != ('}' as u8) && c != (')' as u8) && c != (' ' as u8) && c != ('\t' as u8) && c != (';' as u8)) { auto v = vec(c); result += _str.from_bytes(v); } } } } } ret result; } // LLVM constant constructors. fn C_null(TypeRef t) -> ValueRef { ret llvm.LLVMConstNull(t); } fn C_integral(int i, TypeRef t) -> ValueRef { // FIXME. We can't use LLVM.ULongLong with our existing minimal native // API, which only knows word-sized args. Lucky for us LLVM has a "take a // string encoding" version. Hilarious. Please fix to handle: // // ret llvm.LLVMConstInt(T_int(), t as LLVM.ULongLong, False); // ret llvm.LLVMConstIntOfString(t, _str.buf(istr(i)), 10); } fn C_nil() -> ValueRef { // NB: See comment above in T_void(). ret C_integral(0, T_i1()); } fn C_bool(bool b) -> ValueRef { if (b) { ret C_integral(1, T_bool()); } else { ret C_integral(0, T_bool()); } } fn C_int(int i) -> ValueRef { ret C_integral(i, T_int()); } // This is a 'c-like' raw string, which differs from // our boxed-and-length-annotated strings. fn C_cstr(@crate_ctxt cx, str s) -> ValueRef { auto sc = llvm.LLVMConstString(_str.buf(s), _str.byte_len(s), False); auto g = llvm.LLVMAddGlobal(cx.llmod, val_ty(sc), _str.buf(cx.names.next("str"))); llvm.LLVMSetInitializer(g, sc); llvm.LLVMSetGlobalConstant(g, True); llvm.LLVMSetLinkage(g, lib.llvm.LLVMPrivateLinkage as llvm.Linkage); ret g; } // A rust boxed-and-length-annotated string. fn C_str(@crate_ctxt cx, str s) -> ValueRef { auto len = _str.byte_len(s); auto box = C_struct(vec(C_int(abi.const_refcount as int), C_int(len + 1u as int), // 'alloc' C_int(len + 1u as int), // 'fill' llvm.LLVMConstString(_str.buf(s), len, False))); auto g = llvm.LLVMAddGlobal(cx.llmod, val_ty(box), _str.buf(cx.names.next("str"))); llvm.LLVMSetInitializer(g, box); llvm.LLVMSetGlobalConstant(g, True); llvm.LLVMSetLinkage(g, lib.llvm.LLVMPrivateLinkage as llvm.Linkage); ret llvm.LLVMConstPointerCast(g, T_ptr(T_str())); } fn C_zero_byte_arr(uint size) -> ValueRef { auto i = 0u; let vec[ValueRef] elts = vec(); while (i < size) { elts += vec(C_integral(0, T_i8())); i += 1u; } ret llvm.LLVMConstArray(T_i8(), _vec.buf[ValueRef](elts), _vec.len[ValueRef](elts)); } fn C_struct(vec[ValueRef] elts) -> ValueRef { ret llvm.LLVMConstStruct(_vec.buf[ValueRef](elts), _vec.len[ValueRef](elts), False); } fn decl_fn(ModuleRef llmod, str name, uint cc, TypeRef llty) -> ValueRef { let ValueRef llfn = llvm.LLVMAddFunction(llmod, _str.buf(name), llty); llvm.LLVMSetFunctionCallConv(llfn, cc); ret llfn; } fn decl_cdecl_fn(ModuleRef llmod, str name, TypeRef llty) -> ValueRef { ret decl_fn(llmod, name, lib.llvm.LLVMCCallConv, llty); } fn decl_fastcall_fn(ModuleRef llmod, str name, TypeRef llty) -> ValueRef { ret decl_fn(llmod, name, lib.llvm.LLVMFastCallConv, llty); } fn decl_glue(ModuleRef llmod, type_names tn, str s) -> ValueRef { ret decl_cdecl_fn(llmod, s, T_fn(vec(T_taskptr(tn)), T_void())); } fn decl_upcall_glue(ModuleRef llmod, type_names tn, uint _n) -> ValueRef { // It doesn't actually matter what type we come up with here, at the // moment, as we cast the upcall function pointers to int before passing // them to the indirect upcall-invocation glue. But eventually we'd like // to call them directly, once we have a calling convention worked out. let int n = _n as int; let str s = abi.upcall_glue_name(n); let vec[TypeRef] args = vec(T_int()) // callee + _vec.init_elt[TypeRef](T_int(), n as uint); ret decl_fastcall_fn(llmod, s, T_fn(args, T_int())); } fn get_upcall(&hashmap[str, ValueRef] upcalls, type_names tn, ModuleRef llmod, str name, int n_args) -> ValueRef { if (upcalls.contains_key(name)) { ret upcalls.get(name); } auto inputs = vec(T_taskptr(tn)); inputs += _vec.init_elt[TypeRef](T_int(), n_args as uint); auto output = T_int(); auto f = decl_cdecl_fn(llmod, name, T_fn(inputs, output)); upcalls.insert(name, f); ret f; } fn trans_upcall(@block_ctxt cx, str name, vec[ValueRef] args) -> result { auto cxx = cx.fcx.ccx; auto t = trans_upcall2(cx.build, cxx.glues, cx.fcx.lltaskptr, cxx.upcalls, cxx.tn, cxx.llmod, name, args); ret res(cx, t); } fn trans_upcall2(builder b, @glue_fns glues, ValueRef lltaskptr, &hashmap[str, ValueRef] upcalls, type_names tn, ModuleRef llmod, str name, vec[ValueRef] args) -> ValueRef { let int n = (_vec.len[ValueRef](args) as int) + 1; let ValueRef llupcall = get_upcall(upcalls, tn, llmod, name, n); llupcall = llvm.LLVMConstPointerCast(llupcall, T_int()); let ValueRef llglue = glues.upcall_glues.(n); let vec[ValueRef] call_args = vec(llupcall); call_args += vec( b.PtrToInt(lltaskptr, T_int())); for (ValueRef a in args) { call_args += vec(b.ZExtOrBitCast(a, T_int())); } ret b.FastCall(llglue, call_args); } fn trans_non_gc_free(@block_ctxt cx, ValueRef v) -> result { ret trans_upcall(cx, "upcall_free", vec(vp2i(cx, v), C_int(0))); } fn find_scope_cx(@block_ctxt cx) -> @block_ctxt { if (cx.kind == SCOPE_BLOCK) { ret cx; } alt (cx.parent) { case (parent_some(?b)) { be find_scope_cx(b); } case (parent_none) { fail; } } } fn umax(@block_ctxt cx, ValueRef a, ValueRef b) -> ValueRef { auto cond = cx.build.ICmp(lib.llvm.LLVMIntULT, a, b); ret cx.build.Select(cond, b, a); } fn umin(@block_ctxt cx, ValueRef a, ValueRef b) -> ValueRef { auto cond = cx.build.ICmp(lib.llvm.LLVMIntULT, a, b); ret cx.build.Select(cond, a, b); } fn align_to(@block_ctxt cx, ValueRef off, ValueRef align) -> ValueRef { auto mask = cx.build.Sub(align, C_int(1)); auto bumped = cx.build.Add(off, mask); ret cx.build.And(bumped, cx.build.Not(mask)); } // Returns the real size of the given type for the current target. fn llsize_of_real(@crate_ctxt cx, TypeRef t) -> uint { ret llvm.LLVMStoreSizeOfType(cx.td.lltd, t); } fn llsize_of(TypeRef t) -> ValueRef { ret llvm.LLVMConstIntCast(lib.llvm.llvm.LLVMSizeOf(t), T_int(), False); } fn llalign_of(TypeRef t) -> ValueRef { ret llvm.LLVMConstIntCast(lib.llvm.llvm.LLVMAlignOf(t), T_int(), False); } fn size_of(@block_ctxt cx, @ty.t t) -> result { if (!ty.type_has_dynamic_size(t)) { ret res(cx, llsize_of(type_of(cx.fcx.ccx, t))); } ret dynamic_size_of(cx, t); } fn align_of(@block_ctxt cx, @ty.t t) -> result { if (!ty.type_has_dynamic_size(t)) { ret res(cx, llalign_of(type_of(cx.fcx.ccx, t))); } ret dynamic_align_of(cx, t); } // Computes the size of the data part of a non-dynamically-sized tag. fn static_size_of_tag(@crate_ctxt cx, @ty.t t) -> uint { if (ty.type_has_dynamic_size(t)) { log "dynamically sized type passed to static_size_of_tag()"; fail; } if (cx.tag_sizes.contains_key(t)) { ret cx.tag_sizes.get(t); } auto tid; let vec[@ty.t] subtys; alt (t.struct) { case (ty.ty_tag(?tid_, ?subtys_)) { tid = tid_; subtys = subtys_; } case (_) { log "non-tag passed to static_size_of_tag()"; fail; } } // Pull the type parameters out of the corresponding tag item. let vec[ast.ty_param] ty_params = tag_ty_params(cx, tid); // Compute max(variant sizes). auto max_size = 0u; auto variants = tag_variants(cx, tid); for (ast.variant variant in variants) { auto tup_ty = ty.plain_tup_ty(variant_types(cx, variant)); // Perform any type parameter substitutions. tup_ty = ty.substitute_ty_params(ty_params, subtys, tup_ty); // Here we possibly do a recursive call. auto this_size = llsize_of_real(cx, type_of(cx, tup_ty)); if (max_size < this_size) { max_size = this_size; } } cx.tag_sizes.insert(t, max_size); ret max_size; } fn dynamic_size_of(@block_ctxt cx, @ty.t t) -> result { fn align_elements(@block_ctxt cx, vec[@ty.t] elts) -> result { // // C padding rules: // // // - Pad after each element so that next element is aligned. // - Pad after final structure member so that whole structure // is aligned to max alignment of interior. // auto off = C_int(0); auto max_align = C_int(1); auto bcx = cx; for (@ty.t e in elts) { auto elt_align = align_of(bcx, e); bcx = elt_align.bcx; auto elt_size = size_of(bcx, e); bcx = elt_size.bcx; auto aligned_off = align_to(bcx, off, elt_align.val); off = cx.build.Add(aligned_off, elt_size.val); max_align = umax(bcx, max_align, elt_align.val); } off = align_to(bcx, off, max_align); ret res(bcx, off); } alt (t.struct) { case (ty.ty_param(?p)) { auto szptr = field_of_tydesc(cx, t, abi.tydesc_field_size); ret res(szptr.bcx, szptr.bcx.build.Load(szptr.val)); } case (ty.ty_tup(?elts)) { let vec[@ty.t] tys = vec(); for (ty.mt mt in elts) { tys += vec(mt.ty); } ret align_elements(cx, tys); } case (ty.ty_rec(?flds)) { let vec[@ty.t] tys = vec(); for (ty.field f in flds) { tys += vec(f.mt.ty); } ret align_elements(cx, tys); } case (ty.ty_tag(?tid, ?tps)) { auto bcx = cx; // Compute max(variant sizes). let ValueRef max_size = bcx.build.Alloca(T_int()); bcx.build.Store(C_int(0), max_size); auto ty_params = tag_ty_params(bcx.fcx.ccx, tid); auto variants = tag_variants(bcx.fcx.ccx, tid); for (ast.variant variant in variants) { // Perform type substitution on the raw variant types. let vec[@ty.t] raw_tys = variant_types(bcx.fcx.ccx, variant); let vec[@ty.t] tys = vec(); for (@ty.t raw_ty in raw_tys) { auto t = ty.substitute_ty_params(ty_params, tps, raw_ty); tys += vec(t); } auto rslt = align_elements(bcx, tys); bcx = rslt.bcx; auto this_size = rslt.val; auto old_max_size = bcx.build.Load(max_size); bcx.build.Store(umax(bcx, this_size, old_max_size), max_size); } auto max_size_val = bcx.build.Load(max_size); auto total_size = bcx.build.Add(max_size_val, llsize_of(T_int())); ret res(bcx, total_size); } } } fn dynamic_align_of(@block_ctxt cx, @ty.t t) -> result { alt (t.struct) { case (ty.ty_param(?p)) { auto aptr = field_of_tydesc(cx, t, abi.tydesc_field_align); ret res(aptr.bcx, aptr.bcx.build.Load(aptr.val)); } case (ty.ty_tup(?elts)) { auto a = C_int(1); auto bcx = cx; for (ty.mt e in elts) { auto align = align_of(bcx, e.ty); bcx = align.bcx; a = umax(bcx, a, align.val); } ret res(bcx, a); } case (ty.ty_rec(?flds)) { auto a = C_int(1); auto bcx = cx; for (ty.field f in flds) { auto align = align_of(bcx, f.mt.ty); bcx = align.bcx; a = umax(bcx, a, align.val); } ret res(bcx, a); } case (ty.ty_tag(_, _)) { ret res(cx, C_int(1)); // FIXME: stub } } } // Replacement for the LLVM 'GEP' instruction when field-indexing into a // tuple-like structure (tup, rec) with a static index. This one is driven off // ty.struct and knows what to do when it runs into a ty_param stuck in the // middle of the thing it's GEP'ing into. Much like size_of and align_of, // above. fn GEP_tup_like(@block_ctxt cx, @ty.t t, ValueRef base, vec[int] ixs) -> result { check (ty.type_is_tup_like(t)); // It might be a static-known type. Handle this. if (! ty.type_has_dynamic_size(t)) { let vec[ValueRef] v = vec(); for (int i in ixs) { v += vec(C_int(i)); } ret res(cx, cx.build.GEP(base, v)); } // It is a dynamic-containing type that, if we convert directly to an LLVM // TypeRef, will be all wrong; there's no proper LLVM type to represent // it, and the lowering function will stick in i8* values for each // ty_param, which is not right; the ty_params are all of some dynamic // size. // // What we must do instead is sadder. We must look through the indices // manually and split the input type into a prefix and a target. We then // measure the prefix size, bump the input pointer by that amount, and // cast to a pointer-to-target type. // Given a type, an index vector and an element number N in that vector, // calculate index X and the type that results by taking the first X-1 // elements of the type and splitting the Xth off. Return the prefix as // well as the innermost Xth type. fn split_type(@ty.t t, vec[int] ixs, uint n) -> rec(vec[@ty.t] prefix, @ty.t target) { let uint len = _vec.len[int](ixs); // We don't support 0-index or 1-index GEPs. The former is nonsense // and the latter would only be meaningful if we supported non-0 // values for the 0th index (we don't). check (len > 1u); if (n == 0u) { // Since we're starting from a value that's a pointer to a // *single* structure, the first index (in GEP-ese) should just be // 0, to yield the pointee. check (ixs.(n) == 0); ret split_type(t, ixs, n+1u); } check (n < len); let int ix = ixs.(n); let vec[@ty.t] prefix = vec(); let int i = 0; while (i < ix) { _vec.push[@ty.t](prefix, ty.get_element_type(t, i as uint)); i += 1 ; } auto selected = ty.get_element_type(t, i as uint); if (n == len-1u) { // We are at the innermost index. ret rec(prefix=prefix, target=selected); } else { // Not the innermost index; call self recursively to dig deeper. // Once we get an inner result, append it current prefix and // return to caller. auto inner = split_type(selected, ixs, n+1u); prefix += inner.prefix; ret rec(prefix=prefix with inner); } } // We make a fake prefix tuple-type here; luckily for measuring sizes // the tuple parens are associative so it doesn't matter that we've // flattened the incoming structure. auto s = split_type(t, ixs, 0u); auto prefix_ty = ty.plain_tup_ty(s.prefix); auto bcx = cx; auto sz = size_of(bcx, prefix_ty); bcx = sz.bcx; auto raw = bcx.build.PointerCast(base, T_ptr(T_i8())); auto bumped = bcx.build.GEP(raw, vec(sz.val)); if (ty.type_has_dynamic_size(s.target)) { ret res(bcx, bumped); } auto typ = T_ptr(type_of(bcx.fcx.ccx, s.target)); ret res(bcx, bcx.build.PointerCast(bumped, typ)); } // Replacement for the LLVM 'GEP' instruction when field indexing into a tag. // This function uses GEP_tup_like() above and automatically performs casts as // appropriate. @llblobptr is the data part of a tag value; its actual type is // meaningless, as it will be cast away. fn GEP_tag(@block_ctxt cx, ValueRef llblobptr, &ast.def_id tag_id, &ast.def_id variant_id, vec[@ty.t] ty_substs, int ix) -> result { auto ty_params = tag_ty_params(cx.fcx.ccx, tag_id); auto variant = tag_variant_with_id(cx.fcx.ccx, tag_id, variant_id); // Synthesize a tuple type so that GEP_tup_like() can work its magic. // Separately, store the type of the element we're interested in. auto arg_tys = arg_tys_of_fn(variant.ann); auto elem_ty = ty.plain_ty(ty.ty_nil); // typestate infelicity auto i = 0; let vec[@ty.t] true_arg_tys = vec(); for (ty.arg a in arg_tys) { auto arg_ty = ty.substitute_ty_params(ty_params, ty_substs, a.ty); true_arg_tys += vec(arg_ty); if (i == ix) { elem_ty = arg_ty; } i += 1; } auto tup_ty = ty.plain_tup_ty(true_arg_tys); // Cast the blob pointer to the appropriate type, if we need to (i.e. if // the blob pointer isn't dynamically sized). let ValueRef llunionptr; if (!ty.type_has_dynamic_size(tup_ty)) { auto llty = type_of(cx.fcx.ccx, tup_ty); llunionptr = cx.build.TruncOrBitCast(llblobptr, T_ptr(llty)); } else { llunionptr = llblobptr; } // Do the GEP_tup_like(). auto rslt = GEP_tup_like(cx, tup_ty, llunionptr, vec(0, ix)); // Cast the result to the appropriate type, if necessary. auto val; if (!ty.type_has_dynamic_size(elem_ty)) { auto llelemty = type_of(rslt.bcx.fcx.ccx, elem_ty); val = rslt.bcx.build.PointerCast(rslt.val, T_ptr(llelemty)); } else { val = rslt.val; } ret res(rslt.bcx, val); } fn trans_raw_malloc(@block_ctxt cx, TypeRef llptr_ty, ValueRef llsize) -> result { // FIXME: need a table to collect tydesc globals. auto tydesc = C_int(0); auto rslt = trans_upcall(cx, "upcall_malloc", vec(llsize, tydesc)); rslt = res(rslt.bcx, vi2p(cx, rslt.val, llptr_ty)); ret rslt; } fn trans_malloc_boxed(@block_ctxt cx, @ty.t t) -> result { // Synthesize a fake box type structurally so we have something // to measure the size of. auto boxed_body = ty.plain_tup_ty(vec(plain_ty(ty.ty_int), t)); auto box_ptr = ty.plain_box_ty(t); auto sz = size_of(cx, boxed_body); auto llty = type_of(cx.fcx.ccx, box_ptr); ret trans_raw_malloc(sz.bcx, llty, sz.val); } // Type descriptor and type glue stuff // Given a type and a field index into its corresponding type descriptor, // returns an LLVM ValueRef of that field from the tydesc, generating the // tydesc if necessary. fn field_of_tydesc(@block_ctxt cx, @ty.t t, int field) -> result { auto tydesc = get_tydesc(cx, t); ret res(tydesc.bcx, tydesc.bcx.build.GEP(tydesc.val, vec(C_int(0), C_int(field)))); } // Given a type containing ty params, build a vector containing a ValueRef for // each of the ty params it uses (from the current frame), as well as a vec // containing a def_id for each such param. This is used solely for // constructing derived tydescs. fn linearize_ty_params(@block_ctxt cx, @ty.t t) -> tup(vec[ast.def_id], vec[ValueRef]) { let vec[ValueRef] param_vals = vec(); let vec[ast.def_id] param_defs = vec(); type rr = rec(@block_ctxt cx, mutable vec[ValueRef] vals, mutable vec[ast.def_id] defs); state obj folder(@rr r) { fn fold_simple_ty(@ty.t t) -> @ty.t { alt(t.struct) { case (ty.ty_param(?pid)) { let bool seen = false; for (ast.def_id d in r.defs) { if (d == pid) { seen = true; } } if (!seen) { r.vals += vec(r.cx.fcx.lltydescs.get(pid)); r.defs += vec(pid); } } case (_) { } } ret t; } } auto x = @rec(cx = cx, mutable vals = param_vals, mutable defs = param_defs); ty.fold_ty(folder(x), t); ret tup(x.defs, x.vals); } fn get_tydesc(&@block_ctxt cx, @ty.t t) -> result { // Is the supplied type a type param? If so, return the passed-in tydesc. alt (ty.type_param(t)) { case (some[ast.def_id](?id)) { check (cx.fcx.lltydescs.contains_key(id)); ret res(cx, cx.fcx.lltydescs.get(id)); } case (none[ast.def_id]) { /* fall through */ } } // Does it contain a type param? If so, generate a derived tydesc. let uint n_params = ty.count_ty_params(t); if (ty.count_ty_params(t) > 0u) { auto tys = linearize_ty_params(cx, t); check (n_params == _vec.len[ast.def_id](tys._0)); check (n_params == _vec.len[ValueRef](tys._1)); if (!cx.fcx.ccx.tydescs.contains_key(t)) { declare_tydesc(cx.fcx.ccx, t); define_tydesc(cx.fcx.ccx, t, tys._0); } auto root = cx.fcx.ccx.tydescs.get(t).tydesc; auto tydescs = cx.build.Alloca(T_array(T_ptr(T_tydesc(cx.fcx.ccx.tn)), n_params)); auto i = 0; auto tdp = cx.build.GEP(tydescs, vec(C_int(0), C_int(i))); cx.build.Store(root, tdp); i += 1; for (ValueRef td in tys._1) { auto tdp = cx.build.GEP(tydescs, vec(C_int(0), C_int(i))); cx.build.Store(td, tdp); i += 1; } auto bcx = cx; auto sz = size_of(bcx, t); bcx = sz.bcx; auto align = align_of(bcx, t); bcx = align.bcx; auto v = trans_upcall(bcx, "upcall_get_type_desc", vec(p2i(bcx.fcx.ccx.crate_ptr), sz.val, align.val, C_int((1u + n_params) as int), vp2i(bcx, tydescs))); ret res(v.bcx, vi2p(v.bcx, v.val, T_ptr(T_tydesc(cx.fcx.ccx.tn)))); } // Otherwise, generate a tydesc if necessary, and return it. if (!cx.fcx.ccx.tydescs.contains_key(t)) { let vec[ast.def_id] defs = vec(); declare_tydesc(cx.fcx.ccx, t); define_tydesc(cx.fcx.ccx, t, defs); } ret res(cx, cx.fcx.ccx.tydescs.get(t).tydesc); } // Generates the declaration for (but doesn't fill in) a type descriptor. This // needs to be separate from make_tydesc() below, because sometimes type glue // functions needs to refer to their own type descriptors. fn declare_tydesc(@crate_ctxt cx, @ty.t t) { auto take_glue = declare_generic_glue(cx, t, "take"); auto drop_glue = declare_generic_glue(cx, t, "drop"); auto llsize; auto llalign; if (!ty.type_has_dynamic_size(t)) { auto llty = type_of(cx, t); llsize = llsize_of(llty); llalign = llalign_of(llty); } else { // These will be overwritten as the derived tydesc is generated, so // we create placeholder values. llsize = C_int(0); llalign = C_int(0); } auto glue_fn_ty = T_ptr(T_glue_fn(cx.tn)); // FIXME: this adjustment has to do with the ridiculous encoding of // glue-pointer-constants in the tydesc records: They are tydesc-relative // displacements. This is purely for compatibility with rustboot and // should go when it is discarded. fn off(ValueRef tydescp, ValueRef gluefn) -> ValueRef { ret i2p(llvm.LLVMConstSub(p2i(gluefn), p2i(tydescp)), val_ty(gluefn)); } auto name = sanitize(cx.names.next("tydesc_" + ty.ty_to_str(t))); auto gvar = llvm.LLVMAddGlobal(cx.llmod, T_tydesc(cx.tn), _str.buf(name)); auto tydesc = C_struct(vec(C_null(T_ptr(T_ptr(T_tydesc(cx.tn)))), llsize, llalign, off(gvar, take_glue), // take_glue_off off(gvar, drop_glue), // drop_glue_off C_null(glue_fn_ty), // free_glue_off C_null(glue_fn_ty), // sever_glue_off C_null(glue_fn_ty), // mark_glue_off C_null(glue_fn_ty), // obj_drop_glue_off C_null(glue_fn_ty))); // is_stateful llvm.LLVMSetInitializer(gvar, tydesc); llvm.LLVMSetGlobalConstant(gvar, True); llvm.LLVMSetLinkage(gvar, lib.llvm.LLVMPrivateLinkage as llvm.Linkage); auto info = rec( tydesc=gvar, take_glue=take_glue, drop_glue=drop_glue ); cx.tydescs.insert(t, @info); } // declare_tydesc() above must have been called first. fn define_tydesc(@crate_ctxt cx, @ty.t t, vec[ast.def_id] typaram_defs) { auto info = cx.tydescs.get(t); auto gvar = info.tydesc; auto tg = make_take_glue; auto take_glue = make_generic_glue(cx, t, info.take_glue, tg, typaram_defs); auto dg = make_drop_glue; auto drop_glue = make_generic_glue(cx, t, info.drop_glue, dg, typaram_defs); } fn declare_generic_glue(@crate_ctxt cx, @ty.t t, str name) -> ValueRef { auto llfnty = T_glue_fn(cx.tn); auto fn_name = cx.names.next("_rust_" + name) + sep() + ty.ty_to_str(t); fn_name = sanitize(fn_name); auto llfn = decl_fastcall_fn(cx.llmod, fn_name, llfnty); llvm.LLVMSetLinkage(llfn, lib.llvm.LLVMPrivateLinkage as llvm.Linkage); ret llfn; } fn make_generic_glue(@crate_ctxt cx, @ty.t t, ValueRef llfn, val_and_ty_fn helper, vec[ast.def_id] typaram_defs) -> ValueRef { auto fcx = new_fn_ctxt(cx, llfn); auto bcx = new_top_block_ctxt(fcx); auto re; if (!ty.type_is_scalar(t)) { auto llty; if (ty.type_has_dynamic_size(t)) { llty = T_ptr(T_i8()); } else if (ty.type_is_structural(t)) { llty = T_ptr(type_of(cx, t)); } else { llty = type_of(cx, t); } auto lltyparams = llvm.LLVMGetParam(llfn, 3u); auto p = 0; for (ast.def_id d in typaram_defs) { auto llparam = bcx.build.GEP(lltyparams, vec(C_int(p))); llparam = bcx.build.Load(llparam); bcx.fcx.lltydescs.insert(d, llparam); p += 1; } auto llrawptr = llvm.LLVMGetParam(llfn, 4u); auto llval = bcx.build.BitCast(llrawptr, llty); re = helper(bcx, llval, t); } else { re = res(bcx, C_nil()); } re.bcx.build.RetVoid(); ret llfn; } fn make_take_glue(@block_ctxt cx, ValueRef v, @ty.t t) -> result { if (ty.type_is_boxed(t)) { ret incr_refcnt_of_boxed(cx, v); } else if (ty.type_is_structural(t)) { ret iter_structural_ty(cx, v, t, bind incr_all_refcnts(_, _, _)); } ret res(cx, C_nil()); } fn incr_refcnt_of_boxed(@block_ctxt cx, ValueRef box_ptr) -> result { auto rc_ptr = cx.build.GEP(box_ptr, vec(C_int(0), C_int(abi.box_rc_field_refcnt))); auto rc = cx.build.Load(rc_ptr); auto rc_adj_cx = new_sub_block_ctxt(cx, "rc++"); auto next_cx = new_sub_block_ctxt(cx, "next"); auto const_test = cx.build.ICmp(lib.llvm.LLVMIntEQ, C_int(abi.const_refcount as int), rc); cx.build.CondBr(const_test, next_cx.llbb, rc_adj_cx.llbb); rc = rc_adj_cx.build.Add(rc, C_int(1)); rc_adj_cx.build.Store(rc, rc_ptr); rc_adj_cx.build.Br(next_cx.llbb); ret res(next_cx, C_nil()); } fn make_drop_glue(@block_ctxt cx, ValueRef v, @ty.t t) -> result { alt (t.struct) { case (ty.ty_str) { ret decr_refcnt_and_if_zero (cx, v, bind trans_non_gc_free(_, v), "free string", T_int(), C_int(0)); } case (ty.ty_vec(_)) { fn hit_zero(@block_ctxt cx, ValueRef v, @ty.t t) -> result { auto res = iter_sequence(cx, v, t, bind drop_ty(_,_,_)); // FIXME: switch gc/non-gc on layer of the type. ret trans_non_gc_free(res.bcx, v); } ret decr_refcnt_and_if_zero(cx, v, bind hit_zero(_, v, t), "free vector", T_int(), C_int(0)); } case (ty.ty_box(?body_mt)) { fn hit_zero(@block_ctxt cx, ValueRef v, @ty.t body_ty) -> result { auto body = cx.build.GEP(v, vec(C_int(0), C_int(abi.box_rc_field_body))); auto body_val = load_scalar_or_boxed(cx, body, body_ty); auto res = drop_ty(cx, body_val, body_ty); // FIXME: switch gc/non-gc on layer of the type. ret trans_non_gc_free(res.bcx, v); } ret decr_refcnt_and_if_zero(cx, v, bind hit_zero(_, v, body_mt.ty), "free box", T_int(), C_int(0)); } case (ty.ty_obj(_)) { fn hit_zero(@block_ctxt cx, ValueRef v) -> result { // Call through the obj's own fields-drop glue first. auto body = cx.build.GEP(v, vec(C_int(0), C_int(abi.box_rc_field_body))); auto tydescptr = cx.build.GEP(body, vec(C_int(0), C_int(abi.obj_body_elt_tydesc))); call_tydesc_glue_full(cx, body, cx.build.Load(tydescptr), abi.tydesc_field_drop_glue_off); // Then free the body. // FIXME: switch gc/non-gc on layer of the type. ret trans_non_gc_free(cx, v); } auto box_cell = cx.build.GEP(v, vec(C_int(0), C_int(abi.obj_field_box))); auto boxptr = cx.build.Load(box_cell); ret decr_refcnt_and_if_zero(cx, boxptr, bind hit_zero(_, boxptr), "free obj", T_int(), C_int(0)); } case (ty.ty_fn(_,_,_)) { fn hit_zero(@block_ctxt cx, ValueRef v) -> result { // Call through the closure's own fields-drop glue first. auto body = cx.build.GEP(v, vec(C_int(0), C_int(abi.box_rc_field_body))); auto bindings = cx.build.GEP(body, vec(C_int(0), C_int(abi.closure_elt_bindings))); auto tydescptr = cx.build.GEP(body, vec(C_int(0), C_int(abi.closure_elt_tydesc))); call_tydesc_glue_full(cx, bindings, cx.build.Load(tydescptr), abi.tydesc_field_drop_glue_off); // Then free the body. // FIXME: switch gc/non-gc on layer of the type. ret trans_non_gc_free(cx, v); } auto box_cell = cx.build.GEP(v, vec(C_int(0), C_int(abi.fn_field_box))); auto boxptr = cx.build.Load(box_cell); ret decr_refcnt_and_if_zero(cx, boxptr, bind hit_zero(_, boxptr), "free fn", T_int(), C_int(0)); } case (_) { if (ty.type_is_structural(t)) { ret iter_structural_ty(cx, v, t, bind drop_ty(_, _, _)); } else if (ty.type_is_scalar(t) || ty.type_is_native(t) || ty.type_is_nil(t)) { ret res(cx, C_nil()); } } } cx.fcx.ccx.sess.bug("bad type in trans.make_drop_glue_inner: " + ty.ty_to_str(t)); fail; } fn decr_refcnt_and_if_zero(@block_ctxt cx, ValueRef box_ptr, fn(@block_ctxt cx) -> result inner, str inner_name, TypeRef t_else, ValueRef v_else) -> result { auto load_rc_cx = new_sub_block_ctxt(cx, "load rc"); auto rc_adj_cx = new_sub_block_ctxt(cx, "rc--"); auto inner_cx = new_sub_block_ctxt(cx, inner_name); auto next_cx = new_sub_block_ctxt(cx, "next"); auto null_test = cx.build.IsNull(box_ptr); cx.build.CondBr(null_test, next_cx.llbb, load_rc_cx.llbb); auto rc_ptr = load_rc_cx.build.GEP(box_ptr, vec(C_int(0), C_int(abi.box_rc_field_refcnt))); auto rc = load_rc_cx.build.Load(rc_ptr); auto const_test = load_rc_cx.build.ICmp(lib.llvm.LLVMIntEQ, C_int(abi.const_refcount as int), rc); load_rc_cx.build.CondBr(const_test, next_cx.llbb, rc_adj_cx.llbb); rc = rc_adj_cx.build.Sub(rc, C_int(1)); rc_adj_cx.build.Store(rc, rc_ptr); auto zero_test = rc_adj_cx.build.ICmp(lib.llvm.LLVMIntEQ, C_int(0), rc); rc_adj_cx.build.CondBr(zero_test, inner_cx.llbb, next_cx.llbb); auto inner_res = inner(inner_cx); inner_res.bcx.build.Br(next_cx.llbb); auto phi = next_cx.build.Phi(t_else, vec(v_else, v_else, v_else, inner_res.val), vec(cx.llbb, load_rc_cx.llbb, rc_adj_cx.llbb, inner_res.bcx.llbb)); ret res(next_cx, phi); } // Tag information fn variant_types(@crate_ctxt cx, &ast.variant v) -> vec[@ty.t] { let vec[@ty.t] tys = vec(); alt (ty.ann_to_type(v.ann).struct) { case (ty.ty_fn(_, ?args, _)) { for (ty.arg arg in args) { tys += vec(arg.ty); } } case (ty.ty_tag(_, _)) { /* nothing */ } case (_) { fail; } } ret tys; } // Returns the type parameters of a tag. fn tag_ty_params(@crate_ctxt cx, ast.def_id id) -> vec[ast.ty_param] { check (cx.items.contains_key(id)); alt (cx.items.get(id).node) { case (ast.item_tag(_, _, ?tps, _)) { ret tps; } } fail; // not reached } // Returns the variants in a tag. fn tag_variants(@crate_ctxt cx, ast.def_id id) -> vec[ast.variant] { check (cx.items.contains_key(id)); alt (cx.items.get(id).node) { case (ast.item_tag(_, ?variants, _, _)) { ret variants; } } fail; // not reached } // Returns the tag variant with the given ID. fn tag_variant_with_id(@crate_ctxt cx, &ast.def_id tag_id, &ast.def_id variant_id) -> ast.variant { auto variants = tag_variants(cx, tag_id); auto i = 0u; while (i < _vec.len[ast.variant](variants)) { auto variant = variants.(i); if (common.def_eq(variant.id, variant_id)) { ret variant; } i += 1u; } log "tag_variant_with_id(): no variant exists with that ID"; fail; } // Returns a new plain tag type of the given ID with no type parameters. Don't // use this function in new code; it's a hack to keep things working for now. fn mk_plain_tag(ast.def_id tid) -> @ty.t { let vec[@ty.t] tps = vec(); ret ty.plain_ty(ty.ty_tag(tid, tps)); } type val_pair_fn = fn(@block_ctxt cx, ValueRef dst, ValueRef src) -> result; type val_and_ty_fn = fn(@block_ctxt cx, ValueRef v, @ty.t t) -> result; type val_pair_and_ty_fn = fn(@block_ctxt cx, ValueRef av, ValueRef bv, @ty.t t) -> result; // Iterates through the elements of a structural type. fn iter_structural_ty(@block_ctxt cx, ValueRef v, @ty.t t, val_and_ty_fn f) -> result { fn adaptor_fn(val_and_ty_fn f, @block_ctxt cx, ValueRef av, ValueRef bv, @ty.t t) -> result { ret f(cx, av, t); } be iter_structural_ty_full(cx, v, v, t, bind adaptor_fn(f, _, _, _, _)); } fn iter_structural_ty_full(@block_ctxt cx, ValueRef av, ValueRef bv, @ty.t t, val_pair_and_ty_fn f) -> result { let result r = res(cx, C_nil()); fn iter_boxpp(@block_ctxt cx, ValueRef box_a_cell, ValueRef box_b_cell, val_pair_and_ty_fn f) -> result { auto box_a_ptr = cx.build.Load(box_a_cell); auto box_b_ptr = cx.build.Load(box_b_cell); auto tnil = plain_ty(ty.ty_nil); auto tbox = ty.plain_box_ty(tnil); auto inner_cx = new_sub_block_ctxt(cx, "iter box"); auto next_cx = new_sub_block_ctxt(cx, "next"); auto null_test = cx.build.IsNull(box_a_ptr); cx.build.CondBr(null_test, next_cx.llbb, inner_cx.llbb); auto r = f(inner_cx, box_a_ptr, box_b_ptr, tbox); r.bcx.build.Br(next_cx.llbb); ret res(next_cx, r.val); } alt (t.struct) { case (ty.ty_tup(?args)) { let int i = 0; for (ty.mt arg in args) { r = GEP_tup_like(r.bcx, t, av, vec(0, i)); auto elt_a = r.val; r = GEP_tup_like(r.bcx, t, bv, vec(0, i)); auto elt_b = r.val; r = f(r.bcx, load_scalar_or_boxed(r.bcx, elt_a, arg.ty), load_scalar_or_boxed(r.bcx, elt_b, arg.ty), arg.ty); i += 1; } } case (ty.ty_rec(?fields)) { let int i = 0; for (ty.field fld in fields) { r = GEP_tup_like(r.bcx, t, av, vec(0, i)); auto llfld_a = r.val; r = GEP_tup_like(r.bcx, t, bv, vec(0, i)); auto llfld_b = r.val; r = f(r.bcx, load_scalar_or_boxed(r.bcx, llfld_a, fld.mt.ty), load_scalar_or_boxed(r.bcx, llfld_b, fld.mt.ty), fld.mt.ty); i += 1; } } case (ty.ty_tag(?tid, ?tps)) { auto variants = tag_variants(cx.fcx.ccx, tid); auto n_variants = _vec.len[ast.variant](variants); // Cast the tags to types we can GEP into. auto lltagty = T_opaque_tag_ptr(cx.fcx.ccx.tn); auto av_tag = cx.build.PointerCast(av, lltagty); auto bv_tag = cx.build.PointerCast(bv, lltagty); auto lldiscrim_a_ptr = cx.build.GEP(av_tag, vec(C_int(0), C_int(0))); auto llunion_a_ptr = cx.build.GEP(av_tag, vec(C_int(0), C_int(1))); auto lldiscrim_a = cx.build.Load(lldiscrim_a_ptr); auto lldiscrim_b_ptr = cx.build.GEP(bv_tag, vec(C_int(0), C_int(0))); auto llunion_b_ptr = cx.build.GEP(bv_tag, vec(C_int(0), C_int(1))); auto lldiscrim_b = cx.build.Load(lldiscrim_b_ptr); // NB: we must hit the discriminant first so that structural // comparison know not to proceed when the discriminants differ. auto bcx = cx; bcx = f(bcx, lldiscrim_a, lldiscrim_b, plain_ty(ty.ty_int)).bcx; auto unr_cx = new_sub_block_ctxt(bcx, "tag-iter-unr"); unr_cx.build.Unreachable(); auto llswitch = bcx.build.Switch(lldiscrim_a, unr_cx.llbb, n_variants); auto next_cx = new_sub_block_ctxt(bcx, "tag-iter-next"); auto ty_params = tag_ty_params(bcx.fcx.ccx, tid); auto i = 0u; for (ast.variant variant in variants) { auto variant_cx = new_sub_block_ctxt(bcx, "tag-iter-variant-" + _uint.to_str(i, 10u)); llvm.LLVMAddCase(llswitch, C_int(i as int), variant_cx.llbb); if (_vec.len[ast.variant_arg](variant.args) > 0u) { // N-ary variant. auto fn_ty = ty.ann_to_type(variants.(i).ann); alt (fn_ty.struct) { case (ty.ty_fn(_, ?args, _)) { auto j = 0; for (ty.arg a in args) { auto v = vec(C_int(0), C_int(j as int)); auto rslt = GEP_tag(variant_cx, llunion_a_ptr, tid, variants.(i).id, tps, j); auto llfldp_a = rslt.val; variant_cx = rslt.bcx; rslt = GEP_tag(variant_cx, llunion_b_ptr, tid, variants.(i).id, tps, j); auto llfldp_b = rslt.val; variant_cx = rslt.bcx; auto ty_subst = ty.substitute_ty_params( ty_params, tps, a.ty); auto llfld_a = load_scalar_or_boxed(variant_cx, llfldp_a, ty_subst); auto llfld_b = load_scalar_or_boxed(variant_cx, llfldp_b, ty_subst); auto res = f(variant_cx, llfld_a, llfld_b, ty_subst); variant_cx = res.bcx; j += 1; } } case (_) { fail; } } variant_cx.build.Br(next_cx.llbb); } else { // Nullary variant; nothing to do. variant_cx.build.Br(next_cx.llbb); } i += 1u; } ret res(next_cx, C_nil()); } case (ty.ty_fn(_,_,_)) { auto box_cell_a = cx.build.GEP(av, vec(C_int(0), C_int(abi.fn_field_box))); auto box_cell_b = cx.build.GEP(bv, vec(C_int(0), C_int(abi.fn_field_box))); ret iter_boxpp(cx, box_cell_a, box_cell_b, f); } case (ty.ty_obj(_)) { auto box_cell_a = cx.build.GEP(av, vec(C_int(0), C_int(abi.obj_field_box))); auto box_cell_b = cx.build.GEP(bv, vec(C_int(0), C_int(abi.obj_field_box))); ret iter_boxpp(cx, box_cell_a, box_cell_b, f); } case (_) { cx.fcx.ccx.sess.unimpl("type in iter_structural_ty_full"); } } ret r; } // Iterates through a pointer range, until the src* hits the src_lim*. fn iter_sequence_raw(@block_ctxt cx, ValueRef dst, // elt* ValueRef src, // elt* ValueRef src_lim, // elt* ValueRef elt_sz, val_pair_fn f) -> result { auto bcx = cx; let ValueRef dst_int = vp2i(bcx, dst); let ValueRef src_int = vp2i(bcx, src); let ValueRef src_lim_int = vp2i(bcx, src_lim); auto cond_cx = new_scope_block_ctxt(cx, "sequence-iter cond"); auto body_cx = new_scope_block_ctxt(cx, "sequence-iter body"); auto next_cx = new_sub_block_ctxt(cx, "next"); bcx.build.Br(cond_cx.llbb); let ValueRef dst_curr = cond_cx.build.Phi(T_int(), vec(dst_int), vec(bcx.llbb)); let ValueRef src_curr = cond_cx.build.Phi(T_int(), vec(src_int), vec(bcx.llbb)); auto end_test = cond_cx.build.ICmp(lib.llvm.LLVMIntULT, src_curr, src_lim_int); cond_cx.build.CondBr(end_test, body_cx.llbb, next_cx.llbb); auto dst_curr_ptr = vi2p(body_cx, dst_curr, T_ptr(T_i8())); auto src_curr_ptr = vi2p(body_cx, src_curr, T_ptr(T_i8())); auto body_res = f(body_cx, dst_curr_ptr, src_curr_ptr); body_cx = body_res.bcx; auto dst_next = body_cx.build.Add(dst_curr, elt_sz); auto src_next = body_cx.build.Add(src_curr, elt_sz); body_cx.build.Br(cond_cx.llbb); cond_cx.build.AddIncomingToPhi(dst_curr, vec(dst_next), vec(body_cx.llbb)); cond_cx.build.AddIncomingToPhi(src_curr, vec(src_next), vec(body_cx.llbb)); ret res(next_cx, C_nil()); } fn iter_sequence_inner(@block_ctxt cx, ValueRef src, // elt* ValueRef src_lim, // elt* @ty.t elt_ty, val_and_ty_fn f) -> result { fn adaptor_fn(val_and_ty_fn f, @ty.t elt_ty, @block_ctxt cx, ValueRef dst, ValueRef src) -> result { auto llptrty; if (!ty.type_has_dynamic_size(elt_ty)) { auto llty = type_of(cx.fcx.ccx, elt_ty); llptrty = T_ptr(llty); } else { llptrty = T_ptr(T_ptr(T_i8())); } auto p = cx.build.PointerCast(src, llptrty); ret f(cx, load_scalar_or_boxed(cx, p, elt_ty), elt_ty); } auto elt_sz = size_of(cx, elt_ty); be iter_sequence_raw(elt_sz.bcx, src, src, src_lim, elt_sz.val, bind adaptor_fn(f, elt_ty, _, _, _)); } // Iterates through the elements of a vec or str. fn iter_sequence(@block_ctxt cx, ValueRef v, @ty.t t, val_and_ty_fn f) -> result { fn iter_sequence_body(@block_ctxt cx, ValueRef v, @ty.t elt_ty, val_and_ty_fn f, bool trailing_null) -> result { auto p0 = cx.build.GEP(v, vec(C_int(0), C_int(abi.vec_elt_data))); auto lenptr = cx.build.GEP(v, vec(C_int(0), C_int(abi.vec_elt_fill))); auto llunit_ty; if (ty.type_has_dynamic_size(elt_ty)) { llunit_ty = T_i8(); } else { llunit_ty = type_of(cx.fcx.ccx, elt_ty); } auto bcx = cx; auto len = bcx.build.Load(lenptr); if (trailing_null) { auto unit_sz = size_of(bcx, elt_ty); bcx = unit_sz.bcx; len = bcx.build.Sub(len, unit_sz.val); } auto p1 = vi2p(bcx, bcx.build.Add(vp2i(bcx, p0), len), T_ptr(llunit_ty)); ret iter_sequence_inner(cx, p0, p1, elt_ty, f); } alt (t.struct) { case (ty.ty_vec(?elt)) { ret iter_sequence_body(cx, v, elt.ty, f, false); } case (ty.ty_str) { auto et = plain_ty(ty.ty_machine(common.ty_u8)); ret iter_sequence_body(cx, v, et, f, true); } case (_) { fail; } } cx.fcx.ccx.sess.bug("bad type in trans.iter_sequence"); fail; } fn call_tydesc_glue_full(@block_ctxt cx, ValueRef v, ValueRef tydesc, int field) { auto llrawptr = cx.build.BitCast(v, T_ptr(T_i8())); auto lltydescs = cx.build.GEP(tydesc, vec(C_int(0), C_int(abi.tydesc_field_first_param))); lltydescs = cx.build.Load(lltydescs); auto llfnptr = cx.build.GEP(tydesc, vec(C_int(0), C_int(field))); auto llfn = cx.build.Load(llfnptr); // FIXME: this adjustment has to do with the ridiculous encoding of // glue-pointer-constants in the tydesc records: They are tydesc-relative // displacements. This is purely for compatibility with rustboot and // should go when it is discarded. llfn = vi2p(cx, cx.build.Add(vp2i(cx, llfn), vp2i(cx, tydesc)), val_ty(llfn)); cx.build.FastCall(llfn, vec(C_null(T_ptr(T_nil())), cx.fcx.lltaskptr, C_null(T_ptr(T_nil())), lltydescs, llrawptr)); } fn call_tydesc_glue(@block_ctxt cx, ValueRef v, @ty.t t, int field) { auto td = get_tydesc(cx, t); call_tydesc_glue_full(td.bcx, v, td.val, field); } fn incr_all_refcnts(@block_ctxt cx, ValueRef v, @ty.t t) -> result { if (!ty.type_is_scalar(t)) { call_tydesc_glue(cx, v, t, abi.tydesc_field_take_glue_off); } ret res(cx, C_nil()); } fn drop_slot(@block_ctxt cx, ValueRef slot, @ty.t t) -> result { auto llptr = load_scalar_or_boxed(cx, slot, t); auto re = drop_ty(cx, llptr, t); auto llty = val_ty(slot); auto llelemty = lib.llvm.llvm.LLVMGetElementType(llty); re.bcx.build.Store(C_null(llelemty), slot); ret re; } fn drop_ty(@block_ctxt cx, ValueRef v, @ty.t t) -> result { if (!ty.type_is_scalar(t)) { call_tydesc_glue(cx, v, t, abi.tydesc_field_drop_glue_off); } ret res(cx, C_nil()); } fn call_memcpy(@block_ctxt cx, ValueRef dst, ValueRef src, ValueRef n_bytes) -> result { auto src_ptr = cx.build.PointerCast(src, T_ptr(T_i8())); auto dst_ptr = cx.build.PointerCast(dst, T_ptr(T_i8())); auto size = cx.build.IntCast(n_bytes, T_int()); ret res(cx, cx.build.FastCall(cx.fcx.ccx.glues.memcpy_glue, vec(dst_ptr, src_ptr, size))); } fn call_bzero(@block_ctxt cx, ValueRef dst, ValueRef n_bytes) -> result { auto dst_ptr = cx.build.PointerCast(dst, T_ptr(T_i8())); auto size = cx.build.IntCast(n_bytes, T_int()); ret res(cx, cx.build.FastCall(cx.fcx.ccx.glues.bzero_glue, vec(dst_ptr, size))); } fn memcpy_ty(@block_ctxt cx, ValueRef dst, ValueRef src, @ty.t t) -> result { if (ty.type_has_dynamic_size(t)) { auto llszptr = field_of_tydesc(cx, t, abi.tydesc_field_size); auto llsz = llszptr.bcx.build.Load(llszptr.val); ret call_memcpy(llszptr.bcx, dst, src, llsz); } else { ret res(cx, cx.build.Store(cx.build.Load(src), dst)); } } tag copy_action { INIT; DROP_EXISTING; } fn copy_ty(@block_ctxt cx, copy_action action, ValueRef dst, ValueRef src, @ty.t t) -> result { if (ty.type_is_scalar(t) || ty.type_is_native(t)) { ret res(cx, cx.build.Store(src, dst)); } else if (ty.type_is_nil(t)) { ret res(cx, C_nil()); } else if (ty.type_is_boxed(t)) { auto r = incr_all_refcnts(cx, src, t); if (action == DROP_EXISTING) { r = drop_ty(r.bcx, r.bcx.build.Load(dst), t); } ret res(r.bcx, r.bcx.build.Store(src, dst)); } else if (ty.type_is_structural(t) || ty.type_has_dynamic_size(t)) { auto r = incr_all_refcnts(cx, src, t); if (action == DROP_EXISTING) { r = drop_ty(r.bcx, dst, t); } ret memcpy_ty(r.bcx, dst, src, t); } cx.fcx.ccx.sess.bug("unexpected type in trans.copy_ty: " + ty.ty_to_str(t)); fail; } fn trans_lit(@crate_ctxt cx, &ast.lit lit, &ast.ann ann) -> ValueRef { alt (lit.node) { case (ast.lit_int(?i)) { ret C_int(i); } case (ast.lit_uint(?u)) { ret C_int(u as int); } case (ast.lit_mach_int(?tm, ?i)) { // FIXME: the entire handling of mach types falls apart // if target int width is larger than host, at the moment; // re-do the mach-int types using 'big' when that works. auto t = T_int(); alt (tm) { case (common.ty_u8) { t = T_i8(); } case (common.ty_u16) { t = T_i16(); } case (common.ty_u32) { t = T_i32(); } case (common.ty_u64) { t = T_i64(); } case (common.ty_i8) { t = T_i8(); } case (common.ty_i16) { t = T_i16(); } case (common.ty_i32) { t = T_i32(); } case (common.ty_i64) { t = T_i64(); } } ret C_integral(i, t); } case (ast.lit_char(?c)) { ret C_integral(c as int, T_char()); } case (ast.lit_bool(?b)) { ret C_bool(b); } case (ast.lit_nil) { ret C_nil(); } case (ast.lit_str(?s)) { ret C_str(cx, s); } } } fn target_type(@crate_ctxt cx, @ty.t t) -> @ty.t { alt (t.struct) { case (ty.ty_int) { auto tm = ty.ty_machine(cx.sess.get_targ_cfg().int_type); ret @rec(struct=tm with *t); } case (ty.ty_uint) { auto tm = ty.ty_machine(cx.sess.get_targ_cfg().uint_type); ret @rec(struct=tm with *t); } case (_) { /* fall through */ } } ret t; } fn node_ann_type(@crate_ctxt cx, &ast.ann a) -> @ty.t { alt (a) { case (ast.ann_none) { cx.sess.bug("missing type annotation"); } case (ast.ann_type(?t, _)) { ret target_type(cx, t); } } } fn node_ann_ty_params(&ast.ann a) -> vec[@ty.t] { alt (a) { case (ast.ann_none) { log "missing type annotation"; fail; } case (ast.ann_type(_, ?tps_opt)) { alt (tps_opt) { case (none[vec[@ty.t]]) { log "type annotation has no ty params"; fail; } case (some[vec[@ty.t]](?tps)) { ret tps; } } } } } fn node_type(@crate_ctxt cx, &ast.ann a) -> TypeRef { ret type_of(cx, node_ann_type(cx, a)); } fn trans_unary(@block_ctxt cx, ast.unop op, @ast.expr e, &ast.ann a) -> result { auto sub = trans_expr(cx, e); alt (op) { case (ast.bitnot) { sub = autoderef(sub.bcx, sub.val, ty.expr_ty(e)); ret res(sub.bcx, sub.bcx.build.Not(sub.val)); } case (ast.not) { sub = autoderef(sub.bcx, sub.val, ty.expr_ty(e)); ret res(sub.bcx, sub.bcx.build.Not(sub.val)); } case (ast.neg) { sub = autoderef(sub.bcx, sub.val, ty.expr_ty(e)); ret res(sub.bcx, sub.bcx.build.Neg(sub.val)); } case (ast.box) { auto e_ty = ty.expr_ty(e); auto e_val = sub.val; auto box_ty = node_ann_type(sub.bcx.fcx.ccx, a); sub = trans_malloc_boxed(sub.bcx, e_ty); find_scope_cx(cx).cleanups += vec(clean(bind drop_ty(_, sub.val, box_ty))); auto box = sub.val; auto rc = sub.bcx.build.GEP(box, vec(C_int(0), C_int(abi.box_rc_field_refcnt))); auto body = sub.bcx.build.GEP(box, vec(C_int(0), C_int(abi.box_rc_field_body))); sub.bcx.build.Store(C_int(1), rc); // Cast the body type to the type of the value. This is needed to // make tags work, since tags have a different LLVM type depending // on whether they're boxed or not. if (!ty.type_has_dynamic_size(e_ty)) { auto llety = T_ptr(type_of(sub.bcx.fcx.ccx, e_ty)); body = sub.bcx.build.PointerCast(body, llety); } sub = copy_ty(sub.bcx, INIT, body, e_val, e_ty); ret res(sub.bcx, box); } case (ast.deref) { auto val = sub.bcx.build.GEP(sub.val, vec(C_int(0), C_int(abi.box_rc_field_body))); auto e_ty = node_ann_type(sub.bcx.fcx.ccx, a); if (ty.type_is_scalar(e_ty) || ty.type_is_nil(e_ty)) { val = sub.bcx.build.Load(val); } ret res(sub.bcx, val); } } fail; } fn trans_compare(@block_ctxt cx0, ast.binop op, @ty.t t0, ValueRef lhs0, ValueRef rhs0) -> result { auto cx = cx0; auto lhs_r = autoderef(cx, lhs0, t0); auto lhs = lhs_r.val; cx = lhs_r.bcx; auto rhs_r = autoderef(cx, rhs0, t0); auto rhs = rhs_r.val; cx = rhs_r.bcx; auto t = autoderefed_ty(t0); if (ty.type_is_scalar(t)) { ret res(cx, trans_scalar_compare(cx, op, t, lhs, rhs)); } else if (ty.type_is_structural(t) || ty.type_is_sequence(t)) { auto scx = new_sub_block_ctxt(cx, "structural compare start"); auto next = new_sub_block_ctxt(cx, "structural compare end"); cx.build.Br(scx.llbb); /* * We're doing lexicographic comparison here. We start with the * assumption that the two input elements are equal. Depending on * operator, this means that the result is either true or false; * equality produces 'true' for ==, <= and >=. It produces 'false' for * !=, < and >. * * We then move one element at a time through the structure checking * for pairwise element equality. If we have equality, our assumption * about overall sequence equality is not modified, so we have to move * to the next element. * * If we do not have pairwise element equality, we have reached an * element that 'decides' the lexicographic comparison. So we exit the * loop with a flag that indicates the true/false sense of that * decision, by testing the element again with the operator we're * interested in. * * When we're lucky, LLVM should be able to fold some of these two * tests together (as they're applied to the same operands and in some * cases are sometimes redundant). But we don't bother trying to * optimize combinations like that, at this level. */ auto flag = scx.build.Alloca(T_i1()); if (ty.type_is_sequence(t)) { // If we hit == all the way through the minimum-shared-length // section, default to judging the relative sequence lengths. auto len_cmp = trans_integral_compare(scx, op, plain_ty(ty.ty_uint), vec_fill(scx, lhs), vec_fill(scx, rhs)); scx.build.Store(len_cmp, flag); } else { auto T = C_integral(1, T_i1()); auto F = C_integral(0, T_i1()); alt (op) { // ==, <= and >= default to true if they find == all the way. case (ast.eq) { scx.build.Store(T, flag); } case (ast.le) { scx.build.Store(T, flag); } case (ast.ge) { scx.build.Store(T, flag); } case (_) { // < > default to false if they find == all the way. scx.build.Store(F, flag); } } } fn inner(@block_ctxt last_cx, bool load_inner, ValueRef flag, ast.binop op, @block_ctxt cx, ValueRef av0, ValueRef bv0, @ty.t t) -> result { auto cnt_cx = new_sub_block_ctxt(cx, "continue comparison"); auto stop_cx = new_sub_block_ctxt(cx, "stop comparison"); auto av = av0; auto bv = bv0; if (load_inner) { av = load_scalar_or_boxed(cx, av, t); bv = load_scalar_or_boxed(cx, bv, t); } // First 'eq' comparison: if so, continue to next elts. auto eq_r = trans_compare(cx, ast.eq, t, av, bv); eq_r.bcx.build.CondBr(eq_r.val, cnt_cx.llbb, stop_cx.llbb); // Second 'op' comparison: find out how this elt-pair decides. auto stop_r = trans_compare(stop_cx, op, t, av, bv); stop_r.bcx.build.Store(stop_r.val, flag); stop_r.bcx.build.Br(last_cx.llbb); ret res(cnt_cx, C_nil()); } auto r; if (ty.type_is_structural(t)) { r = iter_structural_ty_full(scx, lhs, rhs, t, bind inner(next, false, flag, op, _, _, _, _)); } else { auto lhs_p0 = vec_p0(scx, lhs); auto rhs_p0 = vec_p0(scx, rhs); auto min_len = umin(scx, vec_fill(scx, lhs), vec_fill(scx, rhs)); auto rhs_lim = scx.build.GEP(rhs_p0, vec(min_len)); auto elt_ty = ty.sequence_element_type(t); auto elt_llsz_r = size_of(scx, elt_ty); scx = elt_llsz_r.bcx; r = iter_sequence_raw(scx, lhs, rhs, rhs_lim, elt_llsz_r.val, bind inner(next, true, flag, op, _, _, _, elt_ty)); } r.bcx.build.Br(next.llbb); auto v = next.build.Load(flag); ret res(next, v); } else { // FIXME: compare obj, fn by pointer? cx.fcx.ccx.sess.unimpl("type in trans_compare"); ret res(cx, C_bool(false)); } } fn trans_scalar_compare(@block_ctxt cx, ast.binop op, @ty.t t, ValueRef lhs, ValueRef rhs) -> ValueRef { if (ty.type_is_fp(t)) { ret trans_fp_compare(cx, op, t, lhs, rhs); } else { ret trans_integral_compare(cx, op, t, lhs, rhs); } } fn trans_fp_compare(@block_ctxt cx, ast.binop op, @ty.t fptype, ValueRef lhs, ValueRef rhs) -> ValueRef { auto cmp = lib.llvm.LLVMIntEQ; alt (op) { // FIXME: possibly use the unordered-or-< predicates here, // for now we're only going with ordered-and-< style (no NaNs). case (ast.eq) { cmp = lib.llvm.LLVMRealOEQ; } case (ast.ne) { cmp = lib.llvm.LLVMRealONE; } case (ast.lt) { cmp = lib.llvm.LLVMRealOLT; } case (ast.gt) { cmp = lib.llvm.LLVMRealOGT; } case (ast.le) { cmp = lib.llvm.LLVMRealOLE; } case (ast.ge) { cmp = lib.llvm.LLVMRealOGE; } } ret cx.build.FCmp(cmp, lhs, rhs); } fn trans_integral_compare(@block_ctxt cx, ast.binop op, @ty.t intype, ValueRef lhs, ValueRef rhs) -> ValueRef { auto cmp = lib.llvm.LLVMIntEQ; alt (op) { case (ast.eq) { cmp = lib.llvm.LLVMIntEQ; } case (ast.ne) { cmp = lib.llvm.LLVMIntNE; } case (ast.lt) { if (ty.type_is_signed(intype)) { cmp = lib.llvm.LLVMIntSLT; } else { cmp = lib.llvm.LLVMIntULT; } } case (ast.le) { if (ty.type_is_signed(intype)) { cmp = lib.llvm.LLVMIntSLE; } else { cmp = lib.llvm.LLVMIntULE; } } case (ast.gt) { if (ty.type_is_signed(intype)) { cmp = lib.llvm.LLVMIntSGT; } else { cmp = lib.llvm.LLVMIntUGT; } } case (ast.ge) { if (ty.type_is_signed(intype)) { cmp = lib.llvm.LLVMIntSGE; } else { cmp = lib.llvm.LLVMIntUGE; } } } ret cx.build.ICmp(cmp, lhs, rhs); } fn trans_vec_append(@block_ctxt cx, @ty.t t, ValueRef lhs, ValueRef rhs) -> result { auto elt_ty = ty.sequence_element_type(t); auto skip_null = C_bool(false); alt (t.struct) { case (ty.ty_str) { skip_null = C_bool(true); } case (_) { } } auto bcx = cx; auto llvec_tydesc = get_tydesc(bcx, t); bcx = llvec_tydesc.bcx; auto llelt_tydesc = get_tydesc(bcx, elt_ty); bcx = llelt_tydesc.bcx; auto dst = bcx.build.PointerCast(lhs, T_ptr(T_opaque_vec_ptr())); auto src = bcx.build.PointerCast(rhs, T_opaque_vec_ptr()); ret res(bcx, bcx.build.FastCall(cx.fcx.ccx.glues.vec_append_glue, vec(cx.fcx.lltaskptr, llvec_tydesc.val, llelt_tydesc.val, dst, src, skip_null))); } fn trans_vec_add(@block_ctxt cx, @ty.t t, ValueRef lhs, ValueRef rhs) -> result { auto r = alloc_ty(cx, t); auto tmp = r.val; r = copy_ty(r.bcx, INIT, tmp, lhs, t); auto bcx = trans_vec_append(r.bcx, t, tmp, rhs).bcx; tmp = load_scalar_or_boxed(bcx, tmp, t); find_scope_cx(cx).cleanups += vec(clean(bind drop_ty(_, tmp, t))); ret res(bcx, tmp); } fn trans_eager_binop(@block_ctxt cx, ast.binop op, @ty.t intype, ValueRef lhs, ValueRef rhs) -> result { alt (op) { case (ast.add) { if (ty.type_is_sequence(intype)) { ret trans_vec_add(cx, intype, lhs, rhs); } ret res(cx, cx.build.Add(lhs, rhs)); } case (ast.sub) { ret res(cx, cx.build.Sub(lhs, rhs)); } case (ast.mul) { ret res(cx, cx.build.Mul(lhs, rhs)); } case (ast.div) { if (ty.type_is_signed(intype)) { ret res(cx, cx.build.SDiv(lhs, rhs)); } else { ret res(cx, cx.build.UDiv(lhs, rhs)); } } case (ast.rem) { if (ty.type_is_signed(intype)) { ret res(cx, cx.build.SRem(lhs, rhs)); } else { ret res(cx, cx.build.URem(lhs, rhs)); } } case (ast.bitor) { ret res(cx, cx.build.Or(lhs, rhs)); } case (ast.bitand) { ret res(cx, cx.build.And(lhs, rhs)); } case (ast.bitxor) { ret res(cx, cx.build.Xor(lhs, rhs)); } case (ast.lsl) { ret res(cx, cx.build.Shl(lhs, rhs)); } case (ast.lsr) { ret res(cx, cx.build.LShr(lhs, rhs)); } case (ast.asr) { ret res(cx, cx.build.AShr(lhs, rhs)); } case (_) { ret trans_compare(cx, op, intype, lhs, rhs); } } fail; } fn autoderef(@block_ctxt cx, ValueRef v, @ty.t t) -> result { let ValueRef v1 = v; let @ty.t t1 = t; while (true) { alt (t1.struct) { case (ty.ty_box(?mt)) { auto body = cx.build.GEP(v1, vec(C_int(0), C_int(abi.box_rc_field_body))); t1 = mt.ty; v1 = load_scalar_or_boxed(cx, body, t1); } case (_) { ret res(cx, v1); } } } } fn autoderefed_ty(@ty.t t) -> @ty.t { let @ty.t t1 = t; while (true) { alt (t1.struct) { case (ty.ty_box(?mt)) { t1 = mt.ty; } case (_) { ret t1; } } } } fn trans_binary(@block_ctxt cx, ast.binop op, @ast.expr a, @ast.expr b) -> result { // First couple cases are lazy: alt (op) { case (ast.and) { // Lazy-eval and auto lhs_res = trans_expr(cx, a); lhs_res = autoderef(lhs_res.bcx, lhs_res.val, ty.expr_ty(a)); auto rhs_cx = new_scope_block_ctxt(cx, "rhs"); auto rhs_res = trans_expr(rhs_cx, b); rhs_res = autoderef(rhs_res.bcx, rhs_res.val, ty.expr_ty(b)); auto lhs_false_cx = new_scope_block_ctxt(cx, "lhs false"); auto lhs_false_res = res(lhs_false_cx, C_bool(false)); lhs_res.bcx.build.CondBr(lhs_res.val, rhs_cx.llbb, lhs_false_cx.llbb); ret join_results(cx, T_bool(), vec(lhs_false_res, rhs_res)); } case (ast.or) { // Lazy-eval or auto lhs_res = trans_expr(cx, a); lhs_res = autoderef(lhs_res.bcx, lhs_res.val, ty.expr_ty(a)); auto rhs_cx = new_scope_block_ctxt(cx, "rhs"); auto rhs_res = trans_expr(rhs_cx, b); rhs_res = autoderef(rhs_res.bcx, rhs_res.val, ty.expr_ty(b)); auto lhs_true_cx = new_scope_block_ctxt(cx, "lhs true"); auto lhs_true_res = res(lhs_true_cx, C_bool(true)); lhs_res.bcx.build.CondBr(lhs_res.val, lhs_true_cx.llbb, rhs_cx.llbb); ret join_results(cx, T_bool(), vec(lhs_true_res, rhs_res)); } case (_) { // Remaining cases are eager: auto lhs = trans_expr(cx, a); auto lhty = ty.expr_ty(a); lhs = autoderef(lhs.bcx, lhs.val, lhty); auto rhs = trans_expr(lhs.bcx, b); auto rhty = ty.expr_ty(b); rhs = autoderef(rhs.bcx, rhs.val, rhty); ret trans_eager_binop(rhs.bcx, op, autoderefed_ty(lhty), lhs.val, rhs.val); } } fail; } fn join_results(@block_ctxt parent_cx, TypeRef t, vec[result] ins) -> result { let vec[result] live = vec(); let vec[ValueRef] vals = vec(); let vec[BasicBlockRef] bbs = vec(); for (result r in ins) { if (! is_terminated(r.bcx)) { live += vec(r); vals += vec(r.val); bbs += vec(r.bcx.llbb); } } alt (_vec.len[result](live)) { case (0u) { // No incoming edges are live, so we're in dead-code-land. // Arbitrarily pick the first dead edge, since the caller // is just going to propagate it outward. check (_vec.len[result](ins) >= 1u); ret ins.(0); } case (1u) { // Only one incoming edge is live, so we just feed that block // onward. ret live.(0); } case (_) { /* fall through */ } } // We have >1 incoming edges. Make a join block and br+phi them into it. auto join_cx = new_sub_block_ctxt(parent_cx, "join"); for (result r in live) { r.bcx.build.Br(join_cx.llbb); } auto phi = join_cx.build.Phi(t, vals, bbs); ret res(join_cx, phi); } fn trans_if(@block_ctxt cx, @ast.expr cond, &ast.block thn, &option.t[@ast.expr] els) -> result { auto cond_res = trans_expr(cx, cond); auto then_cx = new_scope_block_ctxt(cx, "then"); auto then_res = trans_block(then_cx, thn); auto else_cx = new_scope_block_ctxt(cx, "else"); auto else_res = res(else_cx, C_nil()); alt (els) { case (some[@ast.expr](?elexpr)) { else_res = trans_expr(else_cx, elexpr); } case (_) { /* fall through */ } } cond_res.bcx.build.CondBr(cond_res.val, then_cx.llbb, else_cx.llbb); // FIXME: use inferred type when available. ret join_results(cx, T_nil(), vec(then_res, else_res)); } fn trans_for(@block_ctxt cx, @ast.decl decl, @ast.expr seq, &ast.block body) -> result { fn inner(@block_ctxt cx, @ast.local local, ValueRef curr, @ty.t t, ast.block body) -> result { auto scope_cx = new_scope_block_ctxt(cx, "for loop scope"); auto next_cx = new_sub_block_ctxt(cx, "next"); cx.build.Br(scope_cx.llbb); auto local_res = alloc_local(scope_cx, local); auto bcx = copy_ty(local_res.bcx, INIT, local_res.val, curr, t).bcx; scope_cx.cleanups += vec(clean(bind drop_slot(_, local_res.val, t))); bcx = trans_block(bcx, body).bcx; bcx.build.Br(next_cx.llbb); ret res(next_cx, C_nil()); } let @ast.local local; alt (decl.node) { case (ast.decl_local(?loc)) { local = loc; } } auto seq_ty = ty.expr_ty(seq); auto seq_res = trans_expr(cx, seq); ret iter_sequence(seq_res.bcx, seq_res.val, seq_ty, bind inner(_, local, _, _, body)); } // Iterator translation // Searches through a block for all references to locals or upvars in this // frame and returns the list of definition IDs thus found. fn collect_upvars(@block_ctxt cx, &ast.block bloc, &ast.def_id initial_decl) -> vec[ast.def_id] { type env = @rec( mutable vec[ast.def_id] refs, hashmap[ast.def_id,()] decls ); fn fold_expr_path(&env e, &common.span sp, &ast.path p, &option.t[ast.def] d, ast.ann a) -> @ast.expr { alt (option.get[ast.def](d)) { case (ast.def_arg(?did)) { e.refs += vec(did); } case (ast.def_local(?did)) { e.refs += vec(did); } case (ast.def_upvar(?did)) { e.refs += vec(did); } case (_) { /* ignore */ } } ret @fold.respan[ast.expr_](sp, ast.expr_path(p, d, a)); } fn fold_decl_local(&env e, &common.span sp, @ast.local local) -> @ast.decl { e.decls.insert(local.id, ()); ret @fold.respan[ast.decl_](sp, ast.decl_local(local)); } auto fep = fold_expr_path; auto fdl = fold_decl_local; auto fld = @rec( fold_expr_path=fep, fold_decl_local=fdl with *fold.new_identity_fold[env]() ); let vec[ast.def_id] refs = vec(); let hashmap[ast.def_id,()] decls = new_def_hash[()](); decls.insert(initial_decl, ()); let env e = @rec(mutable refs=refs, decls=decls); fold.fold_block[env](e, fld, bloc); // Calculate (refs - decls). This is the set of captured upvars. let vec[ast.def_id] result = vec(); for (ast.def_id ref_id in e.refs) { if (!decls.contains_key(ref_id)) { result += vec(ref_id); } } ret result; } fn trans_for_each(@block_ctxt cx, @ast.decl decl, @ast.expr seq, &ast.block body) -> result { /* * The translation is a little .. complex here. Code like: * * let ty1 p = ...; * * let ty1 q = ...; * * foreach (ty v in foo(a,b)) { body(p,q,v) } * * * Turns into a something like so (C/Rust mishmash): * * type env = { *ty1 p, *ty2 q, ... }; * * let env e = { &p, &q, ... }; * * fn foreach123_body(env* e, ty v) { body(*(e->p),*(e->q),v) } * * foo([foreach123_body, env*], a, b); * */ // Step 1: walk body and figure out which references it makes // escape. This could be determined upstream, and probably ought // to be so, eventualy. For first cut, skip this. Null env. // FIXME: possibly support alias-mode here? auto decl_ty = plain_ty(ty.ty_nil); auto decl_id; alt (decl.node) { case (ast.decl_local(?local)) { decl_ty = node_ann_type(cx.fcx.ccx, local.ann); decl_id = local.id; } } auto upvars = collect_upvars(cx, body, decl_id); auto upvar_count = _vec.len[ast.def_id](upvars); auto llbindingsptr; if (upvar_count > 0u) { // Gather up the upvars. let vec[ValueRef] llbindings = vec(); let vec[TypeRef] llbindingtys = vec(); for (ast.def_id did in upvars) { auto llbinding; alt (cx.fcx.lllocals.find(did)) { case (none[ValueRef]) { alt (cx.fcx.llupvars.find(did)) { case (none[ValueRef]) { llbinding = cx.fcx.llargs.get(did); } case (some[ValueRef](?llval)) { llbinding = llval; } } } case (some[ValueRef](?llval)) { llbinding = llval; } } llbindings += vec(llbinding); llbindingtys += vec(val_ty(llbinding)); } // Create an array of bindings and copy in aliases to the upvars. llbindingsptr = cx.build.Alloca(T_struct(llbindingtys)); auto i = 0u; while (i < upvar_count) { auto llbindingptr = cx.build.GEP(llbindingsptr, vec(C_int(0), C_int(i as int))); cx.build.Store(llbindings.(i), llbindingptr); i += 1u; } } else { // Null bindings. llbindingsptr = C_null(T_ptr(T_i8())); } // Create an environment and populate it with the bindings. auto llenvptrty = T_closure_ptr(cx.fcx.ccx.tn, T_ptr(T_nil()), val_ty(llbindingsptr), 0u); auto llenvptr = cx.build.Alloca(llvm.LLVMGetElementType(llenvptrty)); auto llbindingsptrptr = cx.build.GEP(llenvptr, vec(C_int(0), C_int(abi.box_rc_field_body), C_int(2))); cx.build.Store(llbindingsptr, llbindingsptrptr); // Step 2: Declare foreach body function. let str s = cx.fcx.ccx.names.next("_rust_foreach") + sep() + cx.fcx.ccx.path; // The 'env' arg entering the body function is a fake env member (as in // the env-part of the normal rust calling convention) that actually // points to a stack allocated env in this frame. We bundle that env // pointer along with the foreach-body-fn pointer into a 'normal' fn pair // and pass it in as a first class fn-arg to the iterator. auto iter_body_llty = type_of_fn_full(cx.fcx.ccx, ast.proto_fn, none[TypeRef], vec(rec(mode=ast.val, ty=decl_ty)), plain_ty(ty.ty_nil), 0u); let ValueRef lliterbody = decl_fastcall_fn(cx.fcx.ccx.llmod, s, iter_body_llty); // FIXME: handle ty params properly. let vec[ast.ty_param] ty_params = vec(); auto fcx = new_fn_ctxt(cx.fcx.ccx, lliterbody); auto bcx = new_top_block_ctxt(fcx); // Populate the upvars from the environment. auto llremoteenvptr = bcx.build.PointerCast(fcx.llenv, llenvptrty); auto llremotebindingsptrptr = bcx.build.GEP(llremoteenvptr, vec(C_int(0), C_int(abi.box_rc_field_body), C_int(2))); auto llremotebindingsptr = bcx.build.Load(llremotebindingsptrptr); auto i = 0u; while (i < upvar_count) { auto upvar_id = upvars.(i); auto llupvarptrptr = bcx.build.GEP(llremotebindingsptr, vec(C_int(0), C_int(i as int))); auto llupvarptr = bcx.build.Load(llupvarptrptr); fcx.llupvars.insert(upvar_id, llupvarptr); i += 1u; } // Treat the loop variable as an upvar as well. We copy it to an alloca // as usual. auto lllvar = llvm.LLVMGetParam(fcx.llfn, 3u); auto lllvarptr = bcx.build.Alloca(val_ty(lllvar)); bcx.build.Store(lllvar, lllvarptr); fcx.llupvars.insert(decl_id, lllvarptr); auto res = trans_block(bcx, body); res.bcx.build.RetVoid(); // Step 3: Call iter passing [lliterbody, llenv], plus other args. alt (seq.node) { case (ast.expr_call(?f, ?args, ?ann)) { auto pair = cx.build.Alloca(T_fn_pair(cx.fcx.ccx.tn, iter_body_llty)); auto code_cell = cx.build.GEP(pair, vec(C_int(0), C_int(abi.fn_field_code))); cx.build.Store(lliterbody, code_cell); auto env_cell = cx.build.GEP(pair, vec(C_int(0), C_int(abi.fn_field_box))); auto llenvblobptr = cx.build.PointerCast(llenvptr, T_opaque_closure_ptr(cx.fcx.ccx.tn)); cx.build.Store(llenvblobptr, env_cell); // log "lliterbody: " + val_str(cx.fcx.ccx.tn, lliterbody); ret trans_call(cx, f, some[ValueRef](cx.build.Load(pair)), args, ann); } } fail; } fn trans_while(@block_ctxt cx, @ast.expr cond, &ast.block body) -> result { auto cond_cx = new_scope_block_ctxt(cx, "while cond"); auto body_cx = new_scope_block_ctxt(cx, "while loop body"); auto next_cx = new_sub_block_ctxt(cx, "next"); auto body_res = trans_block(body_cx, body); auto cond_res = trans_expr(cond_cx, cond); body_res.bcx.build.Br(cond_cx.llbb); auto cond_bcx = trans_block_cleanups(cond_res.bcx, cond_cx); cond_bcx.build.CondBr(cond_res.val, body_cx.llbb, next_cx.llbb); cx.build.Br(cond_cx.llbb); ret res(next_cx, C_nil()); } fn trans_do_while(@block_ctxt cx, &ast.block body, @ast.expr cond) -> result { auto body_cx = new_scope_block_ctxt(cx, "do-while loop body"); auto next_cx = new_sub_block_ctxt(cx, "next"); auto body_res = trans_block(body_cx, body); auto cond_res = trans_expr(body_res.bcx, cond); cond_res.bcx.build.CondBr(cond_res.val, body_cx.llbb, next_cx.llbb); cx.build.Br(body_cx.llbb); ret res(next_cx, body_res.val); } // Pattern matching translation fn trans_pat_match(@block_ctxt cx, @ast.pat pat, ValueRef llval, @block_ctxt next_cx) -> result { alt (pat.node) { case (ast.pat_wild(_)) { ret res(cx, llval); } case (ast.pat_bind(_, _, _)) { ret res(cx, llval); } case (ast.pat_lit(?lt, ?ann)) { auto lllit = trans_lit(cx.fcx.ccx, *lt, ann); auto lltype = ty.ann_to_type(ann); auto lleq = trans_compare(cx, ast.eq, lltype, llval, lllit); auto matched_cx = new_sub_block_ctxt(lleq.bcx, "matched_cx"); lleq.bcx.build.CondBr(lleq.val, matched_cx.llbb, next_cx.llbb); ret res(matched_cx, llval); } case (ast.pat_tag(?id, ?subpats, ?vdef_opt, ?ann)) { auto lltagptr = cx.build.PointerCast(llval, T_opaque_tag_ptr(cx.fcx.ccx.tn)); auto lldiscrimptr = cx.build.GEP(lltagptr, vec(C_int(0), C_int(0))); auto lldiscrim = cx.build.Load(lldiscrimptr); auto vdef = option.get[ast.variant_def](vdef_opt); auto variant_id = vdef._1; auto variant_tag = 0; auto variants = tag_variants(cx.fcx.ccx, vdef._0); auto i = 0; for (ast.variant v in variants) { auto this_variant_id = v.id; if (variant_id._0 == this_variant_id._0 && variant_id._1 == this_variant_id._1) { variant_tag = i; } i += 1; } auto matched_cx = new_sub_block_ctxt(cx, "matched_cx"); auto lleq = cx.build.ICmp(lib.llvm.LLVMIntEQ, lldiscrim, C_int(variant_tag)); cx.build.CondBr(lleq, matched_cx.llbb, next_cx.llbb); auto ty_params = node_ann_ty_params(ann); if (_vec.len[@ast.pat](subpats) > 0u) { auto llblobptr = matched_cx.build.GEP(lltagptr, vec(C_int(0), C_int(1))); auto i = 0; for (@ast.pat subpat in subpats) { auto rslt = GEP_tag(matched_cx, llblobptr, vdef._0, vdef._1, ty_params, i); auto llsubvalptr = rslt.val; matched_cx = rslt.bcx; auto llsubval = load_scalar_or_boxed(matched_cx, llsubvalptr, pat_ty(subpat)); auto subpat_res = trans_pat_match(matched_cx, subpat, llsubval, next_cx); matched_cx = subpat_res.bcx; } } ret res(matched_cx, llval); } } fail; } fn trans_pat_binding(@block_ctxt cx, @ast.pat pat, ValueRef llval) -> result { alt (pat.node) { case (ast.pat_wild(_)) { ret res(cx, llval); } case (ast.pat_lit(_, _)) { ret res(cx, llval); } case (ast.pat_bind(?id, ?def_id, ?ann)) { auto ty = node_ann_type(cx.fcx.ccx, ann); auto rslt = alloc_ty(cx, ty); auto dst = rslt.val; auto bcx = rslt.bcx; llvm.LLVMSetValueName(dst, _str.buf(id)); bcx.fcx.lllocals.insert(def_id, dst); bcx.cleanups += vec(clean(bind drop_slot(_, dst, ty))); ret copy_ty(bcx, INIT, dst, llval, ty); } case (ast.pat_tag(_, ?subpats, ?vdef_opt, ?ann)) { if (_vec.len[@ast.pat](subpats) == 0u) { ret res(cx, llval); } // Get the appropriate variant for this tag. auto vdef = option.get[ast.variant_def](vdef_opt); auto variant = tag_variant_with_id(cx.fcx.ccx, vdef._0, vdef._1); auto lltagptr = cx.build.PointerCast(llval, T_opaque_tag_ptr(cx.fcx.ccx.tn)); auto llblobptr = cx.build.GEP(lltagptr, vec(C_int(0), C_int(1))); auto ty_param_substs = node_ann_ty_params(ann); auto this_cx = cx; auto i = 0; for (@ast.pat subpat in subpats) { auto rslt = GEP_tag(this_cx, llblobptr, vdef._0, vdef._1, ty_param_substs, i); this_cx = rslt.bcx; auto llsubvalptr = rslt.val; auto llsubval = load_scalar_or_boxed(this_cx, llsubvalptr, pat_ty(subpat)); auto subpat_res = trans_pat_binding(this_cx, subpat, llsubval); this_cx = subpat_res.bcx; i += 1; } ret res(this_cx, llval); } } } fn trans_alt(@block_ctxt cx, @ast.expr expr, vec[ast.arm] arms) -> result { auto expr_res = trans_expr(cx, expr); auto last_cx = new_sub_block_ctxt(expr_res.bcx, "last"); auto this_cx = expr_res.bcx; for (ast.arm arm in arms) { auto next_cx = new_sub_block_ctxt(expr_res.bcx, "next"); auto match_res = trans_pat_match(this_cx, arm.pat, expr_res.val, next_cx); auto binding_cx = new_scope_block_ctxt(match_res.bcx, "binding"); match_res.bcx.build.Br(binding_cx.llbb); auto binding_res = trans_pat_binding(binding_cx, arm.pat, expr_res.val); auto block_res = trans_block(binding_res.bcx, arm.block); if (!is_terminated(block_res.bcx)) { block_res.bcx.build.Br(last_cx.llbb); } this_cx = next_cx; } // FIXME: This is executed when none of the patterns match; it should fail // instead! this_cx.build.Br(last_cx.llbb); // FIXME: This is very wrong; we should phi together all the arm blocks, // since this is an expression. ret res(last_cx, C_nil()); } type generic_info = rec(@ty.t item_type, vec[ValueRef] tydescs); type lval_result = rec(result res, bool is_mem, option.t[generic_info] generic, option.t[ValueRef] llobj); fn lval_mem(@block_ctxt cx, ValueRef val) -> lval_result { ret rec(res=res(cx, val), is_mem=true, generic=none[generic_info], llobj=none[ValueRef]); } fn lval_val(@block_ctxt cx, ValueRef val) -> lval_result { ret rec(res=res(cx, val), is_mem=false, generic=none[generic_info], llobj=none[ValueRef]); } fn lval_generic_fn(@block_ctxt cx, ty.ty_params_and_ty tpt, ast.def_id fn_id, &ast.ann ann) -> lval_result { check (cx.fcx.ccx.fn_pairs.contains_key(fn_id)); auto lv = lval_val(cx, cx.fcx.ccx.fn_pairs.get(fn_id)); auto monoty; auto tys; alt (ann) { case (ast.ann_none) { cx.fcx.ccx.sess.bug("no type annotation for path!"); fail; } case (ast.ann_type(?monoty_, ?tps)) { monoty = monoty_; tys = option.get[vec[@ty.t]](tps); } } if (_vec.len[@ty.t](tys) != 0u) { auto bcx = cx; let vec[ValueRef] tydescs = vec(); for (@ty.t t in tys) { auto td = get_tydesc(bcx, t); bcx = td.bcx; _vec.push[ValueRef](tydescs, td.val); } auto gen = rec( item_type = tpt._1, tydescs = tydescs ); lv = rec(res = res(bcx, lv.res.val), generic = some[generic_info](gen) with lv); } ret lv; } fn trans_path(@block_ctxt cx, &ast.path p, &option.t[ast.def] dopt, &ast.ann ann) -> lval_result { alt (dopt) { case (some[ast.def](?def)) { alt (def) { case (ast.def_arg(?did)) { alt (cx.fcx.llargs.find(did)) { case (none[ValueRef]) { check (cx.fcx.llupvars.contains_key(did)); ret lval_mem(cx, cx.fcx.llupvars.get(did)); } case (some[ValueRef](?llval)) { ret lval_mem(cx, llval); } } } case (ast.def_local(?did)) { alt (cx.fcx.lllocals.find(did)) { case (none[ValueRef]) { check (cx.fcx.llupvars.contains_key(did)); ret lval_mem(cx, cx.fcx.llupvars.get(did)); } case (some[ValueRef](?llval)) { ret lval_mem(cx, llval); } } } case (ast.def_binding(?did)) { check (cx.fcx.lllocals.contains_key(did)); ret lval_mem(cx, cx.fcx.lllocals.get(did)); } case (ast.def_obj_field(?did)) { check (cx.fcx.llobjfields.contains_key(did)); ret lval_mem(cx, cx.fcx.llobjfields.get(did)); } case (ast.def_fn(?did)) { check (cx.fcx.ccx.items.contains_key(did)); auto fn_item = cx.fcx.ccx.items.get(did); ret lval_generic_fn(cx, ty.item_ty(fn_item), did, ann); } case (ast.def_obj(?did)) { check (cx.fcx.ccx.items.contains_key(did)); auto fn_item = cx.fcx.ccx.items.get(did); ret lval_generic_fn(cx, ty.item_ty(fn_item), did, ann); } case (ast.def_variant(?tid, ?vid)) { if (cx.fcx.ccx.fn_pairs.contains_key(vid)) { check (cx.fcx.ccx.items.contains_key(tid)); auto tag_item = cx.fcx.ccx.items.get(tid); auto params = ty.item_ty(tag_item)._0; auto fty = plain_ty(ty.ty_nil); alt (tag_item.node) { case (ast.item_tag(_, ?variants, _, _)) { for (ast.variant v in variants) { if (v.id == vid) { fty = node_ann_type(cx.fcx.ccx, v.ann); } } } } ret lval_generic_fn(cx, tup(params, fty), vid, ann); } else { // Nullary variant. auto tag_ty = node_ann_type(cx.fcx.ccx, ann); auto lldiscrim_gv = cx.fcx.ccx.discrims.get(vid); auto lldiscrim = cx.build.Load(lldiscrim_gv); auto alloc_result = alloc_ty(cx, tag_ty); auto lltagblob = alloc_result.val; auto lltagty; if (ty.type_has_dynamic_size(tag_ty)) { lltagty = T_opaque_tag(cx.fcx.ccx.tn); } else { lltagty = type_of(cx.fcx.ccx, tag_ty); } auto lltagptr = alloc_result.bcx.build.PointerCast( lltagblob, T_ptr(lltagty)); auto lldiscrimptr = alloc_result.bcx.build.GEP( lltagptr, vec(C_int(0), C_int(0))); alloc_result.bcx.build.Store(lldiscrim, lldiscrimptr); ret lval_val(alloc_result.bcx, lltagptr); } } case (ast.def_const(?did)) { check (cx.fcx.ccx.consts.contains_key(did)); ret lval_mem(cx, cx.fcx.ccx.consts.get(did)); } case (ast.def_native_fn(?did)) { check (cx.fcx.ccx.native_items.contains_key(did)); auto fn_item = cx.fcx.ccx.native_items.get(did); ret lval_generic_fn(cx, ty.native_item_ty(fn_item), did, ann); } case (_) { cx.fcx.ccx.sess.unimpl("def variant in trans"); } } } case (none[ast.def]) { cx.fcx.ccx.sess.err("unresolved expr_path in trans"); } } fail; } fn trans_field(@block_ctxt cx, &ast.span sp, @ast.expr base, &ast.ident field, &ast.ann ann) -> lval_result { auto r = trans_expr(cx, base); auto t = ty.expr_ty(base); r = autoderef(r.bcx, r.val, t); t = autoderefed_ty(t); alt (t.struct) { case (ty.ty_tup(_)) { let uint ix = ty.field_num(cx.fcx.ccx.sess, sp, field); auto v = GEP_tup_like(r.bcx, t, r.val, vec(0, ix as int)); ret lval_mem(v.bcx, v.val); } case (ty.ty_rec(?fields)) { let uint ix = ty.field_idx(cx.fcx.ccx.sess, sp, field, fields); auto v = GEP_tup_like(r.bcx, t, r.val, vec(0, ix as int)); ret lval_mem(v.bcx, v.val); } case (ty.ty_obj(?methods)) { let uint ix = ty.method_idx(cx.fcx.ccx.sess, sp, field, methods); auto vtbl = r.bcx.build.GEP(r.val, vec(C_int(0), C_int(abi.obj_field_vtbl))); vtbl = r.bcx.build.Load(vtbl); auto v = r.bcx.build.GEP(vtbl, vec(C_int(0), C_int(ix as int))); auto lvo = lval_mem(r.bcx, v); ret rec(llobj = some[ValueRef](r.val) with lvo); } case (_) { cx.fcx.ccx.sess.unimpl("field variant in trans_field"); } } fail; } fn trans_index(@block_ctxt cx, &ast.span sp, @ast.expr base, @ast.expr idx, &ast.ann ann) -> lval_result { auto lv = trans_expr(cx, base); lv = autoderef(lv.bcx, lv.val, ty.expr_ty(base)); auto ix = trans_expr(lv.bcx, idx); auto v = lv.val; auto bcx = ix.bcx; // Cast to an LLVM integer. Rust is less strict than LLVM in this regard. auto ix_val; auto ix_size = llsize_of_real(cx.fcx.ccx, val_ty(ix.val)); auto int_size = llsize_of_real(cx.fcx.ccx, T_int()); if (ix_size < int_size) { ix_val = bcx.build.ZExt(ix.val, T_int()); } else if (ix_size > int_size) { ix_val = bcx.build.Trunc(ix.val, T_int()); } else { ix_val = ix.val; } auto unit_sz = size_of(bcx, node_ann_type(cx.fcx.ccx, ann)); bcx = unit_sz.bcx; auto scaled_ix = bcx.build.Mul(ix_val, unit_sz.val); auto lim = bcx.build.GEP(v, vec(C_int(0), C_int(abi.vec_elt_fill))); lim = bcx.build.Load(lim); auto bounds_check = bcx.build.ICmp(lib.llvm.LLVMIntULT, scaled_ix, lim); auto fail_cx = new_sub_block_ctxt(bcx, "fail"); auto next_cx = new_sub_block_ctxt(bcx, "next"); bcx.build.CondBr(bounds_check, next_cx.llbb, fail_cx.llbb); // fail: bad bounds check. auto fail_res = trans_fail(fail_cx, sp, "bounds check"); fail_res.bcx.build.Br(next_cx.llbb); auto body = next_cx.build.GEP(v, vec(C_int(0), C_int(abi.vec_elt_data))); auto elt = next_cx.build.GEP(body, vec(C_int(0), ix_val)); ret lval_mem(next_cx, elt); } // The additional bool returned indicates whether it's mem (that is // represented as an alloca or heap, hence needs a 'load' to be used as an // immediate). fn trans_lval(@block_ctxt cx, @ast.expr e) -> lval_result { alt (e.node) { case (ast.expr_path(?p, ?dopt, ?ann)) { ret trans_path(cx, p, dopt, ann); } case (ast.expr_field(?base, ?ident, ?ann)) { ret trans_field(cx, e.span, base, ident, ann); } case (ast.expr_index(?base, ?idx, ?ann)) { ret trans_index(cx, e.span, base, idx, ann); } case (_) { cx.fcx.ccx.sess.unimpl("expr variant in trans_lval"); } } fail; } fn trans_cast(@block_ctxt cx, @ast.expr e, &ast.ann ann) -> result { auto e_res = trans_expr(cx, e); auto llsrctype = val_ty(e_res.val); auto t = node_ann_type(cx.fcx.ccx, ann); auto lldsttype = type_of(cx.fcx.ccx, t); if (!ty.type_is_fp(t)) { // TODO: native-to-native casts if (ty.type_is_native(ty.expr_ty(e))) { e_res.val = e_res.bcx.build.PtrToInt(e_res.val, lldsttype); } else if (ty.type_is_native(t)) { e_res.val = e_res.bcx.build.IntToPtr(e_res.val, lldsttype); } else if (llvm.LLVMGetIntTypeWidth(lldsttype) > llvm.LLVMGetIntTypeWidth(llsrctype)) { if (ty.type_is_signed(t)) { // Widening signed cast. e_res.val = e_res.bcx.build.SExtOrBitCast(e_res.val, lldsttype); } else { // Widening unsigned cast. e_res.val = e_res.bcx.build.ZExtOrBitCast(e_res.val, lldsttype); } } else { // Narrowing cast. e_res.val = e_res.bcx.build.TruncOrBitCast(e_res.val, lldsttype); } } else { cx.fcx.ccx.sess.unimpl("fp cast"); } ret e_res; } fn trans_bind_thunk(@crate_ctxt cx, @ty.t incoming_fty, @ty.t outgoing_fty, vec[option.t[@ast.expr]] args, @ty.t closure_ty, vec[@ty.t] bound_tys, uint ty_param_count) -> ValueRef { // Construct a thunk-call with signature incoming_fty, and that copies // args forward into a call to outgoing_fty. let str s = cx.names.next("_rust_thunk") + sep() + cx.path; let TypeRef llthunk_ty = get_pair_fn_ty(type_of(cx, incoming_fty)); let ValueRef llthunk = decl_fastcall_fn(cx.llmod, s, llthunk_ty); auto fcx = new_fn_ctxt(cx, llthunk); auto bcx = new_top_block_ctxt(fcx); auto llclosure_ptr_ty = type_of(cx, ty.plain_box_ty(closure_ty)); auto llclosure = bcx.build.PointerCast(fcx.llenv, llclosure_ptr_ty); auto lltarget = GEP_tup_like(bcx, closure_ty, llclosure, vec(0, abi.box_rc_field_body, abi.closure_elt_target)); bcx = lltarget.bcx; auto lltargetclosure = bcx.build.GEP(lltarget.val, vec(C_int(0), C_int(abi.fn_field_box))); lltargetclosure = bcx.build.Load(lltargetclosure); auto outgoing_ret_ty = ty.ty_fn_ret(outgoing_fty); auto outgoing_args = ty.ty_fn_args(outgoing_fty); auto llretptr = fcx.llretptr; if (ty.type_has_dynamic_size(outgoing_ret_ty)) { llretptr = bcx.build.PointerCast(llretptr, T_typaram_ptr(cx.tn)); } let vec[ValueRef] llargs = vec(llretptr, fcx.lltaskptr, lltargetclosure); // Copy in the type parameters. let uint i = 0u; while (i < ty_param_count) { auto lltyparam_ptr = GEP_tup_like(bcx, closure_ty, llclosure, vec(0, abi.box_rc_field_body, abi.closure_elt_ty_params, (i as int))); bcx = lltyparam_ptr.bcx; llargs += vec(bcx.build.Load(lltyparam_ptr.val)); i += 1u; } let uint a = 3u; // retptr, task ptr, env come first let int b = 0; let uint outgoing_arg_index = 0u; let vec[TypeRef] llout_arg_tys = type_of_explicit_args(cx, outgoing_args); for (option.t[@ast.expr] arg in args) { auto out_arg = outgoing_args.(outgoing_arg_index); auto llout_arg_ty = llout_arg_tys.(outgoing_arg_index); alt (arg) { // Arg provided at binding time; thunk copies it from closure. case (some[@ast.expr](_)) { auto bound_arg = GEP_tup_like(bcx, closure_ty, llclosure, vec(0, abi.box_rc_field_body, abi.closure_elt_bindings, b)); bcx = bound_arg.bcx; auto val = bound_arg.val; if (out_arg.mode == ast.val) { val = bcx.build.Load(val); } else if (ty.count_ty_params(out_arg.ty) > 0u) { check (out_arg.mode == ast.alias); val = bcx.build.PointerCast(val, llout_arg_ty); } llargs += vec(val); b += 1; } // Arg will be provided when the thunk is invoked. case (none[@ast.expr]) { let ValueRef passed_arg = llvm.LLVMGetParam(llthunk, a); if (ty.count_ty_params(out_arg.ty) > 0u) { check (out_arg.mode == ast.alias); passed_arg = bcx.build.PointerCast(passed_arg, llout_arg_ty); } llargs += vec(passed_arg); a += 1u; } } outgoing_arg_index += 1u; } // FIXME: turn this call + ret into a tail call. auto lltargetfn = bcx.build.GEP(lltarget.val, vec(C_int(0), C_int(abi.fn_field_code))); // Cast the outgoing function to the appropriate type (see the comments in // trans_bind below for why this is necessary). auto lltargetty = type_of_fn(bcx.fcx.ccx, ty.ty_fn_proto(outgoing_fty), outgoing_args, outgoing_ret_ty, ty_param_count); lltargetfn = bcx.build.PointerCast(lltargetfn, T_ptr(T_ptr(lltargetty))); lltargetfn = bcx.build.Load(lltargetfn); auto r = bcx.build.FastCall(lltargetfn, llargs); bcx.build.RetVoid(); ret llthunk; } fn trans_bind(@block_ctxt cx, @ast.expr f, vec[option.t[@ast.expr]] args, &ast.ann ann) -> result { auto f_res = trans_lval(cx, f); if (f_res.is_mem) { cx.fcx.ccx.sess.unimpl("re-binding existing function"); } else { let vec[@ast.expr] bound = vec(); for (option.t[@ast.expr] argopt in args) { alt (argopt) { case (none[@ast.expr]) { } case (some[@ast.expr](?e)) { _vec.push[@ast.expr](bound, e); } } } // Figure out which tydescs we need to pass, if any. let @ty.t outgoing_fty; let vec[ValueRef] lltydescs; alt (f_res.generic) { case (none[generic_info]) { outgoing_fty = ty.expr_ty(f); lltydescs = vec(); } case (some[generic_info](?ginfo)) { outgoing_fty = ginfo.item_type; lltydescs = ginfo.tydescs; } } auto ty_param_count = _vec.len[ValueRef](lltydescs); if (_vec.len[@ast.expr](bound) == 0u && ty_param_count == 0u) { // Trivial 'binding': just return the static pair-ptr. ret f_res.res; } else { auto bcx = f_res.res.bcx; auto pair_t = node_type(cx.fcx.ccx, ann); auto pair_v = bcx.build.Alloca(pair_t); // Translate the bound expressions. let vec[@ty.t] bound_tys = vec(); let vec[ValueRef] bound_vals = vec(); auto i = 0u; for (@ast.expr e in bound) { auto arg = trans_expr(bcx, e); bcx = arg.bcx; _vec.push[ValueRef](bound_vals, arg.val); _vec.push[@ty.t](bound_tys, ty.expr_ty(e)); i += 1u; } // Synthesize a closure type. let @ty.t bindings_ty = ty.plain_tup_ty(bound_tys); // NB: keep this in sync with T_closure_ptr; we're making // a ty.t structure that has the same "shape" as the LLVM type // it constructs. let @ty.t tydesc_ty = plain_ty(ty.ty_type); let vec[@ty.t] captured_tys = _vec.init_elt[@ty.t](tydesc_ty, ty_param_count); let vec[@ty.t] closure_tys = vec(tydesc_ty, outgoing_fty, bindings_ty, ty.plain_tup_ty(captured_tys)); let @ty.t closure_ty = ty.plain_tup_ty(closure_tys); auto r = trans_malloc_boxed(bcx, closure_ty); auto box = r.val; bcx = r.bcx; auto rc = bcx.build.GEP(box, vec(C_int(0), C_int(abi.box_rc_field_refcnt))); auto closure = bcx.build.GEP(box, vec(C_int(0), C_int(abi.box_rc_field_body))); bcx.build.Store(C_int(1), rc); // Store bindings tydesc. auto bound_tydesc = bcx.build.GEP(closure, vec(C_int(0), C_int(abi.closure_elt_tydesc))); auto bindings_tydesc = get_tydesc(bcx, bindings_ty); bcx = bindings_tydesc.bcx; bcx.build.Store(bindings_tydesc.val, bound_tydesc); // Determine the LLVM type for the outgoing function type. This // may be different from the type returned by trans_malloc_boxed() // since we have more information than that function does; // specifically, we know how many type descriptors the outgoing // function has, which type_of() doesn't, as only we know which // item the function refers to. auto llfnty = type_of_fn(bcx.fcx.ccx, ty.ty_fn_proto(outgoing_fty), ty.ty_fn_args(outgoing_fty), ty.ty_fn_ret(outgoing_fty), ty_param_count); auto llclosurety = T_ptr(T_fn_pair(bcx.fcx.ccx.tn, llfnty)); // Store thunk-target. auto bound_target = bcx.build.GEP(closure, vec(C_int(0), C_int(abi.closure_elt_target))); auto src = bcx.build.Load(f_res.res.val); bound_target = bcx.build.PointerCast(bound_target, llclosurety); bcx.build.Store(src, bound_target); // Copy expr values into boxed bindings. i = 0u; auto bindings = bcx.build.GEP(closure, vec(C_int(0), C_int(abi.closure_elt_bindings))); for (ValueRef v in bound_vals) { auto bound = bcx.build.GEP(bindings, vec(C_int(0), C_int(i as int))); bcx = copy_ty(r.bcx, INIT, bound, v, bound_tys.(i)).bcx; i += 1u; } // If necessary, copy tydescs describing type parameters into the // appropriate slot in the closure. alt (f_res.generic) { case (none[generic_info]) { /* nothing to do */ } case (some[generic_info](?ginfo)) { auto ty_params_slot = bcx.build.GEP(closure, vec(C_int(0), C_int(abi.closure_elt_ty_params))); auto i = 0; for (ValueRef td in ginfo.tydescs) { auto ty_param_slot = bcx.build.GEP(ty_params_slot, vec(C_int(0), C_int(i))); bcx.build.Store(td, ty_param_slot); i += 1; } outgoing_fty = ginfo.item_type; } } // Make thunk and store thunk-ptr in outer pair's code slot. auto pair_code = bcx.build.GEP(pair_v, vec(C_int(0), C_int(abi.fn_field_code))); let @ty.t pair_ty = node_ann_type(cx.fcx.ccx, ann); let ValueRef llthunk = trans_bind_thunk(cx.fcx.ccx, pair_ty, outgoing_fty, args, closure_ty, bound_tys, ty_param_count); bcx.build.Store(llthunk, pair_code); // Store box ptr in outer pair's box slot. auto pair_box = bcx.build.GEP(pair_v, vec(C_int(0), C_int(abi.fn_field_box))); bcx.build.Store (bcx.build.PointerCast (box, T_opaque_closure_ptr(bcx.fcx.ccx.tn)), pair_box); find_scope_cx(cx).cleanups += vec(clean(bind drop_slot(_, pair_v, pair_ty))); ret res(bcx, pair_v); } } } // NB: must keep 4 fns in sync: // // - type_of_fn_full // - create_llargs_for_fn_args. // - new_fn_ctxt // - trans_args fn trans_args(@block_ctxt cx, ValueRef llenv, option.t[ValueRef] llobj, option.t[generic_info] gen, option.t[ValueRef] lliterbody, &vec[@ast.expr] es, @ty.t fn_ty) -> tup(@block_ctxt, vec[ValueRef], ValueRef) { let vec[ty.arg] args = ty.ty_fn_args(fn_ty); let vec[ValueRef] llargs = vec(); let vec[ValueRef] lltydescs = vec(); let @block_ctxt bcx = cx; // Arg 0: Output pointer. auto retty = ty.ty_fn_ret(fn_ty); auto llretslot_res = alloc_ty(bcx, retty); bcx = llretslot_res.bcx; auto llretslot = llretslot_res.val; alt (gen) { case (some[generic_info](?g)) { lltydescs = g.tydescs; args = ty.ty_fn_args(g.item_type); retty = ty.ty_fn_ret(g.item_type); } case (_) { } } if (ty.type_has_dynamic_size(retty)) { llargs += vec(bcx.build.PointerCast(llretslot, T_typaram_ptr(cx.fcx.ccx.tn))); } else if (ty.count_ty_params(retty) != 0u) { // It's possible that the callee has some generic-ness somewhere in // its return value -- say a method signature within an obj or a fn // type deep in a structure -- which the caller has a concrete view // of. If so, cast the caller's view of the restlot to the callee's // view, for the sake of making a type-compatible call. llargs += vec(cx.build.PointerCast(llretslot, T_ptr(type_of(bcx.fcx.ccx, retty)))); } else { llargs += vec(llretslot); } // Arg 1: Task pointer. llargs += vec(bcx.fcx.lltaskptr); // Arg 2: Env (closure-bindings / self-obj) alt (llobj) { case (some[ValueRef](?ob)) { // Every object is always found in memory, // and not-yet-loaded (as part of an lval x.y // doted method-call). llargs += vec(bcx.build.Load(ob)); } case (_) { llargs += vec(llenv); } } // Args >3: ty_params ... llargs += lltydescs; // ... then possibly an lliterbody argument. alt (lliterbody) { case (none[ValueRef]) {} case (some[ValueRef](?lli)) { llargs += vec(lli); } } // ... then explicit args. // First we figure out the caller's view of the types of the arguments. // This will be needed if this is a generic call, because the callee has // to cast her view of the arguments to the caller's view. auto arg_tys = type_of_explicit_args(cx.fcx.ccx, args); auto i = 0u; for (@ast.expr e in es) { auto mode = args.(i).mode; auto val; if (ty.type_is_structural(ty.expr_ty(e))) { auto re = trans_expr(bcx, e); val = re.val; bcx = re.bcx; } else if (mode == ast.alias) { let lval_result lv; if (ty.is_lval(e)) { lv = trans_lval(bcx, e); } else { auto r = trans_expr(bcx, e); lv = lval_val(r.bcx, r.val); } bcx = lv.res.bcx; if (lv.is_mem) { val = lv.res.val; } else { // Non-mem but we're trying to alias; synthesize an // alloca, spill to it and pass its address. auto llty = val_ty(lv.res.val); auto llptr = lv.res.bcx.build.Alloca(llty); lv.res.bcx.build.Store(lv.res.val, llptr); val = llptr; } } else { auto re = trans_expr(bcx, e); val = re.val; bcx = re.bcx; } if (ty.count_ty_params(args.(i).ty) > 0u) { auto lldestty = arg_tys.(i); if (mode == ast.val) { // FIXME: we'd prefer to use &&, but rustboot doesn't like it if (ty.type_is_structural(ty.expr_ty(e))) { lldestty = T_ptr(lldestty); } } val = bcx.build.PointerCast(val, lldestty); } if (mode == ast.val) { // FIXME: we'd prefer to use &&, but rustboot doesn't like it if (ty.type_is_structural(ty.expr_ty(e))) { // Until here we've been treating structures by pointer; // we are now passing it as an arg, so need to load it. val = bcx.build.Load(val); } } llargs += vec(val); i += 1u; } ret tup(bcx, llargs, llretslot); } fn trans_call(@block_ctxt cx, @ast.expr f, option.t[ValueRef] lliterbody, vec[@ast.expr] args, &ast.ann ann) -> result { auto f_res = trans_lval(cx, f); auto faddr = f_res.res.val; auto llenv = C_null(T_opaque_closure_ptr(cx.fcx.ccx.tn)); alt (f_res.llobj) { case (some[ValueRef](_)) { // It's a vtbl entry. faddr = f_res.res.bcx.build.Load(faddr); } case (none[ValueRef]) { // It's a closure. auto bcx = f_res.res.bcx; auto pair = faddr; faddr = bcx.build.GEP(pair, vec(C_int(0), C_int(abi.fn_field_code))); faddr = bcx.build.Load(faddr); auto llclosure = bcx.build.GEP(pair, vec(C_int(0), C_int(abi.fn_field_box))); llenv = bcx.build.Load(llclosure); } } auto fn_ty = ty.expr_ty(f); auto ret_ty = ty.ann_to_type(ann); auto args_res = trans_args(f_res.res.bcx, llenv, f_res.llobj, f_res.generic, lliterbody, args, fn_ty); auto bcx = args_res._0; auto llargs = args_res._1; auto llretslot = args_res._2; /* log "calling: " + val_str(cx.fcx.ccx.tn, faddr); for (ValueRef arg in llargs) { log "arg: " + val_str(cx.fcx.ccx.tn, arg); } */ bcx.build.FastCall(faddr, llargs); auto retval = C_nil(); if (!ty.type_is_nil(ret_ty)) { retval = load_scalar_or_boxed(bcx, llretslot, ret_ty); // Retval doesn't correspond to anything really tangible in the frame, // but it's a ref all the same, so we put a note here to drop it when // we're done in this scope. find_scope_cx(cx).cleanups += vec(clean(bind drop_ty(_, retval, ret_ty))); } ret res(bcx, retval); } fn trans_tup(@block_ctxt cx, vec[ast.elt] elts, &ast.ann ann) -> result { auto bcx = cx; auto t = node_ann_type(bcx.fcx.ccx, ann); auto tup_res = alloc_ty(bcx, t); auto tup_val = tup_res.val; bcx = tup_res.bcx; find_scope_cx(cx).cleanups += vec(clean(bind drop_ty(_, tup_val, t))); let int i = 0; for (ast.elt e in elts) { auto e_ty = ty.expr_ty(e.expr); auto src_res = trans_expr(bcx, e.expr); bcx = src_res.bcx; auto dst_res = GEP_tup_like(bcx, t, tup_val, vec(0, i)); bcx = dst_res.bcx; bcx = copy_ty(src_res.bcx, INIT, dst_res.val, src_res.val, e_ty).bcx; i += 1; } ret res(bcx, tup_val); } fn trans_vec(@block_ctxt cx, vec[@ast.expr] args, &ast.ann ann) -> result { auto t = node_ann_type(cx.fcx.ccx, ann); auto unit_ty = t; alt (t.struct) { case (ty.ty_vec(?mt)) { unit_ty = mt.ty; } case (_) { cx.fcx.ccx.sess.bug("non-vec type in trans_vec"); } } auto bcx = cx; auto unit_sz = size_of(bcx, unit_ty); bcx = unit_sz.bcx; auto data_sz = bcx.build.Mul(C_int(_vec.len[@ast.expr](args) as int), unit_sz.val); // FIXME: pass tydesc properly. auto sub = trans_upcall(bcx, "upcall_new_vec", vec(data_sz, C_int(0))); bcx = sub.bcx; auto llty = type_of(bcx.fcx.ccx, t); auto vec_val = vi2p(bcx, sub.val, llty); find_scope_cx(bcx).cleanups += vec(clean(bind drop_ty(_, vec_val, t))); auto body = bcx.build.GEP(vec_val, vec(C_int(0), C_int(abi.vec_elt_data))); auto pseudo_tup_ty = ty.plain_tup_ty(_vec.init_elt[@ty.t](unit_ty, _vec.len[@ast.expr](args))); let int i = 0; for (@ast.expr e in args) { auto src_res = trans_expr(bcx, e); bcx = src_res.bcx; auto dst_res = GEP_tup_like(bcx, pseudo_tup_ty, body, vec(0, i)); bcx = dst_res.bcx; // Cast the destination type to the source type. This is needed to // make tags work, for a subtle combination of reasons: // // (1) "dst_res" above is derived from "body", which is in turn // derived from "vec_val". // (2) "vec_val" has the LLVM type "llty". // (3) "llty" is the result of calling type_of() on a vector type. // (4) For tags, type_of() returns a different type depending on // on whether the tag is behind a box or not. Vector types are // considered boxes. // (5) "src_res" is derived from "unit_ty", which is not behind a box. auto dst_val; if (!ty.type_has_dynamic_size(unit_ty)) { auto llunit_ty = type_of(cx.fcx.ccx, unit_ty); dst_val = bcx.build.PointerCast(dst_res.val, T_ptr(llunit_ty)); } else { dst_val = dst_res.val; } bcx = copy_ty(bcx, INIT, dst_val, src_res.val, unit_ty).bcx; i += 1; } auto fill = bcx.build.GEP(vec_val, vec(C_int(0), C_int(abi.vec_elt_fill))); bcx.build.Store(data_sz, fill); ret res(bcx, vec_val); } fn trans_rec(@block_ctxt cx, vec[ast.field] fields, option.t[@ast.expr] base, &ast.ann ann) -> result { auto bcx = cx; auto t = node_ann_type(bcx.fcx.ccx, ann); auto llty = type_of(bcx.fcx.ccx, t); auto rec_res = alloc_ty(bcx, t); auto rec_val = rec_res.val; bcx = rec_res.bcx; find_scope_cx(cx).cleanups += vec(clean(bind drop_ty(_, rec_val, t))); let int i = 0; auto base_val = C_nil(); alt (base) { case (none[@ast.expr]) { } case (some[@ast.expr](?bexp)) { auto base_res = trans_expr(bcx, bexp); bcx = base_res.bcx; base_val = base_res.val; } } let vec[ty.field] ty_fields = vec(); alt (t.struct) { case (ty.ty_rec(?flds)) { ty_fields = flds; } } for (ty.field tf in ty_fields) { auto e_ty = tf.mt.ty; auto dst_res = GEP_tup_like(bcx, t, rec_val, vec(0, i)); bcx = dst_res.bcx; auto expr_provided = false; auto src_res = res(bcx, C_nil()); for (ast.field f in fields) { if (_str.eq(f.ident, tf.ident)) { expr_provided = true; src_res = trans_expr(bcx, f.expr); } } if (!expr_provided) { src_res = GEP_tup_like(bcx, t, base_val, vec(0, i)); src_res = res(src_res.bcx, load_scalar_or_boxed(bcx, src_res.val, e_ty)); } bcx = src_res.bcx; bcx = copy_ty(bcx, INIT, dst_res.val, src_res.val, e_ty).bcx; i += 1; } ret res(bcx, rec_val); } fn trans_expr(@block_ctxt cx, @ast.expr e) -> result { alt (e.node) { case (ast.expr_lit(?lit, ?ann)) { ret res(cx, trans_lit(cx.fcx.ccx, *lit, ann)); } case (ast.expr_unary(?op, ?x, ?ann)) { ret trans_unary(cx, op, x, ann); } case (ast.expr_binary(?op, ?x, ?y, _)) { ret trans_binary(cx, op, x, y); } case (ast.expr_if(?cond, ?thn, ?els, _)) { ret trans_if(cx, cond, thn, els); } case (ast.expr_for(?decl, ?seq, ?body, _)) { ret trans_for(cx, decl, seq, body); } case (ast.expr_for_each(?decl, ?seq, ?body, _)) { ret trans_for_each(cx, decl, seq, body); } case (ast.expr_while(?cond, ?body, _)) { ret trans_while(cx, cond, body); } case (ast.expr_do_while(?body, ?cond, _)) { ret trans_do_while(cx, body, cond); } case (ast.expr_alt(?expr, ?arms, _)) { ret trans_alt(cx, expr, arms); } case (ast.expr_block(?blk, _)) { ret trans_block(cx, blk); } case (ast.expr_assign(?dst, ?src, ?ann)) { auto lhs_res = trans_lval(cx, dst); check (lhs_res.is_mem); auto rhs_res = trans_expr(lhs_res.res.bcx, src); auto t = node_ann_type(cx.fcx.ccx, ann); // FIXME: calculate copy init-ness in typestate. ret copy_ty(rhs_res.bcx, DROP_EXISTING, lhs_res.res.val, rhs_res.val, t); } case (ast.expr_assign_op(?op, ?dst, ?src, ?ann)) { auto t = node_ann_type(cx.fcx.ccx, ann); auto lhs_res = trans_lval(cx, dst); check (lhs_res.is_mem); auto lhs_val = load_scalar_or_boxed(lhs_res.res.bcx, lhs_res.res.val, t); auto rhs_res = trans_expr(lhs_res.res.bcx, src); auto v = trans_eager_binop(rhs_res.bcx, op, t, lhs_val, rhs_res.val); // FIXME: calculate copy init-ness in typestate. ret copy_ty(v.bcx, DROP_EXISTING, lhs_res.res.val, v.val, t); } case (ast.expr_bind(?f, ?args, ?ann)) { ret trans_bind(cx, f, args, ann); } case (ast.expr_call(?f, ?args, ?ann)) { ret trans_call(cx, f, none[ValueRef], args, ann); } case (ast.expr_cast(?e, _, ?ann)) { ret trans_cast(cx, e, ann); } case (ast.expr_vec(?args, _, ?ann)) { ret trans_vec(cx, args, ann); } case (ast.expr_tup(?args, ?ann)) { ret trans_tup(cx, args, ann); } case (ast.expr_rec(?args, ?base, ?ann)) { ret trans_rec(cx, args, base, ann); } case (ast.expr_ext(_, _, _, ?expanded, _)) { ret trans_expr(cx, expanded); } case (ast.expr_fail) { ret trans_fail(cx, e.span, "explicit failure"); } case (ast.expr_log(?a)) { ret trans_log(cx, a); } case (ast.expr_check_expr(?a)) { ret trans_check_expr(cx, a); } case (ast.expr_ret(?e)) { ret trans_ret(cx, e); } case (ast.expr_put(?e)) { ret trans_put(cx, e); } case (ast.expr_be(?e)) { ret trans_be(cx, e); } // lval cases fall through to trans_lval and then // possibly load the result (if it's non-structural). case (_) { auto t = ty.expr_ty(e); auto sub = trans_lval(cx, e); ret res(sub.res.bcx, load_scalar_or_boxed(sub.res.bcx, sub.res.val, t)); } } cx.fcx.ccx.sess.unimpl("expr variant in trans_expr"); fail; } // We pass structural values around the compiler "by pointer" and // non-structural values (scalars and boxes) "by value". This function selects // whether to load a pointer or pass it. fn load_scalar_or_boxed(@block_ctxt cx, ValueRef v, @ty.t t) -> ValueRef { if (ty.type_is_scalar(t) || ty.type_is_boxed(t) || ty.type_is_native(t)) { ret cx.build.Load(v); } else { ret v; } } fn trans_log(@block_ctxt cx, @ast.expr e) -> result { auto sub = trans_expr(cx, e); auto e_ty = ty.expr_ty(e); alt (e_ty.struct) { case (ty.ty_str) { auto v = vp2i(sub.bcx, sub.val); ret trans_upcall(sub.bcx, "upcall_log_str", vec(v)); } case (_) { ret trans_upcall(sub.bcx, "upcall_log_int", vec(sub.val)); } } fail; } fn trans_check_expr(@block_ctxt cx, @ast.expr e) -> result { auto cond_res = trans_expr(cx, e); // FIXME: need pretty-printer. auto expr_str = ""; auto fail_cx = new_sub_block_ctxt(cx, "fail"); auto fail_res = trans_fail(fail_cx, e.span, expr_str); auto next_cx = new_sub_block_ctxt(cx, "next"); fail_res.bcx.build.Br(next_cx.llbb); cond_res.bcx.build.CondBr(cond_res.val, next_cx.llbb, fail_cx.llbb); ret res(next_cx, C_nil()); } fn trans_fail(@block_ctxt cx, common.span sp, str fail_str) -> result { auto V_fail_str = p2i(C_cstr(cx.fcx.ccx, fail_str)); auto V_filename = p2i(C_cstr(cx.fcx.ccx, sp.filename)); auto V_line = sp.lo.line as int; auto args = vec(V_fail_str, V_filename, C_int(V_line)); ret trans_upcall(cx, "upcall_fail", args); } fn trans_put(@block_ctxt cx, &option.t[@ast.expr] e) -> result { auto llcallee = C_nil(); auto llenv = C_nil(); alt (cx.fcx.lliterbody) { case (some[ValueRef](?lli)) { auto slot = cx.build.Alloca(val_ty(lli)); cx.build.Store(lli, slot); llcallee = cx.build.GEP(slot, vec(C_int(0), C_int(abi.fn_field_code))); llcallee = cx.build.Load(llcallee); llenv = cx.build.GEP(slot, vec(C_int(0), C_int(abi.fn_field_box))); llenv = cx.build.Load(llenv); } } auto bcx = cx; auto dummy_retslot = bcx.build.Alloca(T_nil()); let vec[ValueRef] llargs = vec(dummy_retslot, cx.fcx.lltaskptr, llenv); alt (e) { case (none[@ast.expr]) { } case (some[@ast.expr](?x)) { auto r = trans_expr(bcx, x); auto llarg = r.val; bcx = r.bcx; if (ty.type_is_structural(ty.expr_ty(x))) { // Until here we've been treating structures by pointer; we // are now passing it as an arg, so need to load it. llarg = bcx.build.Load(llarg); } llargs += vec(llarg); } } ret res(bcx, bcx.build.FastCall(llcallee, llargs)); } fn trans_ret(@block_ctxt cx, &option.t[@ast.expr] e) -> result { auto bcx = cx; auto val = C_nil(); alt (e) { case (some[@ast.expr](?x)) { auto t = ty.expr_ty(x); auto r = trans_expr(cx, x); bcx = r.bcx; val = r.val; bcx = copy_ty(bcx, INIT, cx.fcx.llretptr, val, t).bcx; } case (_) { /* fall through */ } } // Run all cleanups and back out. let bool more_cleanups = true; auto cleanup_cx = cx; while (more_cleanups) { bcx = trans_block_cleanups(bcx, cleanup_cx); alt (cleanup_cx.parent) { case (parent_some(?b)) { cleanup_cx = b; } case (parent_none) { more_cleanups = false; } } } bcx.build.RetVoid(); ret res(bcx, C_nil()); } fn trans_be(@block_ctxt cx, @ast.expr e) -> result { // FIXME: This should be a typestate precondition check (ast.is_call_expr(e)); // FIXME: Turn this into a real tail call once // calling convention issues are settled ret trans_ret(cx, some(e)); } fn init_local(@block_ctxt cx, @ast.local local) -> result { // Make a note to drop this slot on the way out. check (cx.fcx.lllocals.contains_key(local.id)); auto llptr = cx.fcx.lllocals.get(local.id); auto ty = node_ann_type(cx.fcx.ccx, local.ann); auto bcx = cx; find_scope_cx(cx).cleanups += vec(clean(bind drop_slot(_, llptr, ty))); alt (local.init) { case (some[@ast.expr](?e)) { auto sub = trans_expr(bcx, e); bcx = copy_ty(sub.bcx, INIT, llptr, sub.val, ty).bcx; } case (_) { if (middle.ty.type_has_dynamic_size(ty)) { auto llsz = size_of(bcx, ty); bcx = call_bzero(llsz.bcx, llptr, llsz.val).bcx; } else { auto llty = type_of(bcx.fcx.ccx, ty); auto null = lib.llvm.llvm.LLVMConstNull(llty); bcx.build.Store(null, llptr); } } } ret res(bcx, llptr); } fn trans_stmt(@block_ctxt cx, &ast.stmt s) -> result { auto bcx = cx; alt (s.node) { case (ast.stmt_expr(?e)) { bcx = trans_expr(cx, e).bcx; } case (ast.stmt_decl(?d)) { alt (d.node) { case (ast.decl_local(?local)) { bcx = init_local(bcx, local).bcx; } case (ast.decl_item(?i)) { trans_item(cx.fcx.ccx, *i); } } } case (_) { cx.fcx.ccx.sess.unimpl("stmt variant"); } } ret res(bcx, C_nil()); } fn new_builder(BasicBlockRef llbb) -> builder { let BuilderRef llbuild = llvm.LLVMCreateBuilder(); llvm.LLVMPositionBuilderAtEnd(llbuild, llbb); ret builder(llbuild); } // You probably don't want to use this one. See the // next three functions instead. fn new_block_ctxt(@fn_ctxt cx, block_parent parent, block_kind kind, str name) -> @block_ctxt { let vec[cleanup] cleanups = vec(); let BasicBlockRef llbb = llvm.LLVMAppendBasicBlock(cx.llfn, _str.buf(cx.ccx.names.next(name))); ret @rec(llbb=llbb, build=new_builder(llbb), parent=parent, kind=kind, mutable cleanups=cleanups, fcx=cx); } // Use this when you're at the top block of a function or the like. fn new_top_block_ctxt(@fn_ctxt fcx) -> @block_ctxt { auto cx = new_block_ctxt(fcx, parent_none, SCOPE_BLOCK, "function top level"); // FIXME: hack to give us some spill room to make up for an LLVM // bug where it destroys its own callee-saves. cx.build.Alloca(T_array(T_int(), 10u)); ret cx; } // Use this when you're at a curly-brace or similar lexical scope. fn new_scope_block_ctxt(@block_ctxt bcx, str n) -> @block_ctxt { ret new_block_ctxt(bcx.fcx, parent_some(bcx), SCOPE_BLOCK, n); } // Use this when you're making a general CFG BB within a scope. fn new_sub_block_ctxt(@block_ctxt bcx, str n) -> @block_ctxt { ret new_block_ctxt(bcx.fcx, parent_some(bcx), NON_SCOPE_BLOCK, n); } fn trans_block_cleanups(@block_ctxt cx, @block_ctxt cleanup_cx) -> @block_ctxt { auto bcx = cx; if (cleanup_cx.kind != SCOPE_BLOCK) { check (_vec.len[cleanup](cleanup_cx.cleanups) == 0u); } auto i = _vec.len[cleanup](cleanup_cx.cleanups); while (i > 0u) { i -= 1u; auto c = cleanup_cx.cleanups.(i); alt (c) { case (clean(?cfn)) { bcx = cfn(bcx).bcx; } } } ret bcx; } iter block_locals(&ast.block b) -> @ast.local { // FIXME: putting from inside an iter block doesn't work, so we can't // use the index here. for (@ast.stmt s in b.node.stmts) { alt (s.node) { case (ast.stmt_decl(?d)) { alt (d.node) { case (ast.decl_local(?local)) { put local; } case (_) { /* fall through */ } } } case (_) { /* fall through */ } } } } fn alloc_ty(@block_ctxt cx, @ty.t t) -> result { auto val = C_int(0); auto bcx = cx; if (ty.type_has_dynamic_size(t)) { auto n = size_of(bcx, t); bcx = n.bcx; val = bcx.build.ArrayAlloca(T_i8(), n.val); } else { val = bcx.build.Alloca(type_of(cx.fcx.ccx, t)); } ret res(bcx, val); } fn alloc_local(@block_ctxt cx, @ast.local local) -> result { auto t = node_ann_type(cx.fcx.ccx, local.ann); auto r = alloc_ty(cx, t); r.bcx.fcx.lllocals.insert(local.id, r.val); ret r; } fn trans_block(@block_ctxt cx, &ast.block b) -> result { auto bcx = cx; for each (@ast.local local in block_locals(b)) { bcx = alloc_local(bcx, local).bcx; } auto r = res(bcx, C_nil()); for (@ast.stmt s in b.node.stmts) { r = trans_stmt(bcx, *s); bcx = r.bcx; // If we hit a terminator, control won't go any further so // we're in dead-code land. Stop here. if (is_terminated(bcx)) { ret r; } } alt (b.node.expr) { case (some[@ast.expr](?e)) { r = trans_expr(bcx, e); bcx = r.bcx; if (is_terminated(bcx)) { ret r; } } case (none[@ast.expr]) { r = res(bcx, C_nil()); } } bcx = trans_block_cleanups(bcx, find_scope_cx(bcx)); ret res(bcx, r.val); } // NB: must keep 4 fns in sync: // // - type_of_fn_full // - create_llargs_for_fn_args. // - new_fn_ctxt // - trans_args fn new_fn_ctxt(@crate_ctxt cx, ValueRef llfndecl) -> @fn_ctxt { let ValueRef llretptr = llvm.LLVMGetParam(llfndecl, 0u); let ValueRef lltaskptr = llvm.LLVMGetParam(llfndecl, 1u); let ValueRef llenv = llvm.LLVMGetParam(llfndecl, 2u); let hashmap[ast.def_id, ValueRef] llargs = new_def_hash[ValueRef](); let hashmap[ast.def_id, ValueRef] llobjfields = new_def_hash[ValueRef](); let hashmap[ast.def_id, ValueRef] lllocals = new_def_hash[ValueRef](); let hashmap[ast.def_id, ValueRef] llupvars = new_def_hash[ValueRef](); let hashmap[ast.def_id, ValueRef] lltydescs = new_def_hash[ValueRef](); ret @rec(llfn=llfndecl, lltaskptr=lltaskptr, llenv=llenv, llretptr=llretptr, mutable llself=none[ValueRef], mutable lliterbody=none[ValueRef], llargs=llargs, llobjfields=llobjfields, lllocals=lllocals, llupvars=llupvars, lltydescs=lltydescs, ccx=cx); } // NB: must keep 4 fns in sync: // // - type_of_fn_full // - create_llargs_for_fn_args. // - new_fn_ctxt // - trans_args fn create_llargs_for_fn_args(&@fn_ctxt cx, ast.proto proto, option.t[TypeRef] ty_self, @ty.t ret_ty, &vec[ast.arg] args, &vec[ast.ty_param] ty_params) { alt (ty_self) { case (some[TypeRef](_)) { cx.llself = some[ValueRef](cx.llenv); } case (_) { } } auto arg_n = 3u; if (ty_self == none[TypeRef]) { for (ast.ty_param tp in ty_params) { auto llarg = llvm.LLVMGetParam(cx.llfn, arg_n); check (llarg as int != 0); cx.lltydescs.insert(tp.id, llarg); arg_n += 1u; } } if (proto == ast.proto_iter) { auto llarg = llvm.LLVMGetParam(cx.llfn, arg_n); check (llarg as int != 0); cx.lliterbody = some[ValueRef](llarg); arg_n += 1u; } for (ast.arg arg in args) { auto llarg = llvm.LLVMGetParam(cx.llfn, arg_n); check (llarg as int != 0); cx.llargs.insert(arg.id, llarg); arg_n += 1u; } } // Recommended LLVM style, strange though this is, is to copy from args to // allocas immediately upon entry; this permits us to GEP into structures we // were passed and whatnot. Apparently mem2reg will mop up. fn copy_args_to_allocas(@block_ctxt cx, option.t[TypeRef] ty_self, vec[ast.arg] args, vec[ty.arg] arg_tys) { let uint arg_n = 0u; alt (cx.fcx.llself) { case (some[ValueRef](?self_v)) { alt (ty_self) { case (some[TypeRef](?self_t)) { auto alloca = cx.build.Alloca(self_t); cx.build.Store(self_v, alloca); cx.fcx.llself = some[ValueRef](alloca); } } } case (_) { } } for (ast.arg aarg in args) { if (aarg.mode != ast.alias) { auto arg_t = type_of_arg(cx.fcx.ccx, arg_tys.(arg_n)); auto alloca = cx.build.Alloca(arg_t); auto argval = cx.fcx.llargs.get(aarg.id); cx.build.Store(argval, alloca); // Overwrite the llargs entry for this arg with its alloca. cx.fcx.llargs.insert(aarg.id, alloca); } arg_n += 1u; } } fn is_terminated(@block_ctxt cx) -> bool { auto inst = llvm.LLVMGetLastInstruction(cx.llbb); ret llvm.LLVMIsATerminatorInst(inst) as int != 0; } fn arg_tys_of_fn(ast.ann ann) -> vec[ty.arg] { alt (ty.ann_to_type(ann).struct) { case (ty.ty_fn(_, ?arg_tys, _)) { ret arg_tys; } } fail; } fn ret_ty_of_fn_ty(@ty.t t) -> @ty.t { alt (t.struct) { case (ty.ty_fn(_, _, ?ret_ty)) { ret ret_ty; } } fail; } fn ret_ty_of_fn(ast.ann ann) -> @ty.t { ret ret_ty_of_fn_ty(ty.ann_to_type(ann)); } fn populate_fn_ctxt_from_llself(@block_ctxt cx, ValueRef llself) -> result { auto bcx = cx; let vec[@ty.t] field_tys = vec(); for (ast.obj_field f in bcx.fcx.ccx.obj_fields) { field_tys += vec(node_ann_type(bcx.fcx.ccx, f.ann)); } // Synthesize a tuple type for the fields so that GEP_tup_like() can work // its magic. auto fields_tup_ty = ty.plain_tup_ty(field_tys); auto n_typarams = _vec.len[ast.ty_param](bcx.fcx.ccx.obj_typarams); let TypeRef llobj_box_ty = T_obj_ptr(bcx.fcx.ccx.tn, n_typarams); auto box_cell = bcx.build.GEP(llself, vec(C_int(0), C_int(abi.obj_field_box))); auto box_ptr = bcx.build.Load(box_cell); box_ptr = bcx.build.PointerCast(box_ptr, llobj_box_ty); auto obj_typarams = bcx.build.GEP(box_ptr, vec(C_int(0), C_int(abi.box_rc_field_body), C_int(abi.obj_body_elt_typarams))); // The object fields immediately follow the type parameters, so we skip // over them to get the pointer. auto obj_fields = bcx.build.Add(vp2i(bcx, obj_typarams), llsize_of(llvm.LLVMGetElementType(val_ty(obj_typarams)))); // If we can (i.e. the type is statically sized), then cast the resulting // fields pointer to the appropriate LLVM type. If not, just leave it as // i8 *. if (!ty.type_has_dynamic_size(fields_tup_ty)) { auto llfields_ty = type_of(bcx.fcx.ccx, fields_tup_ty); obj_fields = vi2p(bcx, obj_fields, T_ptr(llfields_ty)); } else { obj_fields = vi2p(bcx, obj_fields, T_ptr(T_i8())); } let int i = 0; for (ast.ty_param p in bcx.fcx.ccx.obj_typarams) { let ValueRef lltyparam = bcx.build.GEP(obj_typarams, vec(C_int(0), C_int(i))); lltyparam = bcx.build.Load(lltyparam); bcx.fcx.lltydescs.insert(p.id, lltyparam); i += 1; } i = 0; for (ast.obj_field f in bcx.fcx.ccx.obj_fields) { auto rslt = GEP_tup_like(bcx, fields_tup_ty, obj_fields, vec(0, i)); bcx = rslt.bcx; auto llfield = rslt.val; cx.fcx.llobjfields.insert(f.id, llfield); i += 1; } ret res(bcx, C_nil()); } fn trans_fn(@crate_ctxt cx, &ast._fn f, ast.def_id fid, option.t[TypeRef] ty_self, &vec[ast.ty_param] ty_params, &ast.ann ann) { auto llfndecl = cx.item_ids.get(fid); cx.item_names.insert(cx.path, llfndecl); auto fcx = new_fn_ctxt(cx, llfndecl); create_llargs_for_fn_args(fcx, f.proto, ty_self, ret_ty_of_fn(ann), f.decl.inputs, ty_params); auto bcx = new_top_block_ctxt(fcx); copy_args_to_allocas(bcx, ty_self, f.decl.inputs, arg_tys_of_fn(ann)); alt (fcx.llself) { case (some[ValueRef](?llself)) { bcx = populate_fn_ctxt_from_llself(bcx, llself).bcx; } case (_) { } } auto res = trans_block(bcx, f.body); if (!is_terminated(res.bcx)) { // FIXME: until LLVM has a unit type, we are moving around // C_nil values rather than their void type. res.bcx.build.RetVoid(); } } fn trans_vtbl(@crate_ctxt cx, TypeRef self_ty, &ast._obj ob, &vec[ast.ty_param] ty_params) -> ValueRef { let vec[ValueRef] methods = vec(); fn meth_lteq(&@ast.method a, &@ast.method b) -> bool { ret _str.lteq(a.node.ident, b.node.ident); } auto meths = std.sort.merge_sort[@ast.method](bind meth_lteq(_,_), ob.methods); for (@ast.method m in meths) { auto llfnty = T_nil(); alt (node_ann_type(cx, m.node.ann).struct) { case (ty.ty_fn(?proto, ?inputs, ?output)) { llfnty = type_of_fn_full(cx, proto, some[TypeRef](self_ty), inputs, output, _vec.len[ast.ty_param](ty_params)); } } let @crate_ctxt mcx = @rec(path=cx.path + sep() + m.node.ident with *cx); let str s = cx.names.next("_rust_method") + sep() + mcx.path; let ValueRef llfn = decl_fastcall_fn(cx.llmod, s, llfnty); cx.item_ids.insert(m.node.id, llfn); trans_fn(mcx, m.node.meth, m.node.id, some[TypeRef](self_ty), ty_params, m.node.ann); methods += vec(llfn); } auto vtbl = C_struct(methods); auto gvar = llvm.LLVMAddGlobal(cx.llmod, val_ty(vtbl), _str.buf("_rust_vtbl" + sep() + cx.path)); llvm.LLVMSetInitializer(gvar, vtbl); llvm.LLVMSetGlobalConstant(gvar, True); llvm.LLVMSetLinkage(gvar, lib.llvm.LLVMPrivateLinkage as llvm.Linkage); ret gvar; } fn trans_obj(@crate_ctxt cx, &ast._obj ob, ast.def_id oid, &vec[ast.ty_param] ty_params, &ast.ann ann) { auto llctor_decl = cx.item_ids.get(oid); cx.item_names.insert(cx.path, llctor_decl); // Translate obj ctor args to function arguments. let vec[ast.arg] fn_args = vec(); for (ast.obj_field f in ob.fields) { fn_args += vec(rec(mode=ast.alias, ty=f.ty, ident=f.ident, id=f.id)); } auto fcx = new_fn_ctxt(cx, llctor_decl); create_llargs_for_fn_args(fcx, ast.proto_fn, none[TypeRef], ret_ty_of_fn(ann), fn_args, ty_params); auto bcx = new_top_block_ctxt(fcx); let vec[ty.arg] arg_tys = arg_tys_of_fn(ann); copy_args_to_allocas(bcx, none[TypeRef], fn_args, arg_tys); auto llself_ty = type_of(cx, ret_ty_of_fn(ann)); auto pair = bcx.fcx.llretptr; auto vtbl = trans_vtbl(cx, llself_ty, ob, ty_params); auto pair_vtbl = bcx.build.GEP(pair, vec(C_int(0), C_int(abi.obj_field_vtbl))); auto pair_box = bcx.build.GEP(pair, vec(C_int(0), C_int(abi.obj_field_box))); bcx.build.Store(vtbl, pair_vtbl); let TypeRef llbox_ty = T_opaque_obj_ptr(cx.tn); if (_vec.len[ast.ty_param](ty_params) == 0u && _vec.len[ty.arg](arg_tys) == 0u) { // Store null into pair, if no args or typarams. bcx.build.Store(C_null(llbox_ty), pair_box); } else { // Malloc a box for the body and copy args in. let vec[@ty.t] obj_fields = vec(); for (ty.arg a in arg_tys) { _vec.push[@ty.t](obj_fields, a.ty); } // Synthesize an obj body type. auto tydesc_ty = plain_ty(ty.ty_type); let vec[@ty.t] tps = vec(); for (ast.ty_param tp in ty_params) { _vec.push[@ty.t](tps, tydesc_ty); } let @ty.t typarams_ty = ty.plain_tup_ty(tps); let @ty.t fields_ty = ty.plain_tup_ty(obj_fields); let @ty.t body_ty = ty.plain_tup_ty(vec(tydesc_ty, typarams_ty, fields_ty)); let @ty.t boxed_body_ty = ty.plain_box_ty(body_ty); // Malloc a box for the body. auto box = trans_malloc_boxed(bcx, body_ty); bcx = box.bcx; auto rc = GEP_tup_like(bcx, boxed_body_ty, box.val, vec(0, abi.box_rc_field_refcnt)); bcx = rc.bcx; auto body = GEP_tup_like(bcx, boxed_body_ty, box.val, vec(0, abi.box_rc_field_body)); bcx = body.bcx; bcx.build.Store(C_int(1), rc.val); // Store body tydesc. auto body_tydesc = GEP_tup_like(bcx, body_ty, body.val, vec(0, abi.obj_body_elt_tydesc)); bcx = body_tydesc.bcx; auto body_td = get_tydesc(bcx, body_ty); bcx = body_td.bcx; bcx.build.Store(body_td.val, body_tydesc.val); // Copy typarams into captured typarams. auto body_typarams = GEP_tup_like(bcx, body_ty, body.val, vec(0, abi.obj_body_elt_typarams)); bcx = body_typarams.bcx; let int i = 0; for (ast.ty_param tp in ty_params) { auto typaram = bcx.fcx.lltydescs.get(tp.id); auto capture = GEP_tup_like(bcx, typarams_ty, body_typarams.val, vec(0, i)); bcx = capture.bcx; bcx = copy_ty(bcx, INIT, capture.val, typaram, tydesc_ty).bcx; i += 1; } // Copy args into body fields. auto body_fields = GEP_tup_like(bcx, body_ty, body.val, vec(0, abi.obj_body_elt_fields)); bcx = body_fields.bcx; i = 0; for (ast.obj_field f in ob.fields) { auto arg = bcx.fcx.llargs.get(f.id); arg = load_scalar_or_boxed(bcx, arg, arg_tys.(i).ty); auto field = GEP_tup_like(bcx, fields_ty, body_fields.val, vec(0, i)); bcx = field.bcx; bcx = copy_ty(bcx, INIT, field.val, arg, arg_tys.(i).ty).bcx; i += 1; } // Store box ptr in outer pair. auto p = bcx.build.PointerCast(box.val, llbox_ty); bcx.build.Store(p, pair_box); } bcx.build.RetVoid(); } fn trans_tag_variant(@crate_ctxt cx, ast.def_id tag_id, &ast.variant variant, int index, &vec[ast.ty_param] ty_params) { if (_vec.len[ast.variant_arg](variant.args) == 0u) { ret; // nullary constructors are just constants } // Translate variant arguments to function arguments. let vec[ast.arg] fn_args = vec(); auto i = 0u; for (ast.variant_arg varg in variant.args) { fn_args += vec(rec(mode=ast.alias, ty=varg.ty, ident="arg" + _uint.to_str(i, 10u), id=varg.id)); } check (cx.item_ids.contains_key(variant.id)); let ValueRef llfndecl = cx.item_ids.get(variant.id); auto fcx = new_fn_ctxt(cx, llfndecl); create_llargs_for_fn_args(fcx, ast.proto_fn, none[TypeRef], ret_ty_of_fn(variant.ann), fn_args, ty_params); let vec[@ty.t] ty_param_substs = vec(); for (ast.ty_param tp in ty_params) { ty_param_substs += vec(plain_ty(ty.ty_param(tp.id))); } auto bcx = new_top_block_ctxt(fcx); auto arg_tys = arg_tys_of_fn(variant.ann); copy_args_to_allocas(bcx, none[TypeRef], fn_args, arg_tys); // Cast the tag to a type we can GEP into. auto lltagptr = bcx.build.PointerCast(fcx.llretptr, T_opaque_tag_ptr(fcx.ccx.tn)); auto lldiscrimptr = bcx.build.GEP(lltagptr, vec(C_int(0), C_int(0))); bcx.build.Store(C_int(index), lldiscrimptr); auto llblobptr = bcx.build.GEP(lltagptr, vec(C_int(0), C_int(1))); i = 0u; for (ast.variant_arg va in variant.args) { auto rslt = GEP_tag(bcx, llblobptr, tag_id, variant.id, ty_param_substs, i as int); bcx = rslt.bcx; auto lldestptr = rslt.val; // If this argument to this function is a tag, it'll have come in to // this function as an opaque blob due to the way that type_of() // works. So we have to cast to the destination's view of the type. auto llargptr = bcx.build.PointerCast(fcx.llargs.get(va.id), val_ty(lldestptr)); auto arg_ty = arg_tys.(i).ty; auto llargval; if (ty.type_is_structural(arg_ty) || ty.type_has_dynamic_size(arg_ty)) { llargval = llargptr; } else { llargval = bcx.build.Load(llargptr); } rslt = copy_ty(bcx, INIT, lldestptr, llargval, arg_ty); bcx = rslt.bcx; i += 1u; } bcx = trans_block_cleanups(bcx, find_scope_cx(bcx)); bcx.build.RetVoid(); } // FIXME: this should do some structural hash-consing to avoid // duplicate constants. I think. Maybe LLVM has a magical mode // that does so later on? fn trans_const_expr(@crate_ctxt cx, @ast.expr e) -> ValueRef { alt (e.node) { case (ast.expr_lit(?lit, ?ann)) { ret trans_lit(cx, *lit, ann); } } } fn trans_const(@crate_ctxt cx, @ast.expr e, &ast.def_id cid, &ast.ann ann) { auto t = node_ann_type(cx, ann); auto v = trans_const_expr(cx, e); // The scalars come back as 1st class LLVM vals // which we have to stick into global constants. auto g = cx.consts.get(cid); llvm.LLVMSetInitializer(g, v); llvm.LLVMSetGlobalConstant(g, True); } fn trans_item(@crate_ctxt cx, &ast.item item) { alt (item.node) { case (ast.item_fn(?name, ?f, ?tps, ?fid, ?ann)) { auto sub_cx = @rec(path=cx.path + sep() + name with *cx); trans_fn(sub_cx, f, fid, none[TypeRef], tps, ann); } case (ast.item_obj(?name, ?ob, ?tps, ?oid, ?ann)) { auto sub_cx = @rec(path=cx.path + sep() + name, obj_typarams=tps, obj_fields=ob.fields with *cx); trans_obj(sub_cx, ob, oid, tps, ann); } case (ast.item_mod(?name, ?m, _)) { auto sub_cx = @rec(path=cx.path + sep() + name with *cx); trans_mod(sub_cx, m); } case (ast.item_tag(?name, ?variants, ?tps, ?tag_id)) { auto sub_cx = @rec(path=cx.path + sep() + name with *cx); auto i = 0; for (ast.variant variant in variants) { trans_tag_variant(sub_cx, tag_id, variant, i, tps); i += 1; } } case (ast.item_const(?name, _, ?expr, ?cid, ?ann)) { auto sub_cx = @rec(path=cx.path + sep() + name with *cx); trans_const(sub_cx, expr, cid, ann); } case (_) { /* fall through */ } } } fn trans_mod(@crate_ctxt cx, &ast._mod m) { for (@ast.item item in m.items) { trans_item(cx, *item); } } fn get_pair_fn_ty(TypeRef llpairty) -> TypeRef { // Bit of a kludge: pick the fn typeref out of the pair. let vec[TypeRef] pair_tys = vec(T_nil(), T_nil()); llvm.LLVMGetStructElementTypes(llpairty, _vec.buf[TypeRef](pair_tys)); ret llvm.LLVMGetElementType(pair_tys.(0)); } fn decl_fn_and_pair(@crate_ctxt cx, str kind, str name, vec[ast.ty_param] ty_params, &ast.ann ann, ast.def_id id) { auto llfty; auto llpairty; alt (node_ann_type(cx, ann).struct) { case (ty.ty_fn(?proto, ?inputs, ?output)) { llfty = type_of_fn(cx, proto, inputs, output, _vec.len[ast.ty_param](ty_params)); llpairty = T_fn_pair(cx.tn, llfty); } case (_) { cx.sess.bug("decl_fn_and_pair(): fn item doesn't have fn type?!"); fail; } } // Declare the function itself. let str s = cx.names.next("_rust_" + kind) + sep() + name; let ValueRef llfn = decl_fastcall_fn(cx.llmod, s, llfty); // Declare the global constant pair that points to it. let str ps = cx.names.next("_rust_" + kind + "_pair") + sep() + name; register_fn_pair(cx, ps, llpairty, llfn, id); } fn register_fn_pair(@crate_ctxt cx, str ps, TypeRef llpairty, ValueRef llfn, ast.def_id id) { let ValueRef gvar = llvm.LLVMAddGlobal(cx.llmod, llpairty, _str.buf(ps)); auto pair = C_struct(vec(llfn, C_null(T_opaque_closure_ptr(cx.tn)))); llvm.LLVMSetInitializer(gvar, pair); llvm.LLVMSetGlobalConstant(gvar, True); llvm.LLVMSetLinkage(gvar, lib.llvm.LLVMPrivateLinkage as llvm.Linkage); cx.item_ids.insert(id, llfn); cx.fn_pairs.insert(id, gvar); } // Returns the number of type parameters that the given native function has. fn native_fn_ty_param_count(@crate_ctxt cx, &ast.def_id id) -> uint { auto count; auto native_item = cx.native_items.get(id); alt (native_item.node) { case (ast.native_item_ty(_,_)) { cx.sess.bug("decl_native_fn_and_pair(): native fn isn't " + "actually a fn?!"); fail; } case (ast.native_item_fn(_, _, _, ?tps, _, _)) { count = _vec.len[ast.ty_param](tps); } } ret count; } fn native_fn_wrapper_type(@crate_ctxt cx, uint ty_param_count, &ast.ann ann) -> TypeRef { auto x = node_ann_type(cx, ann); alt (x.struct) { case (ty.ty_native_fn(?abi, ?args, ?out)) { ret type_of_fn(cx, ast.proto_fn, args, out, ty_param_count); } } fail; } fn decl_native_fn_and_pair(@crate_ctxt cx, str name, &ast.ann ann, ast.def_id id) { auto num_ty_param = native_fn_ty_param_count(cx, id); // Declare the wrapper. auto wrapper_type = native_fn_wrapper_type(cx, num_ty_param, ann); let str s = cx.names.next("_rust_wrapper") + sep() + name; let ValueRef wrapper_fn = decl_fastcall_fn(cx.llmod, s, wrapper_type); // Declare the global constant pair that points to it. auto wrapper_pair_type = T_fn_pair(cx.tn, wrapper_type); let str ps = cx.names.next("_rust_wrapper_pair") + sep() + name; register_fn_pair(cx, ps, wrapper_pair_type, wrapper_fn, id); // Build the wrapper. auto fcx = new_fn_ctxt(cx, wrapper_fn); auto bcx = new_top_block_ctxt(fcx); // Declare the function itself. auto item = cx.native_items.get(id); auto fn_type = node_ann_type(cx, ann); // NB: has no type params auto abi = ty.ty_fn_abi(fn_type); auto llfnty = type_of_native_fn(cx, abi, ty.ty_fn_args(fn_type), ty.ty_fn_ret(fn_type), num_ty_param); // We can only declare a native function with a given name once; LLVM // unhelpfully mangles the names if we try to multiply declare one. auto function; if (!cx.native_fns.contains_key(name)) { function = decl_cdecl_fn(cx.llmod, name, llfnty); cx.native_fns.insert(name, function); } else { // We support type-punning a native function by giving it different // Rust types. auto llorigfn = cx.native_fns.get(name); function = bcx.build.PointerCast(llorigfn, T_ptr(llfnty)); } let vec[ValueRef] call_args = vec(); auto arg_n = 3u; alt (abi) { case (ast.native_abi_rust) { call_args += vec(fcx.lltaskptr); for each (uint i in _uint.range(0u, num_ty_param)) { auto llarg = llvm.LLVMGetParam(fcx.llfn, arg_n); check (llarg as int != 0); call_args += vec(llarg); arg_n += 1u; } } case (ast.native_abi_cdecl) { } } auto args = ty.ty_fn_args(fn_type); for (ty.arg arg in args) { auto llarg = llvm.LLVMGetParam(fcx.llfn, arg_n); check (llarg as int != 0); call_args += vec(llarg); arg_n += 1u; } auto r = bcx.build.Call(function, call_args); bcx.build.Store(r, fcx.llretptr); bcx.build.RetVoid(); } fn collect_native_item(&@crate_ctxt cx, @ast.native_item i) -> @crate_ctxt { alt (i.node) { case (ast.native_item_fn(?name, _, _, _, ?fid, ?ann)) { cx.native_items.insert(fid, i); if (! cx.obj_methods.contains_key(fid)) { decl_native_fn_and_pair(cx, name, ann, fid); } } case (_) { /* fall through */ } } ret cx; } fn collect_item(&@crate_ctxt cx, @ast.item i) -> @crate_ctxt { alt (i.node) { case (ast.item_const(?name, _, _, ?cid, ?ann)) { auto typ = node_ann_type(cx, ann); auto g = llvm.LLVMAddGlobal(cx.llmod, type_of(cx, typ), _str.buf(cx.names.next(name))); llvm.LLVMSetLinkage(g, lib.llvm.LLVMPrivateLinkage as llvm.Linkage); cx.items.insert(cid, i); cx.consts.insert(cid, g); } case (ast.item_mod(?name, ?m, ?mid)) { cx.items.insert(mid, i); } case (ast.item_tag(_, ?variants, ?tps, ?tag_id)) { cx.items.insert(tag_id, i); } case (_) { /* fall through */ } } ret cx; } fn collect_item_pass2(&@crate_ctxt cx, @ast.item i) -> @crate_ctxt { alt (i.node) { case (ast.item_fn(?name, ?f, ?tps, ?fid, ?ann)) { cx.items.insert(fid, i); if (! cx.obj_methods.contains_key(fid)) { decl_fn_and_pair(cx, "fn", name, tps, ann, fid); } } case (ast.item_obj(?name, ?ob, ?tps, ?oid, ?ann)) { cx.items.insert(oid, i); decl_fn_and_pair(cx, "obj_ctor", name, tps, ann, oid); for (@ast.method m in ob.methods) { cx.obj_methods.insert(m.node.id, ()); } } case (_) { /* fall through */ } } ret cx; } fn collect_items(@crate_ctxt cx, @ast.crate crate) { let fold.ast_fold[@crate_ctxt] fld = fold.new_identity_fold[@crate_ctxt](); // FIXME: It might be better to use a worklist for this. An item // would be added to it if it depends on a not yet seen tag for example. auto fld1 = @rec( update_env_for_item = bind collect_item(_,_), update_env_for_native_item = bind collect_native_item(_,_) with *fld ); fold.fold_crate[@crate_ctxt](cx, fld1, crate); auto fld2 = @rec( update_env_for_item = bind collect_item_pass2(_,_) with *fld ); fold.fold_crate[@crate_ctxt](cx, fld2, crate); } fn collect_tag_ctor(&@crate_ctxt cx, @ast.item i) -> @crate_ctxt { alt (i.node) { case (ast.item_tag(_, ?variants, ?tps, _)) { for (ast.variant variant in variants) { if (_vec.len[ast.variant_arg](variant.args) != 0u) { decl_fn_and_pair(cx, "tag", variant.name, tps, variant.ann, variant.id); } } } case (_) { /* fall through */ } } ret cx; } fn collect_tag_ctors(@crate_ctxt cx, @ast.crate crate) { let fold.ast_fold[@crate_ctxt] fld = fold.new_identity_fold[@crate_ctxt](); fld = @rec( update_env_for_item = bind collect_tag_ctor(_,_) with *fld ); fold.fold_crate[@crate_ctxt](cx, fld, crate); } // The constant translation pass. fn trans_constant(&@crate_ctxt cx, @ast.item it) -> @crate_ctxt { alt (it.node) { case (ast.item_tag(_, ?variants, _, ?tag_id)) { auto i = 0u; auto n_variants = _vec.len[ast.variant](variants); while (i < n_variants) { auto variant = variants.(i); auto discrim_val = C_int(i as int); // FIXME: better name. auto discrim_gvar = llvm.LLVMAddGlobal(cx.llmod, T_int(), _str.buf("tag_discrim")); // FIXME: Eventually we do want to export these, but we need // to figure out what name they get first! llvm.LLVMSetInitializer(discrim_gvar, discrim_val); llvm.LLVMSetGlobalConstant(discrim_gvar, True); llvm.LLVMSetLinkage(discrim_gvar, lib.llvm.LLVMPrivateLinkage as llvm.Linkage); cx.discrims.insert(variant.id, discrim_gvar); i += 1u; } } case (ast.item_const(?name, _, ?expr, ?cid, ?ann)) { // FIXME: The whole expr-translation system needs cloning to deal // with consts. auto v = C_int(1); cx.item_ids.insert(cid, v); } case (_) { // empty } } ret cx; } fn trans_constants(@crate_ctxt cx, @ast.crate crate) { let fold.ast_fold[@crate_ctxt] fld = fold.new_identity_fold[@crate_ctxt](); fld = @rec(update_env_for_item = bind trans_constant(_,_) with *fld); fold.fold_crate[@crate_ctxt](cx, fld, crate); } fn vp2i(@block_ctxt cx, ValueRef v) -> ValueRef { ret cx.build.PtrToInt(v, T_int()); } fn vi2p(@block_ctxt cx, ValueRef v, TypeRef t) -> ValueRef { ret cx.build.IntToPtr(v, t); } fn p2i(ValueRef v) -> ValueRef { ret llvm.LLVMConstPtrToInt(v, T_int()); } fn i2p(ValueRef v, TypeRef t) -> ValueRef { ret llvm.LLVMConstIntToPtr(v, t); } fn trans_exit_task_glue(@glue_fns glues, &hashmap[str, ValueRef] upcalls, type_names tn, ModuleRef llmod) { let vec[TypeRef] T_args = vec(); let vec[ValueRef] V_args = vec(); auto llfn = glues.exit_task_glue; let ValueRef lltaskptr = llvm.LLVMGetParam(llfn, 3u); auto entrybb = llvm.LLVMAppendBasicBlock(llfn, _str.buf("entry")); auto build = new_builder(entrybb); trans_upcall2(build, glues, lltaskptr, upcalls, tn, llmod, "upcall_exit", V_args); build.RetVoid(); } fn create_typedefs(@crate_ctxt cx) { llvm.LLVMAddTypeName(cx.llmod, _str.buf("crate"), T_crate(cx.tn)); llvm.LLVMAddTypeName(cx.llmod, _str.buf("task"), T_task(cx.tn)); llvm.LLVMAddTypeName(cx.llmod, _str.buf("tydesc"), T_tydesc(cx.tn)); } fn create_crate_constant(ValueRef crate_ptr, @glue_fns glues) { let ValueRef crate_addr = p2i(crate_ptr); let ValueRef activate_glue_off = llvm.LLVMConstSub(p2i(glues.activate_glue), crate_addr); let ValueRef yield_glue_off = llvm.LLVMConstSub(p2i(glues.yield_glue), crate_addr); let ValueRef exit_task_glue_off = llvm.LLVMConstSub(p2i(glues.exit_task_glue), crate_addr); let ValueRef crate_val = C_struct(vec(C_null(T_int()), // ptrdiff_t image_base_off p2i(crate_ptr), // uintptr_t self_addr C_null(T_int()), // ptrdiff_t debug_abbrev_off C_null(T_int()), // size_t debug_abbrev_sz C_null(T_int()), // ptrdiff_t debug_info_off C_null(T_int()), // size_t debug_info_sz activate_glue_off, // size_t activate_glue_off yield_glue_off, // size_t yield_glue_off C_null(T_int()), // size_t unwind_glue_off C_null(T_int()), // size_t gc_glue_off exit_task_glue_off, // size_t main_exit_task_glue_off C_null(T_int()), // int n_rust_syms C_null(T_int()), // int n_c_syms C_null(T_int()), // int n_libs C_int(abi.abi_x86_rustc_fastcall) // uintptr_t abi_tag )); llvm.LLVMSetInitializer(crate_ptr, crate_val); } fn find_main_fn(@crate_ctxt cx) -> ValueRef { auto e = sep() + "main"; let ValueRef v = C_nil(); let uint n = 0u; for each (@tup(str,ValueRef) i in cx.item_names.items()) { if (_str.ends_with(i._0, e)) { n += 1u; v = i._1; } } alt (n) { case (0u) { cx.sess.err("main fn not found"); } case (1u) { ret v; } case (_) { cx.sess.err("multiple main fns found"); } } fail; } fn trans_main_fn(@crate_ctxt cx, ValueRef llcrate) { auto T_main_args = vec(T_int(), T_int()); auto T_rust_start_args = vec(T_int(), T_int(), T_int(), T_int()); auto main_name; if (_str.eq(std.os.target_os(), "win32")) { main_name = "WinMain@16"; } else { main_name = "main"; } auto llmain = decl_cdecl_fn(cx.llmod, main_name, T_fn(T_main_args, T_int())); auto llrust_start = decl_cdecl_fn(cx.llmod, "rust_start", T_fn(T_rust_start_args, T_int())); auto llargc = llvm.LLVMGetParam(llmain, 0u); auto llargv = llvm.LLVMGetParam(llmain, 1u); auto llrust_main = find_main_fn(cx); // // Emit the moral equivalent of: // // main(int argc, char **argv) { // rust_start(&_rust.main, &crate, argc, argv); // } // let BasicBlockRef llbb = llvm.LLVMAppendBasicBlock(llmain, _str.buf("")); auto b = new_builder(llbb); auto start_args = vec(p2i(llrust_main), p2i(llcrate), llargc, llargv); b.Ret(b.Call(llrust_start, start_args)); } fn declare_intrinsics(ModuleRef llmod) -> hashmap[str,ValueRef] { let vec[TypeRef] T_trap_args = vec(); auto trap = decl_cdecl_fn(llmod, "llvm.trap", T_fn(T_trap_args, T_void())); auto intrinsics = new_str_hash[ValueRef](); intrinsics.insert("llvm.trap", trap); ret intrinsics; } fn trace_str(@block_ctxt cx, str s) { trans_upcall(cx, "upcall_trace_str", vec(p2i(C_cstr(cx.fcx.ccx, s)))); } fn trace_word(@block_ctxt cx, ValueRef v) { trans_upcall(cx, "upcall_trace_word", vec(v)); } fn trace_ptr(@block_ctxt cx, ValueRef v) { trace_word(cx, cx.build.PtrToInt(v, T_int())); } fn trap(@block_ctxt bcx) { let vec[ValueRef] v = vec(); bcx.build.Call(bcx.fcx.ccx.intrinsics.get("llvm.trap"), v); } fn check_module(ModuleRef llmod) { auto pm = mk_pass_manager(); llvm.LLVMAddVerifierPass(pm.llpm); llvm.LLVMRunPassManager(pm.llpm, llmod); // TODO: run the linter here also, once there are llvm-c bindings for it. } fn decl_no_op_type_glue(ModuleRef llmod, type_names tn) -> ValueRef { auto ty = T_fn(vec(T_taskptr(tn), T_ptr(T_i8())), T_void()); ret decl_fastcall_fn(llmod, abi.no_op_type_glue_name(), ty); } fn make_no_op_type_glue(ValueRef fun) { auto bb_name = _str.buf("_rust_no_op_type_glue_bb"); auto llbb = llvm.LLVMAppendBasicBlock(fun, bb_name); new_builder(llbb).RetVoid(); } fn decl_memcpy_glue(ModuleRef llmod) -> ValueRef { auto p8 = T_ptr(T_i8()); auto ty = T_fn(vec(p8, p8, T_int()), T_void()); ret decl_fastcall_fn(llmod, abi.memcpy_glue_name(), ty); } fn make_memcpy_glue(ValueRef fun) { // We're not using the LLVM memcpy intrinsic. It appears to call through // to the platform memcpy in some cases, which is not terribly safe to run // on a rust stack. auto initbb = llvm.LLVMAppendBasicBlock(fun, _str.buf("init")); auto hdrbb = llvm.LLVMAppendBasicBlock(fun, _str.buf("hdr")); auto loopbb = llvm.LLVMAppendBasicBlock(fun, _str.buf("loop")); auto endbb = llvm.LLVMAppendBasicBlock(fun, _str.buf("end")); auto dst = llvm.LLVMGetParam(fun, 0u); auto src = llvm.LLVMGetParam(fun, 1u); auto count = llvm.LLVMGetParam(fun, 2u); // Init block. auto ib = new_builder(initbb); auto ip = ib.Alloca(T_int()); ib.Store(C_int(0), ip); ib.Br(hdrbb); // Loop-header block auto hb = new_builder(hdrbb); auto i = hb.Load(ip); hb.CondBr(hb.ICmp(lib.llvm.LLVMIntEQ, count, i), endbb, loopbb); // Loop-body block auto lb = new_builder(loopbb); i = lb.Load(ip); lb.Store(lb.Load(lb.GEP(src, vec(i))), lb.GEP(dst, vec(i))); lb.Store(lb.Add(i, C_int(1)), ip); lb.Br(hdrbb); // End block auto eb = new_builder(endbb); eb.RetVoid(); } fn decl_bzero_glue(ModuleRef llmod) -> ValueRef { auto p8 = T_ptr(T_i8()); auto ty = T_fn(vec(p8, T_int()), T_void()); ret decl_fastcall_fn(llmod, abi.bzero_glue_name(), ty); } fn make_bzero_glue(ModuleRef llmod) -> ValueRef { // We're not using the LLVM memset intrinsic. Same as with memcpy. auto fun = decl_bzero_glue(llmod); auto initbb = llvm.LLVMAppendBasicBlock(fun, _str.buf("init")); auto hdrbb = llvm.LLVMAppendBasicBlock(fun, _str.buf("hdr")); auto loopbb = llvm.LLVMAppendBasicBlock(fun, _str.buf("loop")); auto endbb = llvm.LLVMAppendBasicBlock(fun, _str.buf("end")); auto dst = llvm.LLVMGetParam(fun, 0u); auto count = llvm.LLVMGetParam(fun, 1u); // Init block. auto ib = new_builder(initbb); auto ip = ib.Alloca(T_int()); ib.Store(C_int(0), ip); ib.Br(hdrbb); // Loop-header block auto hb = new_builder(hdrbb); auto i = hb.Load(ip); hb.CondBr(hb.ICmp(lib.llvm.LLVMIntEQ, count, i), endbb, loopbb); // Loop-body block auto lb = new_builder(loopbb); i = lb.Load(ip); lb.Store(C_integral(0, T_i8()), lb.GEP(dst, vec(i))); lb.Store(lb.Add(i, C_int(1)), ip); lb.Br(hdrbb); // End block auto eb = new_builder(endbb); eb.RetVoid(); ret fun; } fn make_vec_append_glue(ModuleRef llmod, type_names tn) -> ValueRef { /* * Args to vec_append_glue: * * 0. (Implicit) task ptr * * 1. Pointer to the tydesc of the vec, so that we can tell if it's gc * mem, and have a tydesc to pass to malloc if we're allocating anew. * * 2. Pointer to the tydesc of the vec's stored element type, so that * elements can be copied to a newly alloc'ed vec if one must be * created. * * 3. Dst vec ptr (i.e. ptr to ptr to rust_vec). * * 4. Src vec (i.e. ptr to rust_vec). * * 5. Flag indicating whether to skip trailing null on dst. * */ auto ty = T_fn(vec(T_taskptr(tn), T_ptr(T_tydesc(tn)), T_ptr(T_tydesc(tn)), T_ptr(T_opaque_vec_ptr()), T_opaque_vec_ptr(), T_bool()), T_void()); auto llfn = decl_fastcall_fn(llmod, abi.vec_append_glue_name(), ty); ret llfn; } fn vec_fill(@block_ctxt bcx, ValueRef v) -> ValueRef { ret bcx.build.Load(bcx.build.GEP(v, vec(C_int(0), C_int(abi.vec_elt_fill)))); } fn put_vec_fill(@block_ctxt bcx, ValueRef v, ValueRef fill) -> ValueRef { ret bcx.build.Store(fill, bcx.build.GEP(v, vec(C_int(0), C_int(abi.vec_elt_fill)))); } fn vec_fill_adjusted(@block_ctxt bcx, ValueRef v, ValueRef skipnull) -> ValueRef { auto f = bcx.build.Load(bcx.build.GEP(v, vec(C_int(0), C_int(abi.vec_elt_fill)))); ret bcx.build.Select(skipnull, bcx.build.Sub(f, C_int(1)), f); } fn vec_p0(@block_ctxt bcx, ValueRef v) -> ValueRef { auto p = bcx.build.GEP(v, vec(C_int(0), C_int(abi.vec_elt_data))); ret bcx.build.PointerCast(p, T_ptr(T_i8())); } fn vec_p1(@block_ctxt bcx, ValueRef v) -> ValueRef { auto len = vec_fill(bcx, v); ret bcx.build.GEP(vec_p0(bcx, v), vec(len)); } fn vec_p1_adjusted(@block_ctxt bcx, ValueRef v, ValueRef skipnull) -> ValueRef { auto len = vec_fill_adjusted(bcx, v, skipnull); ret bcx.build.GEP(vec_p0(bcx, v), vec(len)); } fn trans_vec_append_glue(@crate_ctxt cx) { auto llfn = cx.glues.vec_append_glue; let ValueRef lltaskptr = llvm.LLVMGetParam(llfn, 0u); let ValueRef llvec_tydesc = llvm.LLVMGetParam(llfn, 1u); let ValueRef llelt_tydesc = llvm.LLVMGetParam(llfn, 2u); let ValueRef lldst_vec_ptr = llvm.LLVMGetParam(llfn, 3u); let ValueRef llsrc_vec = llvm.LLVMGetParam(llfn, 4u); let ValueRef llskipnull = llvm.LLVMGetParam(llfn, 5u); auto fcx = @rec(llfn=llfn, lltaskptr=lltaskptr, llenv=C_null(T_ptr(T_nil())), llretptr=C_null(T_ptr(T_nil())), mutable llself=none[ValueRef], mutable lliterbody=none[ValueRef], llargs=new_def_hash[ValueRef](), llobjfields=new_def_hash[ValueRef](), lllocals=new_def_hash[ValueRef](), llupvars=new_def_hash[ValueRef](), lltydescs=new_def_hash[ValueRef](), ccx=cx); auto bcx = new_top_block_ctxt(fcx); auto lldst_vec = bcx.build.Load(lldst_vec_ptr); // First the dst vec needs to grow to accommodate the src vec. // To do this we have to figure out how many bytes to add. auto llcopy_dst_ptr = bcx.build.Alloca(T_int()); auto llnew_vec_res = trans_upcall(bcx, "upcall_vec_grow", vec(vp2i(bcx, lldst_vec), vec_fill_adjusted(bcx, llsrc_vec, llskipnull), vp2i(bcx, llcopy_dst_ptr), vp2i(bcx, llvec_tydesc))); bcx = llnew_vec_res.bcx; auto llnew_vec = vi2p(bcx, llnew_vec_res.val, T_opaque_vec_ptr()); put_vec_fill(bcx, llnew_vec, C_int(0)); auto copy_dst_cx = new_sub_block_ctxt(bcx, "copy new <- dst"); auto copy_src_cx = new_sub_block_ctxt(bcx, "copy new <- src"); auto pp0 = bcx.build.Alloca(T_ptr(T_i8())); bcx.build.Store(vec_p0(bcx, llnew_vec), pp0); bcx.build.CondBr(bcx.build.TruncOrBitCast (bcx.build.Load(llcopy_dst_ptr), T_i1()), copy_dst_cx.llbb, copy_src_cx.llbb); fn copy_elts(@block_ctxt cx, ValueRef elt_tydesc, ValueRef dst, ValueRef src, ValueRef n_bytes) -> result { auto src_lim = cx.build.GEP(src, vec(n_bytes)); auto elt_llsz = cx.build.Load(cx.build.GEP(elt_tydesc, vec(C_int(0), C_int(abi.tydesc_field_size)))); fn take_one(ValueRef elt_tydesc, @block_ctxt cx, ValueRef dst, ValueRef src) -> result { call_tydesc_glue_full(cx, src, elt_tydesc, abi.tydesc_field_take_glue_off); ret res(cx, src); } auto bcx = iter_sequence_raw(cx, dst, src, src_lim, elt_llsz, bind take_one(elt_tydesc, _, _, _)).bcx; ret call_memcpy(bcx, dst, src, n_bytes); } // Copy any dst elements in, omitting null if doing str. auto n_bytes = vec_fill_adjusted(copy_dst_cx, lldst_vec, llskipnull); copy_dst_cx = copy_elts(copy_dst_cx, llelt_tydesc, copy_dst_cx.build.Load(pp0), vec_p0(copy_dst_cx, lldst_vec), n_bytes).bcx; put_vec_fill(copy_dst_cx, llnew_vec, n_bytes); copy_dst_cx.build.Store(vec_p1(copy_dst_cx, llnew_vec), pp0); copy_dst_cx.build.Br(copy_src_cx.llbb); // Copy any src elements in, carrying along null if doing str. n_bytes = vec_fill(copy_src_cx, llsrc_vec); copy_src_cx = copy_elts(copy_src_cx, llelt_tydesc, copy_src_cx.build.Load(pp0), vec_p0(copy_src_cx, llsrc_vec), n_bytes).bcx; put_vec_fill(copy_src_cx, llnew_vec, copy_src_cx.build.Add(vec_fill(copy_src_cx, llnew_vec), n_bytes)); // Write new_vec back through the alias we were given. copy_src_cx.build.Store(llnew_vec, lldst_vec_ptr); copy_src_cx.build.RetVoid(); } fn make_glues(ModuleRef llmod, type_names tn) -> @glue_fns { ret @rec(activate_glue = decl_glue(llmod, tn, abi.activate_glue_name()), yield_glue = decl_glue(llmod, tn, abi.yield_glue_name()), /* * Note: the signature passed to decl_cdecl_fn here looks unusual * because it is. It corresponds neither to an upcall signature * nor a normal rust-ABI signature. In fact it is a fake * signature, that exists solely to acquire the task pointer as * an argument to the upcall. It so happens that the runtime sets * up the task pointer as the sole incoming argument to the frame * that we return into when returning to the exit task glue. So * this is the signature required to retrieve it. */ exit_task_glue = decl_cdecl_fn(llmod, abi.exit_task_glue_name(), T_fn(vec(T_int(), T_int(), T_int(), T_taskptr(tn)), T_void())), upcall_glues = _vec.init_fn[ValueRef](bind decl_upcall_glue(llmod, tn, _), abi.n_upcall_glues + 1 as uint), no_op_type_glue = decl_no_op_type_glue(llmod, tn), memcpy_glue = decl_memcpy_glue(llmod), bzero_glue = decl_bzero_glue(llmod), vec_append_glue = make_vec_append_glue(llmod, tn)); } fn make_common_glue(str output) { // FIXME: part of this is repetitive and is probably a good idea // to autogen it, but things like the memcpy implementation are not // and it might be better to just check in a .ll file. auto llmod = llvm.LLVMModuleCreateWithNameInContext(_str.buf("rust_out"), llvm.LLVMGetGlobalContext()); llvm.LLVMSetDataLayout(llmod, _str.buf(x86.get_data_layout())); llvm.LLVMSetTarget(llmod, _str.buf(x86.get_target_triple())); auto td = mk_target_data(x86.get_data_layout()); auto tn = mk_type_names(); let ValueRef crate_ptr = llvm.LLVMAddGlobal(llmod, T_crate(tn), _str.buf("rust_crate")); auto intrinsics = declare_intrinsics(llmod); llvm.LLVMSetModuleInlineAsm(llmod, _str.buf(x86.get_module_asm())); auto glues = make_glues(llmod, tn); create_crate_constant(crate_ptr, glues); make_memcpy_glue(glues.memcpy_glue); trans_exit_task_glue(glues, new_str_hash[ValueRef](), tn, llmod); check_module(llmod); llvm.LLVMWriteBitcodeToFile(llmod, _str.buf(output)); llvm.LLVMDisposeModule(llmod); } fn trans_crate(session.session sess, @ast.crate crate, str output, bool shared) { auto llmod = llvm.LLVMModuleCreateWithNameInContext(_str.buf("rust_out"), llvm.LLVMGetGlobalContext()); llvm.LLVMSetDataLayout(llmod, _str.buf(x86.get_data_layout())); llvm.LLVMSetTarget(llmod, _str.buf(x86.get_target_triple())); auto td = mk_target_data(x86.get_data_layout()); auto tn = mk_type_names(); let ValueRef crate_ptr = llvm.LLVMAddGlobal(llmod, T_crate(tn), _str.buf("rust_crate")); auto intrinsics = declare_intrinsics(llmod); auto glues = make_glues(llmod, tn); auto hasher = ty.hash_ty; auto eqer = ty.eq_ty; auto tag_sizes = map.mk_hashmap[@ty.t,uint](hasher, eqer); auto tydescs = map.mk_hashmap[@ty.t,@tydesc_info](hasher, eqer); let vec[ast.ty_param] obj_typarams = vec(); let vec[ast.obj_field] obj_fields = vec(); auto cx = @rec(sess = sess, llmod = llmod, td = td, tn = tn, crate_ptr = crate_ptr, upcalls = new_str_hash[ValueRef](), intrinsics = intrinsics, item_names = new_str_hash[ValueRef](), native_fns = new_str_hash[ValueRef](), item_ids = new_def_hash[ValueRef](), items = new_def_hash[@ast.item](), native_items = new_def_hash[@ast.native_item](), tag_sizes = tag_sizes, discrims = new_def_hash[ValueRef](), fn_pairs = new_def_hash[ValueRef](), consts = new_def_hash[ValueRef](), obj_methods = new_def_hash[()](), tydescs = tydescs, obj_typarams = obj_typarams, obj_fields = obj_fields, glues = glues, names = namegen(0), path = "_rust"); create_typedefs(cx); collect_items(cx, crate); collect_tag_ctors(cx, crate); trans_constants(cx, crate); trans_mod(cx, crate.node.module); trans_vec_append_glue(cx); if (!shared) { trans_main_fn(cx, cx.crate_ptr); } // Translate the metadata. middle.metadata.write_metadata(cx, crate); check_module(llmod); llvm.LLVMWriteBitcodeToFile(llmod, _str.buf(output)); llvm.LLVMDisposeModule(llmod); } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C ../.. 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: //