// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![allow(non_camel_case_types)] // FIXME: remove this after snapshot, and Results are handled #![allow(unused_must_use)] use ast_map; use metadata::common as c; use metadata::cstore as cstore; use session::Session; use metadata::decoder; use middle::def; use metadata::encoder as e; use middle::region; use metadata::tydecode; use metadata::tydecode::{DefIdSource, NominalType, TypeWithId}; use metadata::tydecode::{RegionParameter, ClosureSource}; use metadata::tyencode; use middle::cast; use middle::check_const::ConstQualif; use middle::mem_categorization::Typer; use middle::privacy::{AllPublic, LastMod}; use middle::subst; use middle::subst::VecPerParamSpace; use middle::ty::{self, Ty, MethodCall, MethodCallee, MethodOrigin}; use syntax::{ast, ast_util, codemap, fold}; use syntax::codemap::Span; use syntax::fold::Folder; use syntax::parse::token; use syntax::ptr::P; use syntax; use std::cell::Cell; use std::io::SeekFrom; use std::io::prelude::*; use std::fmt::Debug; use rbml::reader; use rbml::writer::Encoder; use rbml; use serialize; use serialize::{Decodable, Decoder, DecoderHelpers, Encodable}; use serialize::EncoderHelpers; #[cfg(test)] use std::io::Cursor; #[cfg(test)] use syntax::parse; #[cfg(test)] use syntax::print::pprust; struct DecodeContext<'a, 'b, 'tcx: 'a> { tcx: &'a ty::ctxt<'tcx>, cdata: &'b cstore::crate_metadata, from_id_range: ast_util::IdRange, to_id_range: ast_util::IdRange, // Cache the last used filemap for translating spans as an optimization. last_filemap_index: Cell, } trait tr { fn tr(&self, dcx: &DecodeContext) -> Self; } trait tr_intern { fn tr_intern(&self, dcx: &DecodeContext) -> ast::DefId; } // ______________________________________________________________________ // Top-level methods. pub fn encode_inlined_item(ecx: &e::EncodeContext, rbml_w: &mut Encoder, ii: e::InlinedItemRef) { let id = match ii { e::IIItemRef(i) => i.id, e::IIForeignRef(i) => i.id, e::IITraitItemRef(_, ti) => ti.id, e::IIImplItemRef(_, ii) => ii.id, }; debug!("> Encoding inlined item: {} ({:?})", ecx.tcx.map.path_to_string(id), rbml_w.writer.seek(SeekFrom::Current(0))); // Folding could be avoided with a smarter encoder. let ii = simplify_ast(ii); let id_range = ast_util::compute_id_range_for_inlined_item(&ii); rbml_w.start_tag(c::tag_ast as usize); id_range.encode(rbml_w); encode_ast(rbml_w, &ii); encode_side_tables_for_ii(ecx, rbml_w, &ii); rbml_w.end_tag(); debug!("< Encoded inlined fn: {} ({:?})", ecx.tcx.map.path_to_string(id), rbml_w.writer.seek(SeekFrom::Current(0))); } impl<'a, 'b, 'c, 'tcx> ast_map::FoldOps for &'a DecodeContext<'b, 'c, 'tcx> { fn new_id(&self, id: ast::NodeId) -> ast::NodeId { if id == ast::DUMMY_NODE_ID { // Used by ast_map to map the NodeInlinedParent. self.tcx.sess.next_node_id() } else { self.tr_id(id) } } fn new_def_id(&self, def_id: ast::DefId) -> ast::DefId { self.tr_def_id(def_id) } fn new_span(&self, span: Span) -> Span { self.tr_span(span) } } /// Decodes an item from its AST in the cdata's metadata and adds it to the /// ast-map. pub fn decode_inlined_item<'tcx>(cdata: &cstore::crate_metadata, tcx: &ty::ctxt<'tcx>, path: Vec, par_doc: rbml::Doc) -> Result<&'tcx ast::InlinedItem, Vec> { match par_doc.opt_child(c::tag_ast) { None => Err(path), Some(ast_doc) => { let mut path_as_str = None; debug!("> Decoding inlined fn: {:?}::?", { // Do an Option dance to use the path after it is moved below. let s = ast_map::path_to_string(path.iter().cloned()); path_as_str = Some(s); path_as_str.as_ref().map(|x| &x[..]) }); let mut ast_dsr = reader::Decoder::new(ast_doc); let from_id_range = Decodable::decode(&mut ast_dsr).unwrap(); let to_id_range = reserve_id_range(&tcx.sess, from_id_range); let dcx = &DecodeContext { cdata: cdata, tcx: tcx, from_id_range: from_id_range, to_id_range: to_id_range, last_filemap_index: Cell::new(0) }; let raw_ii = decode_ast(ast_doc); let ii = ast_map::map_decoded_item(&dcx.tcx.map, path, raw_ii, dcx); let ident = match *ii { ast::IIItem(ref i) => i.ident, ast::IIForeign(ref i) => i.ident, ast::IITraitItem(_, ref ti) => ti.ident, ast::IIImplItem(_, ref ii) => ii.ident }; debug!("Fn named: {}", token::get_ident(ident)); debug!("< Decoded inlined fn: {}::{}", path_as_str.unwrap(), token::get_ident(ident)); region::resolve_inlined_item(&tcx.sess, &tcx.region_maps, ii); decode_side_tables(dcx, ast_doc); match *ii { ast::IIItem(ref i) => { debug!(">>> DECODED ITEM >>>\n{}\n<<< DECODED ITEM <<<", syntax::print::pprust::item_to_string(&**i)); } _ => { } } Ok(ii) } } } // ______________________________________________________________________ // Enumerating the IDs which appear in an AST fn reserve_id_range(sess: &Session, from_id_range: ast_util::IdRange) -> ast_util::IdRange { // Handle the case of an empty range: if from_id_range.empty() { return from_id_range; } let cnt = from_id_range.max - from_id_range.min; let to_id_min = sess.reserve_node_ids(cnt); let to_id_max = to_id_min + cnt; ast_util::IdRange { min: to_id_min, max: to_id_max } } impl<'a, 'b, 'tcx> DecodeContext<'a, 'b, 'tcx> { /// Translates an internal id, meaning a node id that is known to refer to some part of the /// item currently being inlined, such as a local variable or argument. All naked node-ids /// that appear in types have this property, since if something might refer to an external item /// we would use a def-id to allow for the possibility that the item resides in another crate. pub fn tr_id(&self, id: ast::NodeId) -> ast::NodeId { // from_id_range should be non-empty assert!(!self.from_id_range.empty()); // Use wrapping arithmetic because otherwise it introduces control flow. // Maybe we should just have the control flow? -- aatch (id.wrapping_sub(self.from_id_range.min).wrapping_add(self.to_id_range.min)) } /// Translates an EXTERNAL def-id, converting the crate number from the one used in the encoded /// data to the current crate numbers.. By external, I mean that it be translated to a /// reference to the item in its original crate, as opposed to being translated to a reference /// to the inlined version of the item. This is typically, but not always, what you want, /// because most def-ids refer to external things like types or other fns that may or may not /// be inlined. Note that even when the inlined function is referencing itself recursively, we /// would want `tr_def_id` for that reference--- conceptually the function calls the original, /// non-inlined version, and trans deals with linking that recursive call to the inlined copy. /// /// However, there are a *few* cases where def-ids are used but we know that the thing being /// referenced is in fact *internal* to the item being inlined. In those cases, you should use /// `tr_intern_def_id()` below. pub fn tr_def_id(&self, did: ast::DefId) -> ast::DefId { decoder::translate_def_id(self.cdata, did) } /// Translates an INTERNAL def-id, meaning a def-id that is /// known to refer to some part of the item currently being /// inlined. In that case, we want to convert the def-id to /// refer to the current crate and to the new, inlined node-id. pub fn tr_intern_def_id(&self, did: ast::DefId) -> ast::DefId { assert_eq!(did.krate, ast::LOCAL_CRATE); ast::DefId { krate: ast::LOCAL_CRATE, node: self.tr_id(did.node) } } /// Translates a `Span` from an extern crate to the corresponding `Span` /// within the local crate's codemap. `creader::import_codemap()` will /// already have allocated any additionally needed FileMaps in the local /// codemap as a side-effect of creating the crate_metadata's /// `codemap_import_info`. pub fn tr_span(&self, span: Span) -> Span { let span = if span.lo > span.hi { // Currently macro expansion sometimes produces invalid Span values // where lo > hi. In order not to crash the compiler when trying to // translate these values, let's transform them into something we // can handle (and which will produce useful debug locations at // least some of the time). // This workaround is only necessary as long as macro expansion is // not fixed. FIXME(#23480) codemap::mk_sp(span.lo, span.lo) } else { span }; let imported_filemaps = self.cdata.imported_filemaps(self.tcx.sess.codemap()); let filemap = { // Optimize for the case that most spans within a translated item // originate from the same filemap. let last_filemap_index = self.last_filemap_index.get(); let last_filemap = &imported_filemaps[last_filemap_index]; if span.lo >= last_filemap.original_start_pos && span.lo <= last_filemap.original_end_pos && span.hi >= last_filemap.original_start_pos && span.hi <= last_filemap.original_end_pos { last_filemap } else { let mut a = 0; let mut b = imported_filemaps.len(); while b - a > 1 { let m = (a + b) / 2; if imported_filemaps[m].original_start_pos > span.lo { b = m; } else { a = m; } } self.last_filemap_index.set(a); &imported_filemaps[a] } }; let lo = (span.lo - filemap.original_start_pos) + filemap.translated_filemap.start_pos; let hi = (span.hi - filemap.original_start_pos) + filemap.translated_filemap.start_pos; codemap::mk_sp(lo, hi) } } impl tr_intern for ast::DefId { fn tr_intern(&self, dcx: &DecodeContext) -> ast::DefId { dcx.tr_intern_def_id(*self) } } impl tr for ast::DefId { fn tr(&self, dcx: &DecodeContext) -> ast::DefId { dcx.tr_def_id(*self) } } impl tr for Option { fn tr(&self, dcx: &DecodeContext) -> Option { self.map(|d| dcx.tr_def_id(d)) } } impl tr for Span { fn tr(&self, dcx: &DecodeContext) -> Span { dcx.tr_span(*self) } } trait def_id_encoder_helpers { fn emit_def_id(&mut self, did: ast::DefId); } impl def_id_encoder_helpers for S where ::Error: Debug { fn emit_def_id(&mut self, did: ast::DefId) { did.encode(self).unwrap() } } trait def_id_decoder_helpers { fn read_def_id(&mut self, dcx: &DecodeContext) -> ast::DefId; fn read_def_id_nodcx(&mut self, cdata: &cstore::crate_metadata) -> ast::DefId; } impl def_id_decoder_helpers for D where ::Error: Debug { fn read_def_id(&mut self, dcx: &DecodeContext) -> ast::DefId { let did: ast::DefId = Decodable::decode(self).unwrap(); did.tr(dcx) } fn read_def_id_nodcx(&mut self, cdata: &cstore::crate_metadata) -> ast::DefId { let did: ast::DefId = Decodable::decode(self).unwrap(); decoder::translate_def_id(cdata, did) } } // ______________________________________________________________________ // Encoding and decoding the AST itself // // When decoding, we have to renumber the AST so that the node ids that // appear within are disjoint from the node ids in our existing ASTs. // We also have to adjust the spans: for now we just insert a dummy span, // but eventually we should add entries to the local codemap as required. fn encode_ast(rbml_w: &mut Encoder, item: &ast::InlinedItem) { rbml_w.start_tag(c::tag_tree as usize); item.encode(rbml_w); rbml_w.end_tag(); } struct NestedItemsDropper; impl Folder for NestedItemsDropper { fn fold_block(&mut self, blk: P) -> P { blk.and_then(|ast::Block {id, stmts, expr, rules, span, ..}| { let stmts_sans_items = stmts.into_iter().filter_map(|stmt| { let use_stmt = match stmt.node { ast::StmtExpr(_, _) | ast::StmtSemi(_, _) => true, ast::StmtDecl(ref decl, _) => { match decl.node { ast::DeclLocal(_) => true, ast::DeclItem(_) => false, } } ast::StmtMac(..) => panic!("unexpanded macro in astencode") }; if use_stmt { Some(stmt) } else { None } }).collect(); let blk_sans_items = P(ast::Block { stmts: stmts_sans_items, expr: expr, id: id, rules: rules, span: span, }); fold::noop_fold_block(blk_sans_items, self) }) } } // Produces a simplified copy of the AST which does not include things // that we do not need to or do not want to export. For example, we // do not include any nested items: if these nested items are to be // inlined, their AST will be exported separately (this only makes // sense because, in Rust, nested items are independent except for // their visibility). // // As it happens, trans relies on the fact that we do not export // nested items, as otherwise it would get confused when translating // inlined items. fn simplify_ast(ii: e::InlinedItemRef) -> ast::InlinedItem { let mut fld = NestedItemsDropper; match ii { // HACK we're not dropping items. e::IIItemRef(i) => { ast::IIItem(fold::noop_fold_item(P(i.clone()), &mut fld) .expect_one("expected one item")) } e::IITraitItemRef(d, ti) => { ast::IITraitItem(d, fold::noop_fold_trait_item(P(ti.clone()), &mut fld) .expect_one("noop_fold_trait_item must produce \ exactly one trait item")) } e::IIImplItemRef(d, ii) => { ast::IIImplItem(d, fold::noop_fold_impl_item(P(ii.clone()), &mut fld) .expect_one("noop_fold_impl_item must produce \ exactly one impl item")) } e::IIForeignRef(i) => { ast::IIForeign(fold::noop_fold_foreign_item(P(i.clone()), &mut fld)) } } } fn decode_ast(par_doc: rbml::Doc) -> ast::InlinedItem { let chi_doc = par_doc.get(c::tag_tree as usize); let mut d = reader::Decoder::new(chi_doc); Decodable::decode(&mut d).unwrap() } // ______________________________________________________________________ // Encoding and decoding of ast::def fn decode_def(dcx: &DecodeContext, dsr: &mut reader::Decoder) -> def::Def { let def: def::Def = Decodable::decode(dsr).unwrap(); def.tr(dcx) } impl tr for def::Def { fn tr(&self, dcx: &DecodeContext) -> def::Def { match *self { def::DefFn(did, is_ctor) => def::DefFn(did.tr(dcx), is_ctor), def::DefMethod(did, p) => { def::DefMethod(did.tr(dcx), p.map(|did2| did2.tr(dcx))) } def::DefSelfTy(opt_did, impl_ids) => { def::DefSelfTy(opt_did.map(|did| did.tr(dcx)), impl_ids.map(|(nid1, nid2)| { (dcx.tr_id(nid1), dcx.tr_id(nid2)) })) } def::DefMod(did) => { def::DefMod(did.tr(dcx)) } def::DefForeignMod(did) => { def::DefForeignMod(did.tr(dcx)) } def::DefStatic(did, m) => { def::DefStatic(did.tr(dcx), m) } def::DefConst(did) => { def::DefConst(did.tr(dcx)) } def::DefAssociatedConst(did, p) => { def::DefAssociatedConst(did.tr(dcx), p.map(|did2| did2.tr(dcx))) } def::DefLocal(nid) => { def::DefLocal(dcx.tr_id(nid)) } def::DefVariant(e_did, v_did, is_s) => { def::DefVariant(e_did.tr(dcx), v_did.tr(dcx), is_s) }, def::DefTrait(did) => def::DefTrait(did.tr(dcx)), def::DefTy(did, is_enum) => def::DefTy(did.tr(dcx), is_enum), def::DefAssociatedTy(trait_did, did) => def::DefAssociatedTy(trait_did.tr(dcx), did.tr(dcx)), def::DefPrimTy(p) => def::DefPrimTy(p), def::DefTyParam(s, index, def_id, n) => def::DefTyParam(s, index, def_id.tr(dcx), n), def::DefUse(did) => def::DefUse(did.tr(dcx)), def::DefUpvar(nid1, nid2) => { def::DefUpvar(dcx.tr_id(nid1), dcx.tr_id(nid2)) } def::DefStruct(did) => def::DefStruct(did.tr(dcx)), def::DefRegion(nid) => def::DefRegion(dcx.tr_id(nid)), def::DefLabel(nid) => def::DefLabel(dcx.tr_id(nid)) } } } // ______________________________________________________________________ // Encoding and decoding of ancillary information impl tr for ty::Region { fn tr(&self, dcx: &DecodeContext) -> ty::Region { match *self { ty::ReLateBound(debruijn, br) => { ty::ReLateBound(debruijn, br.tr(dcx)) } ty::ReEarlyBound(data) => { ty::ReEarlyBound(ty::EarlyBoundRegion { param_id: dcx.tr_id(data.param_id), space: data.space, index: data.index, name: data.name, }) } ty::ReScope(scope) => { ty::ReScope(scope.tr(dcx)) } ty::ReEmpty | ty::ReStatic | ty::ReInfer(..) => { *self } ty::ReFree(ref fr) => { ty::ReFree(fr.tr(dcx)) } } } } impl tr for ty::FreeRegion { fn tr(&self, dcx: &DecodeContext) -> ty::FreeRegion { ty::FreeRegion { scope: self.scope.tr(dcx), bound_region: self.bound_region.tr(dcx) } } } impl tr for region::CodeExtent { fn tr(&self, dcx: &DecodeContext) -> region::CodeExtent { self.map_id(|id| dcx.tr_id(id)) } } impl tr for region::DestructionScopeData { fn tr(&self, dcx: &DecodeContext) -> region::DestructionScopeData { region::DestructionScopeData { node_id: dcx.tr_id(self.node_id) } } } impl tr for ty::BoundRegion { fn tr(&self, dcx: &DecodeContext) -> ty::BoundRegion { match *self { ty::BrAnon(_) | ty::BrFresh(_) | ty::BrEnv => *self, ty::BrNamed(id, ident) => ty::BrNamed(dcx.tr_def_id(id), ident), } } } // ______________________________________________________________________ // Encoding and decoding of freevar information fn encode_freevar_entry(rbml_w: &mut Encoder, fv: &ty::Freevar) { (*fv).encode(rbml_w).unwrap(); } trait rbml_decoder_helper { fn read_freevar_entry(&mut self, dcx: &DecodeContext) -> ty::Freevar; fn read_capture_mode(&mut self) -> ast::CaptureClause; } impl<'a> rbml_decoder_helper for reader::Decoder<'a> { fn read_freevar_entry(&mut self, dcx: &DecodeContext) -> ty::Freevar { let fv: ty::Freevar = Decodable::decode(self).unwrap(); fv.tr(dcx) } fn read_capture_mode(&mut self) -> ast::CaptureClause { let cm: ast::CaptureClause = Decodable::decode(self).unwrap(); cm } } impl tr for ty::Freevar { fn tr(&self, dcx: &DecodeContext) -> ty::Freevar { ty::Freevar { def: self.def.tr(dcx), span: self.span.tr(dcx), } } } impl tr for ty::UpvarBorrow { fn tr(&self, dcx: &DecodeContext) -> ty::UpvarBorrow { ty::UpvarBorrow { kind: self.kind, region: self.region.tr(dcx) } } } impl tr for ty::UpvarCapture { fn tr(&self, dcx: &DecodeContext) -> ty::UpvarCapture { match *self { ty::UpvarCapture::ByValue => ty::UpvarCapture::ByValue, ty::UpvarCapture::ByRef(ref data) => ty::UpvarCapture::ByRef(data.tr(dcx)), } } } // ______________________________________________________________________ // Encoding and decoding of MethodCallee trait read_method_callee_helper<'tcx> { fn read_method_callee<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> (u32, MethodCallee<'tcx>); } fn encode_method_callee<'a, 'tcx>(ecx: &e::EncodeContext<'a, 'tcx>, rbml_w: &mut Encoder, autoderef: u32, method: &MethodCallee<'tcx>) { use serialize::Encoder; rbml_w.emit_struct("MethodCallee", 4, |rbml_w| { rbml_w.emit_struct_field("autoderef", 0, |rbml_w| { autoderef.encode(rbml_w) }); rbml_w.emit_struct_field("origin", 1, |rbml_w| { Ok(rbml_w.emit_method_origin(ecx, &method.origin)) }); rbml_w.emit_struct_field("ty", 2, |rbml_w| { Ok(rbml_w.emit_ty(ecx, method.ty)) }); rbml_w.emit_struct_field("substs", 3, |rbml_w| { Ok(rbml_w.emit_substs(ecx, &method.substs)) }) }).unwrap(); } impl<'a, 'tcx> read_method_callee_helper<'tcx> for reader::Decoder<'a> { fn read_method_callee<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> (u32, MethodCallee<'tcx>) { self.read_struct("MethodCallee", 4, |this| { let autoderef = this.read_struct_field("autoderef", 0, |this| { Decodable::decode(this) }).unwrap(); Ok((autoderef, MethodCallee { origin: this.read_struct_field("origin", 1, |this| { Ok(this.read_method_origin(dcx)) }).unwrap(), ty: this.read_struct_field("ty", 2, |this| { Ok(this.read_ty(dcx)) }).unwrap(), substs: this.read_struct_field("substs", 3, |this| { Ok(this.read_substs(dcx)) }).unwrap() })) }).unwrap() } } pub fn encode_closure_kind(ebml_w: &mut Encoder, kind: ty::ClosureKind) { kind.encode(ebml_w).unwrap(); } pub fn encode_cast_kind(ebml_w: &mut Encoder, kind: cast::CastKind) { kind.encode(ebml_w).unwrap(); } pub trait vtable_decoder_helpers<'tcx> { fn read_vec_per_param_space(&mut self, f: F) -> VecPerParamSpace where F: FnMut(&mut Self) -> T; } impl<'tcx, 'a> vtable_decoder_helpers<'tcx> for reader::Decoder<'a> { fn read_vec_per_param_space(&mut self, mut f: F) -> VecPerParamSpace where F: FnMut(&mut reader::Decoder<'a>) -> T, { let types = self.read_to_vec(|this| Ok(f(this))).unwrap(); let selfs = self.read_to_vec(|this| Ok(f(this))).unwrap(); let fns = self.read_to_vec(|this| Ok(f(this))).unwrap(); VecPerParamSpace::new(types, selfs, fns) } } // ___________________________________________________________________________ // fn encode_vec_per_param_space(rbml_w: &mut Encoder, v: &subst::VecPerParamSpace, mut f: F) where F: FnMut(&mut Encoder, &T), { for &space in &subst::ParamSpace::all() { rbml_w.emit_from_vec(v.get_slice(space), |rbml_w, n| Ok(f(rbml_w, n))).unwrap(); } } // ______________________________________________________________________ // Encoding and decoding the side tables trait get_ty_str_ctxt<'tcx> { fn ty_str_ctxt<'a>(&'a self) -> tyencode::ctxt<'a, 'tcx>; } impl<'a, 'tcx> get_ty_str_ctxt<'tcx> for e::EncodeContext<'a, 'tcx> { fn ty_str_ctxt<'b>(&'b self) -> tyencode::ctxt<'b, 'tcx> { tyencode::ctxt { diag: self.tcx.sess.diagnostic(), ds: e::def_to_string, tcx: self.tcx, abbrevs: &self.type_abbrevs } } } trait rbml_writer_helpers<'tcx> { fn emit_closure_type<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, closure_type: &ty::ClosureTy<'tcx>); fn emit_method_origin<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, method_origin: &ty::MethodOrigin<'tcx>); fn emit_ty<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, ty: Ty<'tcx>); fn emit_tys<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, tys: &[Ty<'tcx>]); fn emit_type_param_def<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, type_param_def: &ty::TypeParameterDef<'tcx>); fn emit_predicate<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, predicate: &ty::Predicate<'tcx>); fn emit_trait_ref<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, ty: &ty::TraitRef<'tcx>); fn emit_type_scheme<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, type_scheme: ty::TypeScheme<'tcx>); fn emit_substs<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, substs: &subst::Substs<'tcx>); fn emit_existential_bounds<'b>(&mut self, ecx: &e::EncodeContext<'b,'tcx>, bounds: &ty::ExistentialBounds<'tcx>); fn emit_builtin_bounds(&mut self, ecx: &e::EncodeContext, bounds: &ty::BuiltinBounds); fn emit_auto_adjustment<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, adj: &ty::AutoAdjustment<'tcx>); fn emit_autoref<'a>(&mut self, autoref: &ty::AutoRef<'tcx>); fn emit_auto_deref_ref<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, auto_deref_ref: &ty::AutoDerefRef<'tcx>); } impl<'a, 'tcx> rbml_writer_helpers<'tcx> for Encoder<'a> { fn emit_closure_type<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, closure_type: &ty::ClosureTy<'tcx>) { self.emit_opaque(|this| { Ok(e::write_closure_type(ecx, this, closure_type)) }); } fn emit_method_origin<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, method_origin: &ty::MethodOrigin<'tcx>) { use serialize::Encoder; self.emit_enum("MethodOrigin", |this| { match *method_origin { ty::MethodStatic(def_id) => { this.emit_enum_variant("MethodStatic", 0, 1, |this| { Ok(this.emit_def_id(def_id)) }) } ty::MethodStaticClosure(def_id) => { this.emit_enum_variant("MethodStaticClosure", 1, 1, |this| { Ok(this.emit_def_id(def_id)) }) } ty::MethodTypeParam(ref p) => { this.emit_enum_variant("MethodTypeParam", 2, 1, |this| { this.emit_struct("MethodParam", 2, |this| { try!(this.emit_struct_field("trait_ref", 0, |this| { Ok(this.emit_trait_ref(ecx, &p.trait_ref)) })); try!(this.emit_struct_field("method_num", 0, |this| { this.emit_uint(p.method_num) })); try!(this.emit_struct_field("impl_def_id", 0, |this| { this.emit_option(|this| { match p.impl_def_id { None => this.emit_option_none(), Some(did) => this.emit_option_some(|this| { Ok(this.emit_def_id(did)) }) } }) })); Ok(()) }) }) } ty::MethodTraitObject(ref o) => { this.emit_enum_variant("MethodTraitObject", 3, 1, |this| { this.emit_struct("MethodObject", 2, |this| { try!(this.emit_struct_field("trait_ref", 0, |this| { Ok(this.emit_trait_ref(ecx, &o.trait_ref)) })); try!(this.emit_struct_field("object_trait_id", 0, |this| { Ok(this.emit_def_id(o.object_trait_id)) })); try!(this.emit_struct_field("method_num", 0, |this| { this.emit_uint(o.method_num) })); try!(this.emit_struct_field("vtable_index", 0, |this| { this.emit_uint(o.vtable_index) })); Ok(()) }) }) } } }); } fn emit_ty<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, ty: Ty<'tcx>) { self.emit_opaque(|this| Ok(e::write_type(ecx, this, ty))); } fn emit_tys<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, tys: &[Ty<'tcx>]) { self.emit_from_vec(tys, |this, ty| Ok(this.emit_ty(ecx, *ty))); } fn emit_trait_ref<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, trait_ref: &ty::TraitRef<'tcx>) { self.emit_opaque(|this| Ok(e::write_trait_ref(ecx, this, trait_ref))); } fn emit_type_param_def<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, type_param_def: &ty::TypeParameterDef<'tcx>) { self.emit_opaque(|this| { Ok(tyencode::enc_type_param_def(this, &ecx.ty_str_ctxt(), type_param_def)) }); } fn emit_predicate<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, predicate: &ty::Predicate<'tcx>) { self.emit_opaque(|this| { Ok(tyencode::enc_predicate(this, &ecx.ty_str_ctxt(), predicate)) }); } fn emit_type_scheme<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, type_scheme: ty::TypeScheme<'tcx>) { use serialize::Encoder; self.emit_struct("TypeScheme", 2, |this| { this.emit_struct_field("generics", 0, |this| { this.emit_struct("Generics", 2, |this| { this.emit_struct_field("types", 0, |this| { Ok(encode_vec_per_param_space( this, &type_scheme.generics.types, |this, def| this.emit_type_param_def(ecx, def))) }); this.emit_struct_field("regions", 1, |this| { Ok(encode_vec_per_param_space( this, &type_scheme.generics.regions, |this, def| def.encode(this).unwrap())) }) }) }); this.emit_struct_field("ty", 1, |this| { Ok(this.emit_ty(ecx, type_scheme.ty)) }) }); } fn emit_existential_bounds<'b>(&mut self, ecx: &e::EncodeContext<'b,'tcx>, bounds: &ty::ExistentialBounds<'tcx>) { self.emit_opaque(|this| Ok(tyencode::enc_existential_bounds(this, &ecx.ty_str_ctxt(), bounds))); } fn emit_builtin_bounds(&mut self, ecx: &e::EncodeContext, bounds: &ty::BuiltinBounds) { self.emit_opaque(|this| Ok(tyencode::enc_builtin_bounds(this, &ecx.ty_str_ctxt(), bounds))); } fn emit_substs<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, substs: &subst::Substs<'tcx>) { self.emit_opaque(|this| Ok(tyencode::enc_substs(this, &ecx.ty_str_ctxt(), substs))); } fn emit_auto_adjustment<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, adj: &ty::AutoAdjustment<'tcx>) { use serialize::Encoder; self.emit_enum("AutoAdjustment", |this| { match *adj { ty::AdjustReifyFnPointer=> { this.emit_enum_variant("AdjustReifyFnPointer", 1, 0, |_| Ok(())) } ty::AdjustUnsafeFnPointer => { this.emit_enum_variant("AdjustUnsafeFnPointer", 2, 0, |_| { Ok(()) }) } ty::AdjustDerefRef(ref auto_deref_ref) => { this.emit_enum_variant("AdjustDerefRef", 3, 2, |this| { this.emit_enum_variant_arg(0, |this| Ok(this.emit_auto_deref_ref(ecx, auto_deref_ref))) }) } } }); } fn emit_autoref<'b>(&mut self, autoref: &ty::AutoRef<'tcx>) { use serialize::Encoder; self.emit_enum("AutoRef", |this| { match autoref { &ty::AutoPtr(r, m) => { this.emit_enum_variant("AutoPtr", 0, 2, |this| { this.emit_enum_variant_arg(0, |this| r.encode(this)); this.emit_enum_variant_arg(1, |this| m.encode(this)) }) } &ty::AutoUnsafe(m) => { this.emit_enum_variant("AutoUnsafe", 1, 1, |this| { this.emit_enum_variant_arg(0, |this| m.encode(this)) }) } } }); } fn emit_auto_deref_ref<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, auto_deref_ref: &ty::AutoDerefRef<'tcx>) { use serialize::Encoder; self.emit_struct("AutoDerefRef", 2, |this| { this.emit_struct_field("autoderefs", 0, |this| auto_deref_ref.autoderefs.encode(this)); this.emit_struct_field("autoref", 1, |this| { this.emit_option(|this| { match auto_deref_ref.autoref { None => this.emit_option_none(), Some(ref a) => this.emit_option_some(|this| Ok(this.emit_autoref(a))), } }) }); this.emit_struct_field("unsize", 2, |this| { this.emit_option(|this| { match auto_deref_ref.unsize { None => this.emit_option_none(), Some(target) => this.emit_option_some(|this| { Ok(this.emit_ty(ecx, target)) }) } }) }) }); } } trait write_tag_and_id { fn tag(&mut self, tag_id: c::astencode_tag, f: F) where F: FnOnce(&mut Self); fn id(&mut self, id: ast::NodeId); } impl<'a> write_tag_and_id for Encoder<'a> { fn tag(&mut self, tag_id: c::astencode_tag, f: F) where F: FnOnce(&mut Encoder<'a>), { self.start_tag(tag_id as usize); f(self); self.end_tag(); } fn id(&mut self, id: ast::NodeId) { id.encode(self).unwrap(); } } struct SideTableEncodingIdVisitor<'a, 'b:'a, 'c:'a, 'tcx:'c> { ecx: &'a e::EncodeContext<'c, 'tcx>, rbml_w: &'a mut Encoder<'b>, } impl<'a, 'b, 'c, 'tcx> ast_util::IdVisitingOperation for SideTableEncodingIdVisitor<'a, 'b, 'c, 'tcx> { fn visit_id(&mut self, id: ast::NodeId) { encode_side_tables_for_id(self.ecx, self.rbml_w, id) } } fn encode_side_tables_for_ii(ecx: &e::EncodeContext, rbml_w: &mut Encoder, ii: &ast::InlinedItem) { rbml_w.start_tag(c::tag_table as usize); ast_util::visit_ids_for_inlined_item(ii, &mut SideTableEncodingIdVisitor { ecx: ecx, rbml_w: rbml_w }); rbml_w.end_tag(); } fn encode_side_tables_for_id(ecx: &e::EncodeContext, rbml_w: &mut Encoder, id: ast::NodeId) { let tcx = ecx.tcx; debug!("Encoding side tables for id {}", id); if let Some(def) = tcx.def_map.borrow().get(&id).map(|d| d.full_def()) { rbml_w.tag(c::tag_table_def, |rbml_w| { rbml_w.id(id); def.encode(rbml_w).unwrap(); }) } if let Some(ty) = tcx.node_types().get(&id) { rbml_w.tag(c::tag_table_node_type, |rbml_w| { rbml_w.id(id); rbml_w.emit_ty(ecx, *ty); }) } if let Some(item_substs) = tcx.tables.borrow().item_substs.get(&id) { rbml_w.tag(c::tag_table_item_subst, |rbml_w| { rbml_w.id(id); rbml_w.emit_substs(ecx, &item_substs.substs); }) } if let Some(fv) = tcx.freevars.borrow().get(&id) { rbml_w.tag(c::tag_table_freevars, |rbml_w| { rbml_w.id(id); rbml_w.emit_from_vec(fv, |rbml_w, fv_entry| { Ok(encode_freevar_entry(rbml_w, fv_entry)) }); }); for freevar in fv { rbml_w.tag(c::tag_table_upvar_capture_map, |rbml_w| { rbml_w.id(id); let var_id = freevar.def.def_id().node; let upvar_id = ty::UpvarId { var_id: var_id, closure_expr_id: id }; let upvar_capture = tcx.tables .borrow() .upvar_capture_map .get(&upvar_id) .unwrap() .clone(); var_id.encode(rbml_w); upvar_capture.encode(rbml_w); }) } } let lid = ast::DefId { krate: ast::LOCAL_CRATE, node: id }; if let Some(type_scheme) = tcx.tcache.borrow().get(&lid) { rbml_w.tag(c::tag_table_tcache, |rbml_w| { rbml_w.id(id); rbml_w.emit_type_scheme(ecx, type_scheme.clone()); }) } if let Some(type_param_def) = tcx.ty_param_defs.borrow().get(&id) { rbml_w.tag(c::tag_table_param_defs, |rbml_w| { rbml_w.id(id); rbml_w.emit_type_param_def(ecx, type_param_def) }) } let method_call = MethodCall::expr(id); if let Some(method) = tcx.tables.borrow().method_map.get(&method_call) { rbml_w.tag(c::tag_table_method_map, |rbml_w| { rbml_w.id(id); encode_method_callee(ecx, rbml_w, method_call.autoderef, method) }) } if let Some(adjustment) = tcx.tables.borrow().adjustments.get(&id) { match *adjustment { ty::AdjustDerefRef(ref adj) => { for autoderef in 0..adj.autoderefs { let method_call = MethodCall::autoderef(id, autoderef as u32); if let Some(method) = tcx.tables.borrow().method_map.get(&method_call) { rbml_w.tag(c::tag_table_method_map, |rbml_w| { rbml_w.id(id); encode_method_callee(ecx, rbml_w, method_call.autoderef, method) }) } } } _ => {} } rbml_w.tag(c::tag_table_adjustments, |rbml_w| { rbml_w.id(id); rbml_w.emit_auto_adjustment(ecx, adjustment); }) } if let Some(closure_type) = tcx.tables.borrow().closure_tys.get(&ast_util::local_def(id)) { rbml_w.tag(c::tag_table_closure_tys, |rbml_w| { rbml_w.id(id); rbml_w.emit_closure_type(ecx, closure_type); }) } if let Some(closure_kind) = tcx.tables.borrow().closure_kinds.get(&ast_util::local_def(id)) { rbml_w.tag(c::tag_table_closure_kinds, |rbml_w| { rbml_w.id(id); encode_closure_kind(rbml_w, *closure_kind) }) } if let Some(cast_kind) = tcx.cast_kinds.borrow().get(&id) { rbml_w.tag(c::tag_table_cast_kinds, |rbml_w| { rbml_w.id(id); encode_cast_kind(rbml_w, *cast_kind) }) } if let Some(qualif) = tcx.const_qualif_map.borrow().get(&id) { rbml_w.tag(c::tag_table_const_qualif, |rbml_w| { rbml_w.id(id); qualif.encode(rbml_w).unwrap() }) } } trait doc_decoder_helpers { fn as_int(&self) -> isize; fn opt_child(&self, tag: c::astencode_tag) -> Option; } impl<'a> doc_decoder_helpers for rbml::Doc<'a> { fn as_int(&self) -> isize { reader::doc_as_u64(*self) as isize } fn opt_child(&self, tag: c::astencode_tag) -> Option> { reader::maybe_get_doc(*self, tag as usize) } } trait rbml_decoder_decoder_helpers<'tcx> { fn read_method_origin<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> ty::MethodOrigin<'tcx>; fn read_ty<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> Ty<'tcx>; fn read_tys<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> Vec>; fn read_trait_ref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> ty::TraitRef<'tcx>; fn read_poly_trait_ref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> ty::PolyTraitRef<'tcx>; fn read_type_param_def<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> ty::TypeParameterDef<'tcx>; fn read_predicate<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> ty::Predicate<'tcx>; fn read_type_scheme<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> ty::TypeScheme<'tcx>; fn read_existential_bounds<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> ty::ExistentialBounds<'tcx>; fn read_substs<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> subst::Substs<'tcx>; fn read_auto_adjustment<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> ty::AutoAdjustment<'tcx>; fn read_cast_kind<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> cast::CastKind; fn read_closure_kind<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> ty::ClosureKind; fn read_closure_ty<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> ty::ClosureTy<'tcx>; fn read_auto_deref_ref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> ty::AutoDerefRef<'tcx>; fn read_autoref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> ty::AutoRef<'tcx>; fn convert_def_id(&mut self, dcx: &DecodeContext, source: DefIdSource, did: ast::DefId) -> ast::DefId; // Versions of the type reading functions that don't need the full // DecodeContext. fn read_ty_nodcx(&mut self, tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata) -> Ty<'tcx>; fn read_tys_nodcx(&mut self, tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata) -> Vec>; fn read_substs_nodcx(&mut self, tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata) -> subst::Substs<'tcx>; } impl<'a, 'tcx> rbml_decoder_decoder_helpers<'tcx> for reader::Decoder<'a> { fn read_ty_nodcx(&mut self, tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata) -> Ty<'tcx> { self.read_opaque(|_, doc| { Ok(tydecode::parse_ty_data( doc.data, cdata.cnum, doc.start, tcx, |_, id| decoder::translate_def_id(cdata, id))) }).unwrap() } fn read_tys_nodcx(&mut self, tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata) -> Vec> { self.read_to_vec(|this| Ok(this.read_ty_nodcx(tcx, cdata)) ) .unwrap() .into_iter() .collect() } fn read_substs_nodcx(&mut self, tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata) -> subst::Substs<'tcx> { self.read_opaque(|_, doc| { Ok(tydecode::parse_substs_data( doc.data, cdata.cnum, doc.start, tcx, |_, id| decoder::translate_def_id(cdata, id))) }).unwrap() } fn read_method_origin<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> ty::MethodOrigin<'tcx> { self.read_enum("MethodOrigin", |this| { let variants = &["MethodStatic", "MethodStaticClosure", "MethodTypeParam", "MethodTraitObject"]; this.read_enum_variant(variants, |this, i| { Ok(match i { 0 => { let def_id = this.read_def_id(dcx); ty::MethodStatic(def_id) } 1 => { let def_id = this.read_def_id(dcx); ty::MethodStaticClosure(def_id) } 2 => { this.read_struct("MethodTypeParam", 2, |this| { Ok(ty::MethodTypeParam( ty::MethodParam { trait_ref: { this.read_struct_field("trait_ref", 0, |this| { Ok(this.read_trait_ref(dcx)) }).unwrap() }, method_num: { this.read_struct_field("method_num", 1, |this| { this.read_uint() }).unwrap() }, impl_def_id: { this.read_struct_field("impl_def_id", 2, |this| { this.read_option(|this, b| { if b { Ok(Some(this.read_def_id(dcx))) } else { Ok(None) } }) }).unwrap() } })) }).unwrap() } 3 => { this.read_struct("MethodTraitObject", 2, |this| { Ok(ty::MethodTraitObject( ty::MethodObject { trait_ref: { this.read_struct_field("trait_ref", 0, |this| { Ok(this.read_trait_ref(dcx)) }).unwrap() }, object_trait_id: { this.read_struct_field("object_trait_id", 1, |this| { Ok(this.read_def_id(dcx)) }).unwrap() }, method_num: { this.read_struct_field("method_num", 2, |this| { this.read_uint() }).unwrap() }, vtable_index: { this.read_struct_field("vtable_index", 3, |this| { this.read_uint() }).unwrap() }, })) }).unwrap() } _ => panic!("..") }) }) }).unwrap() } fn read_ty<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> Ty<'tcx> { // Note: regions types embed local node ids. In principle, we // should translate these node ids into the new decode // context. However, we do not bother, because region types // are not used during trans. return self.read_opaque(|this, doc| { debug!("read_ty({})", type_string(doc)); let ty = tydecode::parse_ty_data( doc.data, dcx.cdata.cnum, doc.start, dcx.tcx, |s, a| this.convert_def_id(dcx, s, a)); Ok(ty) }).unwrap(); fn type_string(doc: rbml::Doc) -> String { let mut str = String::new(); for i in doc.start..doc.end { str.push(doc.data[i] as char); } str } } fn read_tys<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> Vec> { self.read_to_vec(|this| Ok(this.read_ty(dcx))).unwrap().into_iter().collect() } fn read_trait_ref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> ty::TraitRef<'tcx> { self.read_opaque(|this, doc| { let ty = tydecode::parse_trait_ref_data( doc.data, dcx.cdata.cnum, doc.start, dcx.tcx, |s, a| this.convert_def_id(dcx, s, a)); Ok(ty) }).unwrap() } fn read_poly_trait_ref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> ty::PolyTraitRef<'tcx> { ty::Binder(self.read_opaque(|this, doc| { let ty = tydecode::parse_trait_ref_data( doc.data, dcx.cdata.cnum, doc.start, dcx.tcx, |s, a| this.convert_def_id(dcx, s, a)); Ok(ty) }).unwrap()) } fn read_type_param_def<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> ty::TypeParameterDef<'tcx> { self.read_opaque(|this, doc| { Ok(tydecode::parse_type_param_def_data( doc.data, doc.start, dcx.cdata.cnum, dcx.tcx, |s, a| this.convert_def_id(dcx, s, a))) }).unwrap() } fn read_predicate<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> ty::Predicate<'tcx> { self.read_opaque(|this, doc| { Ok(tydecode::parse_predicate_data(doc.data, doc.start, dcx.cdata.cnum, dcx.tcx, |s, a| this.convert_def_id(dcx, s, a))) }).unwrap() } fn read_type_scheme<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> ty::TypeScheme<'tcx> { self.read_struct("TypeScheme", 3, |this| { Ok(ty::TypeScheme { generics: this.read_struct_field("generics", 0, |this| { this.read_struct("Generics", 2, |this| { Ok(ty::Generics { types: this.read_struct_field("types", 0, |this| { Ok(this.read_vec_per_param_space( |this| this.read_type_param_def(dcx))) }).unwrap(), regions: this.read_struct_field("regions", 1, |this| { Ok(this.read_vec_per_param_space( |this| Decodable::decode(this).unwrap())) }).unwrap(), }) }) }).unwrap(), ty: this.read_struct_field("ty", 1, |this| { Ok(this.read_ty(dcx)) }).unwrap() }) }).unwrap() } fn read_existential_bounds<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> ty::ExistentialBounds<'tcx> { self.read_opaque(|this, doc| { Ok(tydecode::parse_existential_bounds_data(doc.data, dcx.cdata.cnum, doc.start, dcx.tcx, |s, a| this.convert_def_id(dcx, s, a))) }).unwrap() } fn read_substs<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> subst::Substs<'tcx> { self.read_opaque(|this, doc| { Ok(tydecode::parse_substs_data(doc.data, dcx.cdata.cnum, doc.start, dcx.tcx, |s, a| this.convert_def_id(dcx, s, a))) }).unwrap() } fn read_auto_adjustment<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> ty::AutoAdjustment<'tcx> { self.read_enum("AutoAdjustment", |this| { let variants = ["AdjustReifyFnPointer", "AdjustUnsafeFnPointer", "AdjustDerefRef"]; this.read_enum_variant(&variants, |this, i| { Ok(match i { 1 => ty::AdjustReifyFnPointer, 2 => ty::AdjustUnsafeFnPointer, 3 => { let auto_deref_ref: ty::AutoDerefRef = this.read_enum_variant_arg(0, |this| Ok(this.read_auto_deref_ref(dcx))).unwrap(); ty::AdjustDerefRef(auto_deref_ref) } _ => panic!("bad enum variant for ty::AutoAdjustment") }) }) }).unwrap() } fn read_auto_deref_ref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> ty::AutoDerefRef<'tcx> { self.read_struct("AutoDerefRef", 2, |this| { Ok(ty::AutoDerefRef { autoderefs: this.read_struct_field("autoderefs", 0, |this| { Decodable::decode(this) }).unwrap(), autoref: this.read_struct_field("autoref", 1, |this| { this.read_option(|this, b| { if b { Ok(Some(this.read_autoref(dcx))) } else { Ok(None) } }) }).unwrap(), unsize: this.read_struct_field("unsize", 2, |this| { this.read_option(|this, b| { if b { Ok(Some(this.read_ty(dcx))) } else { Ok(None) } }) }).unwrap(), }) }).unwrap() } fn read_autoref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> ty::AutoRef<'tcx> { self.read_enum("AutoRef", |this| { let variants = ["AutoPtr", "AutoUnsafe"]; this.read_enum_variant(&variants, |this, i| { Ok(match i { 0 => { let r: ty::Region = this.read_enum_variant_arg(0, |this| Decodable::decode(this)).unwrap(); let m: ast::Mutability = this.read_enum_variant_arg(1, |this| Decodable::decode(this)).unwrap(); ty::AutoPtr(dcx.tcx.mk_region(r.tr(dcx)), m) } 1 => { let m: ast::Mutability = this.read_enum_variant_arg(0, |this| Decodable::decode(this)).unwrap(); ty::AutoUnsafe(m) } _ => panic!("bad enum variant for ty::AutoRef") }) }) }).unwrap() } fn read_cast_kind<'b, 'c>(&mut self, _dcx: &DecodeContext<'b, 'c, 'tcx>) -> cast::CastKind { Decodable::decode(self).unwrap() } fn read_closure_kind<'b, 'c>(&mut self, _dcx: &DecodeContext<'b, 'c, 'tcx>) -> ty::ClosureKind { Decodable::decode(self).unwrap() } fn read_closure_ty<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> ty::ClosureTy<'tcx> { self.read_opaque(|this, doc| { Ok(tydecode::parse_ty_closure_data( doc.data, dcx.cdata.cnum, doc.start, dcx.tcx, |s, a| this.convert_def_id(dcx, s, a))) }).unwrap() } /// Converts a def-id that appears in a type. The correct /// translation will depend on what kind of def-id this is. /// This is a subtle point: type definitions are not /// inlined into the current crate, so if the def-id names /// a nominal type or type alias, then it should be /// translated to refer to the source crate. /// /// However, *type parameters* are cloned along with the function /// they are attached to. So we should translate those def-ids /// to refer to the new, cloned copy of the type parameter. /// We only see references to free type parameters in the body of /// an inlined function. In such cases, we need the def-id to /// be a local id so that the TypeContents code is able to lookup /// the relevant info in the ty_param_defs table. /// /// *Region parameters*, unfortunately, are another kettle of fish. /// In such cases, def_id's can appear in types to distinguish /// shadowed bound regions and so forth. It doesn't actually /// matter so much what we do to these, since regions are erased /// at trans time, but it's good to keep them consistent just in /// case. We translate them with `tr_def_id()` which will map /// the crate numbers back to the original source crate. /// /// Unboxed closures are cloned along with the function being /// inlined, and all side tables use interned node IDs, so we /// translate their def IDs accordingly. /// /// It'd be really nice to refactor the type repr to not include /// def-ids so that all these distinctions were unnecessary. fn convert_def_id(&mut self, dcx: &DecodeContext, source: tydecode::DefIdSource, did: ast::DefId) -> ast::DefId { let r = match source { NominalType | TypeWithId | RegionParameter => dcx.tr_def_id(did), ClosureSource => dcx.tr_intern_def_id(did) }; debug!("convert_def_id(source={:?}, did={:?})={:?}", source, did, r); return r; } } fn decode_side_tables(dcx: &DecodeContext, ast_doc: rbml::Doc) { let tbl_doc = ast_doc.get(c::tag_table as usize); for (tag, entry_doc) in reader::docs(tbl_doc) { let mut entry_dsr = reader::Decoder::new(entry_doc); let id0: ast::NodeId = Decodable::decode(&mut entry_dsr).unwrap(); let id = dcx.tr_id(id0); debug!(">> Side table document with tag 0x{:x} \ found for id {} (orig {})", tag, id, id0); let tag = tag as u32; let decoded_tag: Option = c::astencode_tag::from_u32(tag); match decoded_tag { None => { dcx.tcx.sess.bug( &format!("unknown tag found in side tables: {:x}", tag)); } Some(value) => { let val_dsr = &mut entry_dsr; match value { c::tag_table_def => { let def = decode_def(dcx, val_dsr); dcx.tcx.def_map.borrow_mut().insert(id, def::PathResolution { base_def: def, // This doesn't matter cross-crate. last_private: LastMod(AllPublic), depth: 0 }); } c::tag_table_node_type => { let ty = val_dsr.read_ty(dcx); debug!("inserting ty for node {}: {:?}", id, ty); dcx.tcx.node_type_insert(id, ty); } c::tag_table_item_subst => { let item_substs = ty::ItemSubsts { substs: val_dsr.read_substs(dcx) }; dcx.tcx.tables.borrow_mut().item_substs.insert( id, item_substs); } c::tag_table_freevars => { let fv_info = val_dsr.read_to_vec(|val_dsr| { Ok(val_dsr.read_freevar_entry(dcx)) }).unwrap().into_iter().collect(); dcx.tcx.freevars.borrow_mut().insert(id, fv_info); } c::tag_table_upvar_capture_map => { let var_id: ast::NodeId = Decodable::decode(val_dsr).unwrap(); let upvar_id = ty::UpvarId { var_id: dcx.tr_id(var_id), closure_expr_id: id }; let ub: ty::UpvarCapture = Decodable::decode(val_dsr).unwrap(); dcx.tcx.tables.borrow_mut().upvar_capture_map.insert(upvar_id, ub.tr(dcx)); } c::tag_table_tcache => { let type_scheme = val_dsr.read_type_scheme(dcx); let lid = ast::DefId { krate: ast::LOCAL_CRATE, node: id }; dcx.tcx.tcache.borrow_mut().insert(lid, type_scheme); } c::tag_table_param_defs => { let bounds = val_dsr.read_type_param_def(dcx); dcx.tcx.ty_param_defs.borrow_mut().insert(id, bounds); } c::tag_table_method_map => { let (autoderef, method) = val_dsr.read_method_callee(dcx); let method_call = MethodCall { expr_id: id, autoderef: autoderef }; dcx.tcx.tables.borrow_mut().method_map.insert(method_call, method); } c::tag_table_adjustments => { let adj: ty::AutoAdjustment = val_dsr.read_auto_adjustment(dcx); dcx.tcx.tables.borrow_mut().adjustments.insert(id, adj); } c::tag_table_closure_tys => { let closure_ty = val_dsr.read_closure_ty(dcx); dcx.tcx.tables.borrow_mut().closure_tys.insert(ast_util::local_def(id), closure_ty); } c::tag_table_closure_kinds => { let closure_kind = val_dsr.read_closure_kind(dcx); dcx.tcx.tables.borrow_mut().closure_kinds.insert(ast_util::local_def(id), closure_kind); } c::tag_table_cast_kinds => { let cast_kind = val_dsr.read_cast_kind(dcx); dcx.tcx.cast_kinds.borrow_mut().insert(id, cast_kind); } c::tag_table_const_qualif => { let qualif: ConstQualif = Decodable::decode(val_dsr).unwrap(); dcx.tcx.const_qualif_map.borrow_mut().insert(id, qualif); } _ => { dcx.tcx.sess.bug( &format!("unknown tag found in side tables: {:x}", tag)); } } } } debug!(">< Side table doc loaded"); } } // ______________________________________________________________________ // Testing of astencode_gen #[cfg(test)] fn encode_item_ast(rbml_w: &mut Encoder, item: &ast::Item) { rbml_w.start_tag(c::tag_tree as usize); (*item).encode(rbml_w); rbml_w.end_tag(); } #[cfg(test)] fn decode_item_ast(par_doc: rbml::Doc) -> ast::Item { let chi_doc = par_doc.get(c::tag_tree as usize); let mut d = reader::Decoder::new(chi_doc); Decodable::decode(&mut d).unwrap() } #[cfg(test)] trait FakeExtCtxt { fn call_site(&self) -> codemap::Span; fn cfg(&self) -> ast::CrateConfig; fn ident_of(&self, st: &str) -> ast::Ident; fn name_of(&self, st: &str) -> ast::Name; fn parse_sess(&self) -> &parse::ParseSess; } #[cfg(test)] impl FakeExtCtxt for parse::ParseSess { fn call_site(&self) -> codemap::Span { codemap::Span { lo: codemap::BytePos(0), hi: codemap::BytePos(0), expn_id: codemap::NO_EXPANSION, } } fn cfg(&self) -> ast::CrateConfig { Vec::new() } fn ident_of(&self, st: &str) -> ast::Ident { parse::token::str_to_ident(st) } fn name_of(&self, st: &str) -> ast::Name { parse::token::intern(st) } fn parse_sess(&self) -> &parse::ParseSess { self } } #[cfg(test)] fn mk_ctxt() -> parse::ParseSess { parse::ParseSess::new() } #[cfg(test)] fn roundtrip(in_item: Option>) { let in_item = in_item.unwrap(); let mut wr = Cursor::new(Vec::new()); encode_item_ast(&mut Encoder::new(&mut wr), &*in_item); let rbml_doc = rbml::Doc::new(wr.get_ref()); let out_item = decode_item_ast(rbml_doc); assert!(*in_item == out_item); } #[test] fn test_basic() { let cx = mk_ctxt(); roundtrip(quote_item!(&cx, fn foo() {} )); } #[test] fn test_smalltalk() { let cx = mk_ctxt(); roundtrip(quote_item!(&cx, fn foo() -> isize { 3 + 4 } // first smalltalk program ever executed. )); } #[test] fn test_more() { let cx = mk_ctxt(); roundtrip(quote_item!(&cx, fn foo(x: usize, y: usize) -> usize { let z = x + y; return z; } )); } #[test] fn test_simplification() { let cx = mk_ctxt(); let item = quote_item!(&cx, fn new_int_alist() -> alist { fn eq_int(a: isize, b: isize) -> bool { a == b } return alist {eq_fn: eq_int, data: Vec::new()}; } ).unwrap(); let item_in = e::IIItemRef(&*item); let item_out = simplify_ast(item_in); let item_exp = ast::IIItem(quote_item!(&cx, fn new_int_alist() -> alist { return alist {eq_fn: eq_int, data: Vec::new()}; } ).unwrap()); match (item_out, item_exp) { (ast::IIItem(item_out), ast::IIItem(item_exp)) => { assert!(pprust::item_to_string(&*item_out) == pprust::item_to_string(&*item_exp)); } _ => panic!() } }