/* * The compiler code necessary to support the #fmt extension. Eventually this * should all get sucked into either the standard library ExtFmt module or the * compiler syntax extension plugin interface. */ import front.parser.parser; import util.common; import std.Str; import std.Vec; import std.Option; import std.Option.none; import std.Option.some; import std.ExtFmt.CT.signedness; import std.ExtFmt.CT.signed; import std.ExtFmt.CT.unsigned; import std.ExtFmt.CT.caseness; import std.ExtFmt.CT.case_upper; import std.ExtFmt.CT.case_lower; import std.ExtFmt.CT.ty; import std.ExtFmt.CT.ty_bool; import std.ExtFmt.CT.ty_str; import std.ExtFmt.CT.ty_char; import std.ExtFmt.CT.ty_int; import std.ExtFmt.CT.ty_bits; import std.ExtFmt.CT.ty_hex; import std.ExtFmt.CT.ty_octal; import std.ExtFmt.CT.flag; import std.ExtFmt.CT.flag_left_justify; import std.ExtFmt.CT.flag_left_zero_pad; import std.ExtFmt.CT.flag_space_for_sign; import std.ExtFmt.CT.flag_sign_always; import std.ExtFmt.CT.flag_alternate; import std.ExtFmt.CT.count; import std.ExtFmt.CT.count_is; import std.ExtFmt.CT.count_is_param; import std.ExtFmt.CT.count_is_next_param; import std.ExtFmt.CT.count_implied; import std.ExtFmt.CT.conv; import std.ExtFmt.CT.piece; import std.ExtFmt.CT.piece_string; import std.ExtFmt.CT.piece_conv; import std.ExtFmt.CT.parse_fmt_string; export expand_syntax_ext; fn expand_syntax_ext(parser p, vec[@ast.expr] args, Option.t[str] body) -> @ast.expr { if (Vec.len[@ast.expr](args) == 0u) { // FIXME: Handle error correctly. log_err "malformed #fmt call"; fail; } auto fmt = expr_to_str(args.(0)); // log "Format string:"; // log fmt; auto pieces = parse_fmt_string(fmt); auto args_len = Vec.len[@ast.expr](args); auto fmt_args = Vec.slice[@ast.expr](args, 1u, args_len - 1u); ret pieces_to_expr(p, pieces, args); } fn expr_to_str(@ast.expr expr) -> str { alt (expr.node) { case (ast.expr_lit(?l, _)) { alt (l.node) { case (ast.lit_str(?s)) { ret s; } } } } // FIXME: Handle error correctly. log_err "malformed #fmt call"; fail; } // FIXME: A lot of these functions for producing expressions can probably // be factored out in common with other code that builds expressions. // FIXME: Probably should be using the parser's span functions // FIXME: Cleanup the naming of these functions fn pieces_to_expr(parser p, vec[piece] pieces, vec[@ast.expr] args) -> @ast.expr { fn make_new_lit(parser p, common.span sp, ast.lit_ lit) -> @ast.expr { auto sp_lit = @rec(node=lit, span=sp); auto expr = ast.expr_lit(sp_lit, p.get_ann()); ret @rec(node=expr, span=sp); } fn make_new_str(parser p, common.span sp, str s) -> @ast.expr { auto lit = ast.lit_str(s); ret make_new_lit(p, sp, lit); } fn make_new_int(parser p, common.span sp, int i) -> @ast.expr { auto lit = ast.lit_int(i); ret make_new_lit(p, sp, lit); } fn make_new_uint(parser p, common.span sp, uint u) -> @ast.expr { auto lit = ast.lit_uint(u); ret make_new_lit(p, sp, lit); } fn make_add_expr(parser p, common.span sp, @ast.expr lhs, @ast.expr rhs) -> @ast.expr { auto binexpr = ast.expr_binary(ast.add, lhs, rhs, p.get_ann()); ret @rec(node=binexpr, span=sp); } fn make_path_expr(parser p, common.span sp, vec[ast.ident] idents) -> @ast.expr { let vec[@ast.ty] types = vec(); auto path = rec(idents=idents, types=types); auto sp_path = rec(node=path, span=sp); auto pathexpr = ast.expr_path(sp_path, none[ast.def], p.get_ann()); auto sp_pathexpr = @rec(node=pathexpr, span=sp); ret sp_pathexpr; } fn make_vec_expr(parser p, common.span sp, vec[@ast.expr] exprs) -> @ast.expr { auto vecexpr = ast.expr_vec(exprs, ast.imm, p.get_ann()); auto sp_vecexpr = @rec(node=vecexpr, span=sp); ret sp_vecexpr; } fn make_call(parser p, common.span sp, vec[ast.ident] fn_path, vec[@ast.expr] args) -> @ast.expr { auto pathexpr = make_path_expr(p, sp, fn_path); auto callexpr = ast.expr_call(pathexpr, args, p.get_ann()); auto sp_callexpr = @rec(node=callexpr, span=sp); ret sp_callexpr; } fn make_rec_expr(parser p, common.span sp, vec[tup(ast.ident, @ast.expr)] fields) -> @ast.expr { let vec[ast.field] astfields = vec(); for (tup(ast.ident, @ast.expr) field in fields) { auto ident = field._0; auto val = field._1; auto astfield = rec(mut = ast.imm, ident = ident, expr = val); astfields += vec(astfield); } auto recexpr = ast.expr_rec(astfields, Option.none[@ast.expr], p.get_ann()); auto sp_recexpr = @rec(node=recexpr, span=sp); ret sp_recexpr; } fn make_path_vec(str ident) -> vec[str] { // FIXME: #fmt can't currently be used from within std // because we're explicitly referencing the 'std' crate here ret vec("std", "ExtFmt", "RT", ident); } fn make_rt_path_expr(parser p, common.span sp, str ident) -> @ast.expr { auto path = make_path_vec(ident); ret make_path_expr(p, sp, path); } // Produces an AST expression that represents a RT.conv record, // which tells the RT.conv* functions how to perform the conversion fn make_rt_conv_expr(parser p, common.span sp, &conv cnv) -> @ast.expr { fn make_flags(parser p, common.span sp, vec[flag] flags) -> @ast.expr { let vec[@ast.expr] flagexprs = vec(); for (flag f in flags) { auto fstr; alt (f) { case (flag_left_justify) { fstr = "flag_left_justify"; } case (flag_left_zero_pad) { fstr = "flag_left_zero_pad"; } case (flag_space_for_sign) { fstr = "flag_space_for_sign"; } case (flag_sign_always) { fstr = "flag_sign_always"; } case (flag_alternate) { fstr = "flag_alternate"; } } flagexprs += vec(make_rt_path_expr(p, sp, fstr)); } // FIXME: 0-length vectors can't have their type inferred // through the rec that these flags are a member of, so // this is a hack placeholder flag if (Vec.len[@ast.expr](flagexprs) == 0u) { flagexprs += vec(make_rt_path_expr(p, sp, "flag_none")); } ret make_vec_expr(p, sp, flagexprs); } fn make_count(parser p, common.span sp, &count cnt) -> @ast.expr { alt (cnt) { case (count_implied) { ret make_rt_path_expr(p, sp, "count_implied"); } case (count_is(?c)) { auto count_lit = make_new_int(p, sp, c); auto count_is_path = make_path_vec("count_is"); auto count_is_args = vec(count_lit); ret make_call(p, sp, count_is_path, count_is_args); } case (_) { log_err "not implemented"; fail; } } } fn make_ty(parser p, common.span sp, &ty t) -> @ast.expr { auto rt_type; alt (t) { case (ty_hex(?c)) { alt (c) { case (case_upper) { rt_type = "ty_hex_upper"; } case (case_lower) { rt_type = "ty_hex_lower"; } } } case (ty_bits) { rt_type = "ty_bits"; } case (ty_octal) { rt_type = "ty_octal"; } case (_) { rt_type = "ty_default"; } } ret make_rt_path_expr(p, sp, rt_type); } fn make_conv_rec(parser p, common.span sp, @ast.expr flags_expr, @ast.expr width_expr, @ast.expr precision_expr, @ast.expr ty_expr) -> @ast.expr { ret make_rec_expr(p, sp, vec(tup("flags", flags_expr), tup("width", width_expr), tup("precision", precision_expr), tup("ty", ty_expr))); } auto rt_conv_flags = make_flags(p, sp, cnv.flags); auto rt_conv_width = make_count(p, sp, cnv.width); auto rt_conv_precision = make_count(p, sp, cnv.precision); auto rt_conv_ty = make_ty(p, sp, cnv.ty); ret make_conv_rec(p, sp, rt_conv_flags, rt_conv_width, rt_conv_precision, rt_conv_ty); } fn make_conv_call(parser p, common.span sp, str conv_type, &conv cnv, @ast.expr arg) -> @ast.expr { auto fname = "conv_" + conv_type; auto path = make_path_vec(fname); auto cnv_expr = make_rt_conv_expr(p, sp, cnv); auto args = vec(cnv_expr, arg); ret make_call(p, arg.span, path, args); } fn make_new_conv(parser p, conv cnv, @ast.expr arg) -> @ast.expr { // FIXME: Extract all this validation into ExtFmt.CT fn is_signed_type(conv cnv) -> bool { alt (cnv.ty) { case (ty_int(?s)) { alt (s) { case (signed) { ret true; } case (unsigned) { ret false; } } } case (_) { ret false; } } } auto unsupported = "conversion not supported in #fmt string"; alt (cnv.param) { case (Option.none[int]) { } case (_) { log_err unsupported; fail; } } for (flag f in cnv.flags) { alt (f) { case (flag_left_justify) { } case (flag_sign_always) { if (!is_signed_type(cnv)) { log_err "+ flag only valid in signed #fmt conversion"; fail; } } case (flag_space_for_sign) { if (!is_signed_type(cnv)) { log_err "space flag only valid in " + "signed #fmt conversions"; fail; } } case (flag_left_zero_pad) { } case (_) { log_err unsupported; fail; } } } alt (cnv.width) { case (count_implied) { } case (count_is(_)) { } case (_) { log_err unsupported; fail; } } alt (cnv.precision) { case (count_implied) { } case (count_is(_)) { } case (_) { log_err unsupported; fail; } } alt (cnv.ty) { case (ty_str) { ret make_conv_call(p, arg.span, "str", cnv, arg); } case (ty_int(?sign)) { alt (sign) { case (signed) { ret make_conv_call(p, arg.span, "int", cnv, arg); } case (unsigned) { ret make_conv_call(p, arg.span, "uint", cnv, arg); } } } case (ty_bool) { ret make_conv_call(p, arg.span, "bool", cnv, arg); } case (ty_char) { ret make_conv_call(p, arg.span, "char", cnv, arg); } case (ty_hex(_)) { ret make_conv_call(p, arg.span, "uint", cnv, arg); } case (ty_bits) { ret make_conv_call(p, arg.span, "uint", cnv, arg); } case (ty_octal) { ret make_conv_call(p, arg.span, "uint", cnv, arg); } case (_) { log_err unsupported; fail; } } } fn log_conv(conv c) { alt (c.param) { case (some[int](?p)) { log "param: " + std.Int.to_str(p, 10u); } case (_) { log "param: none"; } } for (flag f in c.flags) { alt (f) { case (flag_left_justify) { log "flag: left justify"; } case (flag_left_zero_pad) { log "flag: left zero pad"; } case (flag_space_for_sign) { log "flag: left space pad"; } case (flag_sign_always) { log "flag: sign always"; } case (flag_alternate) { log "flag: alternate"; } } } alt (c.width) { case (count_is(?i)) { log "width: count is " + std.Int.to_str(i, 10u); } case (count_is_param(?i)) { log "width: count is param " + std.Int.to_str(i, 10u); } case (count_is_next_param) { log "width: count is next param"; } case (count_implied) { log "width: count is implied"; } } alt (c.precision) { case (count_is(?i)) { log "prec: count is " + std.Int.to_str(i, 10u); } case (count_is_param(?i)) { log "prec: count is param " + std.Int.to_str(i, 10u); } case (count_is_next_param) { log "prec: count is next param"; } case (count_implied) { log "prec: count is implied"; } } alt (c.ty) { case (ty_bool) { log "type: bool"; } case (ty_str) { log "type: str"; } case (ty_char) { log "type: char"; } case (ty_int(?s)) { alt (s) { case (signed) { log "type: signed"; } case (unsigned) { log "type: unsigned"; } } } case (ty_bits) { log "type: bits"; } case (ty_hex(?cs)) { alt (cs) { case (case_upper) { log "type: uhex"; } case (case_lower) { log "type: lhex"; } } } } } auto sp = args.(0).span; auto n = 0u; auto tmp_expr = make_new_str(p, sp, ""); for (piece pc in pieces) { alt (pc) { case (piece_string(?s)) { auto s_expr = make_new_str(p, sp, s); tmp_expr = make_add_expr(p, sp, tmp_expr, s_expr); } case (piece_conv(?conv)) { if (n >= Vec.len[@ast.expr](args)) { log_err "too many conversions in #fmt string"; fail; } // TODO: Remove debug logging //log "Building conversion:"; //log_conv(conv); n += 1u; auto arg_expr = args.(n); auto c_expr = make_new_conv(p, conv, arg_expr); tmp_expr = make_add_expr(p, sp, tmp_expr, c_expr); } } } // TODO: Remove this debug logging // log "dumping expanded ast:"; // log pretty.print_expr(tmp_expr); ret tmp_expr; } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: //