// Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Cross-platform path manipulation. //! //! This module provides two types, `PathBuf` and `Path` (akin to `String` and //! `str`), for working with paths abstractly. These types are thin wrappers //! around `OsString` and `OsStr` respectively, meaning that they work directly //! on strings according to the local platform's path syntax. //! //! ## Simple usage //! //! Path manipulation involves both parsing components from slices and building //! new owned paths. //! //! To parse a path, you can create a `Path` slice from a `str` //! slice and start asking questions: //! //! ```rust //! use std::path::Path; //! //! let path = Path::new("/tmp/foo/bar.txt"); //! let file = path.file_name(); //! let extension = path.extension(); //! let parent_dir = path.parent(); //! ``` //! //! To build or modify paths, use `PathBuf`: //! //! ```rust //! use std::path::PathBuf; //! //! let mut path = PathBuf::new("c:\\"); //! path.push("windows"); //! path.push("system32"); //! path.set_extension("dll"); //! ``` //! //! ## Path components and normalization //! //! The path APIs are built around the notion of "components", which roughly //! correspond to the substrings between path separators (`/` and, on Windows, //! `\`). The APIs for path parsing are largely specified in terms of the path's //! components, so it's important to clearly understand how those are determined. //! //! A path can always be reconstructed into an equivalent path by putting //! together its components via `push`. Syntactically, the paths may differ by //! the normalization described below. //! //! ### Component types //! //! Components come in several types: //! //! * Normal components are the default: standard references to files or //! directories. The path `a/b` has two normal components, `a` and `b`. //! //! * Current directory components represent the `.` character. For example, //! `a/.` has a normal component `a` and a current directory component. //! //! * The root directory component represents a separator that designates //! starting from root. For example, `/a/b` has a root directory component //! followed by normal components `a` and `b`. //! //! On Windows, two additional component types come into play: //! //! * Prefix components, of which there is a large variety. For example, `C:` //! and `\\server\share` are prefixes. The path `C:windows` has a prefix //! component `C:` and a normal component `windows`; the path `C:\windows` has a //! prefix component `C:`, a root directory component, and a normal component //! `windows`. //! //! * Empty components, a special case for so-called "verbatim" paths where very //! little normalization is allowed. For example, `\\?\C:\` has a "verbatim" //! prefix `\\?\C:`, a root component, and an empty component (as a way of //! representing the trailing `\`. Such a trailing `\` is in fact the only //! situation in which an empty component is produced. //! //! ### Normalization //! //! Aside from splitting on the separator(s), there is a small amount of //! "normalization": //! //! * Repeated separators are ignored: `a/b` and `a//b` both have components `a` //! and `b`. //! //! * Paths ending in a separator are treated as if they has a current directory //! component at the end (or, in verbatim paths, an empty component). For //! example, while `a/b` has components `a` and `b`, the paths `a/b/` and //! `a/b/.` both have components `a`, `b`, and `.` (current directory). The //! reason for this normalization is that `a/b` and `a/b/` are treated //! differently in some contexts, but `a/b/` and `a/b/.` are always treated //! the same. //! //! No other normalization takes place by default. In particular, `a/./b/` and //! `a/b` are treated distinctly in terms of components, as are `a/c` and //! `a/b/../c`. Further normalization is possible to build on top of the //! components APIs, and will be included in this library very soon. #![unstable(feature = "path")] use core::prelude::*; use borrow::BorrowFrom; use cmp; use iter; use mem; use ops::{self, Deref}; use string::CowString; use vec::Vec; use fmt; use ffi::{OsStr, OsString, AsOsStr}; use self::platform::{is_sep, is_verbatim_sep, MAIN_SEP_STR, parse_prefix, Prefix}; //////////////////////////////////////////////////////////////////////////////// // GENERAL NOTES //////////////////////////////////////////////////////////////////////////////// // // Parsing in this module is done by directly transmuting OsStr to [u8] slices, // taking advantage of the fact that OsStr always encodes ASCII characters // as-is. Eventually, this transmutation should be replaced by direct uses of // OsStr APIs for parsing, but it will take a while for those to become // available. //////////////////////////////////////////////////////////////////////////////// // Platform-specific definitions //////////////////////////////////////////////////////////////////////////////// // The following modules give the most basic tools for parsing paths on various // platforms. The bulk of the code is devoted to parsing prefixes on Windows. #[cfg(unix)] mod platform { use core::prelude::*; use ffi::OsStr; #[inline] pub fn is_sep(b: u8) -> bool { b == b'/' } #[inline] pub fn is_verbatim_sep(b: u8) -> bool { b == b'/' } pub fn parse_prefix(_: &OsStr) -> Option { None } #[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)] pub struct Prefix<'a>; impl<'a> Prefix<'a> { #[inline] pub fn len(&self) -> usize { 0 } #[inline] pub fn is_verbatim(&self) -> bool { false } #[inline] pub fn is_drive(&self) -> bool { false } #[inline] pub fn has_implicit_root(&self) -> bool { false } } pub const MAIN_SEP_STR: &'static str = "/"; } #[cfg(windows)] mod platform { use core::prelude::*; use char::CharExt as UnicodeCharExt; use super::{os_str_as_u8_slice, u8_slice_as_os_str}; use ascii::*; use ffi::OsStr; #[inline] pub fn is_sep(b: u8) -> bool { b == b'/' || b == b'\\' } #[inline] pub fn is_verbatim_sep(b: u8) -> bool { b == b'\\' } pub fn parse_prefix<'a>(path: &'a OsStr) -> Option { use self::Prefix::*; unsafe { // The unsafety here stems from converting between &OsStr and &[u8] // and back. This is safe to do because (1) we only look at ASCII // contents of the encoding and (2) new &OsStr values are produced // only from ASCII-bounded slices of existing &OsStr values. let mut path = os_str_as_u8_slice(path); if path.starts_with(br"\\") { // \\ path = &path[2..]; if path.starts_with(br"?\") { // \\?\ path = &path[2..]; if path.starts_with(br"UNC\") { // \\?\UNC\server\share path = &path[4..]; let (server, share) = match parse_two_comps(path, is_verbatim_sep) { Some((server, share)) => (u8_slice_as_os_str(server), u8_slice_as_os_str(share)), None => (u8_slice_as_os_str(path), u8_slice_as_os_str(&[])), }; return Some(VerbatimUNC(server, share)); } else { // \\?\path let idx = path.position_elem(&b'\\'); if idx == Some(2) && path[1] == b':' { let c = path[0]; if c.is_ascii() && (c as char).is_alphabetic() { // \\?\C:\ path let slice = u8_slice_as_os_str(&path[0..1]); return Some(VerbatimDisk(slice)); } } let slice = &path[.. idx.unwrap_or(path.len())]; return Some(Verbatim(u8_slice_as_os_str(slice))); } } else if path.starts_with(b".\\") { // \\.\path path = &path[2..]; let slice = &path[.. path.position_elem(&b'\\').unwrap_or(path.len())]; return Some(DeviceNS(u8_slice_as_os_str(slice))); } match parse_two_comps(path, is_sep) { Some((server, share)) if server.len() > 0 && share.len() > 0 => { // \\server\share return Some(UNC(u8_slice_as_os_str(server), u8_slice_as_os_str(share))); } _ => () } } else if path.len() > 1 && path[1] == b':' { // C: let c = path[0]; if c.is_ascii() && (c as char).is_alphabetic() { return Some(Disk(u8_slice_as_os_str(&path[0..1]))); } } return None; } fn parse_two_comps(mut path: &[u8], f: fn(u8) -> bool) -> Option<(&[u8], &[u8])> { let first = match path.iter().position(|x| f(*x)) { None => return None, Some(x) => &path[.. x] }; path = &path[(first.len()+1)..]; let idx = path.iter().position(|x| f(*x)); let second = &path[.. idx.unwrap_or(path.len())]; Some((first, second)) } } /// Windows path prefixes. /// /// Windows uses a variety of path styles, including references to drive /// volumes (like `C:`), network shared (like `\\server\share`) and /// others. In addition, some path prefixes are "verbatim", in which case /// `/` is *not* treated as a separator and essentially no normalization is /// performed. #[derive(Copy, Clone, Debug, Hash, Eq)] pub enum Prefix<'a> { /// Prefix `\\?\`, together with the given component immediately following it. Verbatim(&'a OsStr), /// Prefix `\\?\UNC\`, with the "server" and "share" components following it. VerbatimUNC(&'a OsStr, &'a OsStr), /// Prefix like `\\?\C:\`, for the given drive letter VerbatimDisk(&'a OsStr), /// Prefix `\\.\`, together with the given component immediately following it. DeviceNS(&'a OsStr), /// Prefix `\\server\share`, with the given "server" and "share" components. UNC(&'a OsStr, &'a OsStr), /// Prefix `C:` for the given disk drive. Disk(&'a OsStr), } impl<'a> Prefix<'a> { #[inline] pub fn len(&self) -> usize { use self::Prefix::*; fn os_str_len(s: &OsStr) -> usize { os_str_as_u8_slice(s).len() } match *self { Verbatim(x) => 4 + os_str_len(x), VerbatimUNC(x,y) => 8 + os_str_len(x) + if os_str_len(y) > 0 { 1 + os_str_len(y) } else { 0 }, VerbatimDisk(_) => 6, UNC(x,y) => 2 + os_str_len(x) + if os_str_len(y) > 0 { 1 + os_str_len(y) } else { 0 }, DeviceNS(x) => 4 + os_str_len(x), Disk(_) => 2 } } #[inline] pub fn is_verbatim(&self) -> bool { use self::Prefix::*; match *self { Verbatim(_) | VerbatimDisk(_) | VerbatimUNC(_, _) => true, _ => false } } #[inline] pub fn is_drive(&self) -> bool { match *self { Prefix::Disk(_) => true, _ => false, } } #[inline] pub fn has_implicit_root(&self) -> bool { !self.is_drive() } } impl<'a> PartialEq for Prefix<'a> { fn eq(&self, other: &Prefix<'a>) -> bool { use self::Prefix::*; match (*self, *other) { (Verbatim(x), Verbatim(y)) => x == y, (VerbatimUNC(x1, x2), VerbatimUNC(y1, y2)) => x1 == y1 && x2 == y2, (VerbatimDisk(x), VerbatimDisk(y)) => os_str_as_u8_slice(x).eq_ignore_ascii_case(os_str_as_u8_slice(y)), (DeviceNS(x), DeviceNS(y)) => x == y, (UNC(x1, x2), UNC(y1, y2)) => x1 == y1 && x2 == y2, (Disk(x), Disk(y)) => os_str_as_u8_slice(x).eq_ignore_ascii_case(os_str_as_u8_slice(y)), _ => false, } } } pub const MAIN_SEP_STR: &'static str = "\\"; } //////////////////////////////////////////////////////////////////////////////// // Misc helpers //////////////////////////////////////////////////////////////////////////////// // Iterate through `iter` while it matches `prefix`; return `None` if `prefix` // is not a prefix of `iter`, otherwise return `Some(iter_after_prefix)` giving // `iter` after having exhausted `prefix`. fn iter_after(mut iter: I, mut prefix: J) -> Option where I: Iterator + Clone, J: Iterator, A: PartialEq { loop { let mut iter_next = iter.clone(); match (iter_next.next(), prefix.next()) { (Some(x), Some(y)) => { if x != y { return None } } (Some(_), None) => return Some(iter), (None, None) => return Some(iter), (None, Some(_)) => return None, } iter = iter_next; } } // See note at the top of this module to understand why these are used: fn os_str_as_u8_slice(s: &OsStr) -> &[u8] { unsafe { mem::transmute(s) } } unsafe fn u8_slice_as_os_str(s: &[u8]) -> &OsStr { mem::transmute(s) } //////////////////////////////////////////////////////////////////////////////// // Cross-platform parsing //////////////////////////////////////////////////////////////////////////////// /// Says whether the path ends in a separator character and therefore needs to /// be treated as if it ended with an additional `.` fn has_suffix(s: &[u8], prefix: Option) -> bool { let (prefix_len, verbatim) = if let Some(p) = prefix { (p.len(), p.is_verbatim()) } else { (0, false) }; if prefix_len > 0 && prefix_len == s.len() && !verbatim { return true; } let mut splits = s[prefix_len..].split(|b| is_sep(*b)); let last = splits.next_back().unwrap(); let more = splits.next_back().is_some(); more && last == b"" } /// Says whether the first byte after the prefix is a separator. fn has_physical_root(s: &[u8], prefix: Option) -> bool { let path = if let Some(p) = prefix { &s[p.len()..] } else { s }; path.len() > 0 && is_sep(path[0]) } fn parse_single_component(comp: &[u8]) -> Option { match comp { b"." => Some(Component::CurDir), b".." => Some(Component::ParentDir), b"" => None, _ => Some(Component::Normal(unsafe { u8_slice_as_os_str(comp) })) } } // basic workhorse for splitting stem and extension #[allow(unused_unsafe)] // FIXME fn split_file_at_dot(file: &OsStr) -> (Option<&OsStr>, Option<&OsStr>) { unsafe { if os_str_as_u8_slice(file) == b".." { return (Some(file), None) } // The unsafety here stems from converting between &OsStr and &[u8] // and back. This is safe to do because (1) we only look at ASCII // contents of the encoding and (2) new &OsStr values are produced // only from ASCII-bounded slices of existing &OsStr values. let mut iter = os_str_as_u8_slice(file).rsplitn(1, |b| *b == b'.'); let after = iter.next(); let before = iter.next(); if before == Some(b"") { (Some(file), None) } else { (before.map(|s| u8_slice_as_os_str(s)), after.map(|s| u8_slice_as_os_str(s))) } } } //////////////////////////////////////////////////////////////////////////////// // The core iterators //////////////////////////////////////////////////////////////////////////////// /// Component parsing works by a double-ended state machine; the cursors at the /// front and back of the path each keep track of what parts of the path have /// been consumed so far. /// /// Going front to back, a path is made up of a prefix, a root component, a body /// (of normal components), and a suffix/emptycomponent (normalized `.` or `` /// for a path ending with the separator) #[derive(Copy, Clone, PartialEq, PartialOrd, Debug)] enum State { Prefix = 0, // c: Root = 1, // / Body = 2, // foo/bar/baz Suffix = 3, // . Done = 4, } /// A single component of a path. /// /// See the module documentation for an in-depth explanation of components and /// their role in the API. #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)] pub enum Component<'a> { /// A Windows path prefix, e.g. `C:` or `\server\share` Prefix(&'a OsStr), /// An empty component. Only used on Windows for the last component of /// verbatim paths ending with a separator (e.g. the last component of /// `\\?\C:\windows\` but not `\\?\C:\windows` or `C:\windows`). Empty, /// The root directory component, appears after any prefix and before anything else RootDir, /// A reference to the current directory, i.e. `.` CurDir, /// A reference to the parent directory, i.e. `..` ParentDir, /// A normal component, i.e. `a` and `b` in `a/b` Normal(&'a OsStr), } impl<'a> Component<'a> { /// Extract the underlying `OsStr` slice pub fn as_os_str(self) -> &'a OsStr { match self { Component::Prefix(path) => path, Component::Empty => OsStr::from_str(""), Component::RootDir => OsStr::from_str(MAIN_SEP_STR), Component::CurDir => OsStr::from_str("."), Component::ParentDir => OsStr::from_str(".."), Component::Normal(path) => path, } } } /// The core iterator giving the components of a path. /// /// See the module documentation for an in-depth explanation of components and /// their role in the API. #[derive(Clone)] pub struct Components<'a> { // The path left to parse components from path: &'a [u8], // The prefix as it was originally parsed, if any prefix: Option>, // true if path *physically* has a root separator; for most Windows // prefixes, it may have a "logical" rootseparator for the purposes of // normalization, e.g. \\server\share == \\server\share\. has_physical_root: bool, // The iterator is double-ended, and these two states keep track of what has // been produced from either end front: State, back: State, } /// An iterator over the components of a path, as `OsStr` slices. #[derive(Clone)] pub struct Iter<'a> { inner: Components<'a> } impl<'a> Components<'a> { // how long is the prefix, if any? #[inline] fn prefix_len(&self) -> usize { self.prefix.as_ref().map(Prefix::len).unwrap_or(0) } #[inline] fn prefix_verbatim(&self) -> bool { self.prefix.as_ref().map(Prefix::is_verbatim).unwrap_or(false) } /// how much of the prefix is left from the point of view of iteration? #[inline] fn prefix_remaining(&self) -> usize { if self.front == State::Prefix { self.prefix_len() } else { 0 } } fn prefix_and_root(&self) -> usize { let root = if self.front <= State::Root && self.has_physical_root { 1 } else { 0 }; self.prefix_remaining() + root } // is the iteration complete? #[inline] fn finished(&self) -> bool { self.front == State::Done || self.back == State::Done || self.front > self.back } #[inline] fn is_sep(&self, b: u8) -> bool { if self.prefix_verbatim() { is_verbatim_sep(b) } else { is_sep(b) } } /// Extract a slice corresponding to the portion of the path remaining for iteration. pub fn as_path(&self) -> &'a Path { let mut comps = self.clone(); if comps.front == State::Body { comps.trim_left(); } if comps.back == State::Body { comps.trim_right(); } if comps.path.is_empty() && comps.front < comps.back && comps.back == State::Suffix { Path::new(".") } else { unsafe { Path::from_u8_slice(comps.path) } } } /// Is the *original* path rooted? fn has_root(&self) -> bool { if self.has_physical_root { return true } if let Some(p) = self.prefix { if p.has_implicit_root() { return true } } false } // parse a component from the left, saying how many bytes to consume to // remove the component fn parse_next_component(&self) -> (usize, Option>) { debug_assert!(self.front == State::Body); let (extra, comp) = match self.path.iter().position(|b| self.is_sep(*b)) { None => (0, self.path), Some(i) => (1, &self.path[.. i]), }; (comp.len() + extra, parse_single_component(comp)) } // parse a component from the right, saying how many bytes to consume to // remove the component fn parse_next_component_back(&self) -> (usize, Option>) { debug_assert!(self.back == State::Body); let start = self.prefix_and_root(); let (extra, comp) = match self.path[start..].iter().rposition(|b| self.is_sep(*b)) { None => (0, &self.path[start ..]), Some(i) => (1, &self.path[start + i + 1 ..]), }; (comp.len() + extra, parse_single_component(comp)) } // trim away repeated separators (i.e. emtpy components) on the left fn trim_left(&mut self) { while !self.path.is_empty() { let (size, comp) = self.parse_next_component(); if comp.is_some() { return; } else { self.path = &self.path[size ..]; } } } // trim away repeated separators (i.e. emtpy components) on the right fn trim_right(&mut self) { while self.path.len() > self.prefix_and_root() { let (size, comp) = self.parse_next_component_back(); if comp.is_some() { return; } else { self.path = &self.path[.. self.path.len() - size]; } } } /// Examine the next component without consuming it. pub fn peek(&self) -> Option> { self.clone().next() } } impl<'a> Iter<'a> { /// Extract a slice corresponding to the portion of the path remaining for iteration. pub fn as_path(&self) -> &'a Path { self.inner.as_path() } } impl<'a> Iterator for Iter<'a> { type Item = &'a OsStr; fn next(&mut self) -> Option<&'a OsStr> { self.inner.next().map(Component::as_os_str) } } impl<'a> DoubleEndedIterator for Iter<'a> { fn next_back(&mut self) -> Option<&'a OsStr> { self.inner.next_back().map(Component::as_os_str) } } impl<'a> Iterator for Components<'a> { type Item = Component<'a>; fn next(&mut self) -> Option> { while !self.finished() { match self.front { State::Prefix if self.prefix_len() > 0 => { self.front = State::Root; debug_assert!(self.prefix_len() <= self.path.len()); let prefix = &self.path[.. self.prefix_len()]; self.path = &self.path[self.prefix_len() .. ]; return Some(Component::Prefix(unsafe { u8_slice_as_os_str(prefix) })) } State::Prefix => { self.front = State::Root; } State::Root => { self.front = State::Body; if self.has_physical_root { debug_assert!(self.path.len() > 0); self.path = &self.path[1..]; return Some(Component::RootDir) } else if let Some(p) = self.prefix { if p.has_implicit_root() && !p.is_verbatim() { return Some(Component::RootDir) } } } State::Body if !self.path.is_empty() => { let (size, comp) = self.parse_next_component(); self.path = &self.path[size ..]; if comp.is_some() { return comp } } State::Body => { self.front = State::Suffix; } State::Suffix => { self.front = State::Done; if self.prefix_verbatim() { return Some(Component::Empty) } else { return Some(Component::CurDir) } } State::Done => unreachable!() } } None } } impl<'a> DoubleEndedIterator for Components<'a> { fn next_back(&mut self) -> Option> { while !self.finished() { match self.back { State::Suffix => { self.back = State::Body; if self.prefix_verbatim() { return Some(Component::Empty) } else { return Some(Component::CurDir) } } State::Body if self.path.len() > self.prefix_and_root() => { let (size, comp) = self.parse_next_component_back(); self.path = &self.path[.. self.path.len() - size]; if comp.is_some() { return comp } } State::Body => { self.back = State::Root; } State::Root => { self.back = State::Prefix; if self.has_physical_root { self.path = &self.path[.. self.path.len() - 1]; return Some(Component::RootDir) } else if let Some(p) = self.prefix { if p.has_implicit_root() && !p.is_verbatim() { return Some(Component::RootDir) } } } State::Prefix if self.prefix_len() > 0 => { self.back = State::Done; return Some(Component::Prefix(unsafe { u8_slice_as_os_str(self.path) })) } State::Prefix => { self.back = State::Done; return None } State::Done => unreachable!() } } None } } fn optional_path(path: &Path) -> Option<&Path> { if path.as_u8_slice().is_empty() { None } else { Some(path) } } impl<'a> cmp::PartialEq for Components<'a> { fn eq(&self, other: &Components<'a>) -> bool { iter::order::eq(self.clone(), other.clone()) } } impl<'a> cmp::Eq for Components<'a> {} impl<'a> cmp::PartialOrd for Components<'a> { fn partial_cmp(&self, other: &Components<'a>) -> Option { iter::order::partial_cmp(self.clone(), other.clone()) } } impl<'a> cmp::Ord for Components<'a> { fn cmp(&self, other: &Components<'a>) -> cmp::Ordering { iter::order::cmp(self.clone(), other.clone()) } } //////////////////////////////////////////////////////////////////////////////// // Basic types and traits //////////////////////////////////////////////////////////////////////////////// /// An owned, mutable path (akin to `String`). /// /// This type provides methods like `push` and `set_extension` that mutate the /// path in place. It also implements `Deref` to `Path`, meaning that all /// methods on `Path` slices are available on `PathBuf` values as well. /// /// More details about the overall approach can be found in /// the module documentation. /// /// # Example /// /// ```rust /// use std::path::PathBuf; /// /// let mut path = PathBuf::new("c:\\"); /// path.push("windows"); /// path.push("system32"); /// path.set_extension("dll"); /// ``` #[derive(Clone, Hash)] pub struct PathBuf { inner: OsString } impl PathBuf { fn as_mut_vec(&mut self) -> &mut Vec { unsafe { mem::transmute(self) } } /// Allocate a `PathBuf` with initial contents given by the /// argument. pub fn new(s: &S) -> PathBuf { PathBuf { inner: s.as_os_str().to_os_string() } } /// Extend `self` with `path`. /// /// If `path` is absolute, it replaces the current path. /// /// On Windows: /// /// * if `path` has a root but no prefix (e.g. `\windows`), it /// replaces everything except for the prefix (if any) of `self`. /// * if `path` has a prefix but no root, it replaces `self. pub fn push(&mut self, path: &P) where P: AsPath { // in general, a separator is needed if the rightmost byte is not a separator let mut need_sep = self.as_mut_vec().last().map(|c| !is_sep(*c)).unwrap_or(false); // in the special case of `C:` on Windows, do *not* add a separator { let comps = self.components(); if comps.prefix_len() > 0 && comps.prefix_len() == comps.path.len() && comps.prefix.unwrap().is_drive() { need_sep = false } } let path = path.as_path(); // absolute `path` replaces `self` if path.is_absolute() || path.prefix().is_some() { self.as_mut_vec().truncate(0); // `path` has a root but no prefix, e.g. `\windows` (Windows only) } else if path.has_root() { let prefix_len = self.components().prefix_remaining(); self.as_mut_vec().truncate(prefix_len); // `path` is a pure relative path } else if need_sep { self.inner.push_os_str(OsStr::from_str(MAIN_SEP_STR)); } self.inner.push_os_str(path.as_os_str()); } /// Truncate `self` to `self.parent()`. /// /// Returns `None` and does nothing if `self.parent()` is `None`. pub fn pop(&mut self) -> bool { match self.parent().map(|p| p.as_u8_slice().len()) { Some(len) => { self.as_mut_vec().truncate(len); true } None => false } } /// Updates `self.file_name()` to `file_name`. /// /// If `self.file_name()` was `None`, this is equivalent to pushing /// `file_name`. /// /// # Examples /// /// ```rust /// use std::path::{Path, PathBuf}; /// /// let mut buf = PathBuf::new("/foo/"); /// assert!(buf.file_name() == None); /// buf.set_file_name("bar"); /// assert!(buf == PathBuf::new("/foo/bar")); /// assert!(buf.file_name().is_some()); /// buf.set_file_name("baz.txt"); /// assert!(buf == PathBuf::new("/foo/baz.txt")); /// ``` pub fn set_file_name(&mut self, file_name: &S) where S: AsOsStr { if self.file_name().is_some() && !self.pop() { // Given that there is a file name, this is reachable only for // Windows paths like c:file or paths like `foo`, but not `c:\` or // `/`. let prefix_len = self.components().prefix_remaining(); self.as_mut_vec().truncate(prefix_len); } self.push(file_name.as_os_str()); } /// Updates `self.extension()` to `extension`. /// /// If `self.file_name()` is `None`, does nothing and returns `false`. /// /// Otherwise, returns `tru`; if `self.exension()` is `None`, the extension /// is added; otherwise it is replaced. pub fn set_extension(&mut self, extension: &S) -> bool { if self.file_name().is_none() { return false; } let mut stem = match self.file_stem() { Some(stem) => stem.to_os_string(), None => OsString::from_str(""), }; let extension = extension.as_os_str(); if os_str_as_u8_slice(extension).len() > 0 { stem.push_os_str(OsStr::from_str(".")); stem.push_os_str(extension.as_os_str()); } self.set_file_name(&stem); true } } impl<'a, P: ?Sized + 'a> iter::FromIterator<&'a P> for PathBuf where P: AsPath { fn from_iter>(iter: I) -> PathBuf { let mut buf = PathBuf::new(""); buf.extend(iter); buf } } impl<'a, P: ?Sized + 'a> iter::Extend<&'a P> for PathBuf where P: AsPath { fn extend>(&mut self, iter: I) { for p in iter { self.push(p) } } } impl fmt::Debug for PathBuf { fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> { fmt::Debug::fmt(&**self, formatter) } } impl ops::Deref for PathBuf { type Target = Path; fn deref(&self) -> &Path { unsafe { mem::transmute(&self.inner[]) } } } impl BorrowFrom for Path { fn borrow_from(owned: &PathBuf) -> &Path { owned.deref() } } impl cmp::PartialEq for PathBuf { fn eq(&self, other: &PathBuf) -> bool { self.components() == other.components() } } impl cmp::Eq for PathBuf {} impl cmp::PartialOrd for PathBuf { fn partial_cmp(&self, other: &PathBuf) -> Option { self.components().partial_cmp(&other.components()) } } impl cmp::Ord for PathBuf { fn cmp(&self, other: &PathBuf) -> cmp::Ordering { self.components().cmp(&other.components()) } } /// A slice of a path (akin to `str`). /// /// This type supports a number of operations for inspecting a path, including /// breaking the path into its components (separated by `/` or `\`, depending on /// the platform), extracting the file name, determining whether the path is /// absolute, and so on. More details about the overall approach can be found in /// the module documentation. /// /// This is an *unsized* type, meaning that it must always be used with behind a /// pointer like `&` or `Box`. /// /// # Example /// /// ```rust /// use std::path::Path; /// /// let path = Path::new("/tmp/foo/bar.txt"); /// let file = path.file_name(); /// let extension = path.extension(); /// let parent_dir = path.parent(); /// ``` /// pub struct Path { inner: OsStr } impl Path { // The following (private!) function allows construction of a path from a u8 // slice, which is only safe when it is known to follow the OsStr encoding. unsafe fn from_u8_slice(s: &[u8]) -> &Path { mem::transmute(s) } // The following (private!) function reveals the byte encoding used for OsStr. fn as_u8_slice(&self) -> &[u8] { unsafe { mem::transmute(self) } } /// Directly wrap a string slice as a `Path` slice. /// /// This is a cost-free conversion. pub fn new(s: &S) -> &Path { unsafe { mem::transmute(s.as_os_str()) } } /// Yield a `&str` slice if the `Path` is valid unicode. /// /// This conversion may entail doing a check for UTF-8 validity. pub fn to_str(&self) -> Option<&str> { self.inner.to_str() } /// Convert a `Path` to a `CowString`. /// /// Any non-Unicode sequences are replaced with U+FFFD REPLACEMENT CHARACTER. pub fn to_string_lossy(&self) -> CowString { self.inner.to_string_lossy() } /// Convert a `Path` to an owned `PathBuf`. pub fn to_path_buf(&self) -> PathBuf { PathBuf::new(self) } /// A path is *absolute* if it is indepedent of the current directory. /// /// * On Unix, a path is absolute if it starts with the root, so /// `is_absolute` and `has_root` are equivalent. /// /// * On Windows, a path is absolute if it has a prefix and starts with the /// root: `c:\windows` is absolute, while `c:temp` and `\temp` are not. In /// other words, `path.is_absolute() == path.prefix().is_some() && path.has_root()`. pub fn is_absolute(&self) -> bool { self.has_root() && (cfg!(unix) || self.prefix().is_some()) } /// A path is *relative* if it is not absolute. pub fn is_relative(&self) -> bool { !self.is_absolute() } /// Returns the *prefix* of a path, if any. /// /// Prefixes are relevant only for Windows paths, and consist of volumes /// like `C:`, UNC prefixes like `\\server`, and others described in more /// detail in `std::os::windows::PathExt`. pub fn prefix(&self) -> Option<&Path> { let iter = self.components(); optional_path(unsafe { Path::from_u8_slice( &self.as_u8_slice()[.. iter.prefix_remaining()]) }) } /// A path has a root if the body of the path begins with the directory separator. /// /// * On Unix, a path has a root if it begins with `/`. /// /// * On Windows, a path has a root if it: /// * has no prefix and begins with a separator, e.g. `\\windows` /// * has a prefix followed by a separator, e.g. `c:\windows` but not `c:windows` /// * has any non-disk prefix, e.g. `\\server\share` pub fn has_root(&self) -> bool { self.components().has_root() } /// The path without its final component. /// /// Does nothing, returning `None` if the path consists of just a prefix /// and/or root directory reference. /// /// # Examples /// /// ```rust /// use std::path::Path; /// /// let path = Path::new("/foo/bar"); /// let foo = path.parent().unwrap(); /// assert!(foo == Path::new("/foo")); /// let root = foo.parent().unwrap(); /// assert!(root == Path::new("/")); /// assert!(root.parent() == None); /// ``` pub fn parent(&self) -> Option<&Path> { let mut comps = self.components(); let comp = comps.next_back(); let rest = optional_path(comps.as_path()); match (comp, comps.next_back()) { (Some(Component::CurDir), Some(Component::RootDir)) => None, (Some(Component::CurDir), Some(Component::Prefix(_))) => None, (Some(Component::Empty), Some(Component::RootDir)) => None, (Some(Component::Empty), Some(Component::Prefix(_))) => None, (Some(Component::Prefix(_)), None) => None, (Some(Component::RootDir), Some(Component::Prefix(_))) => None, _ => rest } } /// The final component of the path, if it is a normal file. /// /// If the path terminates in `.`, `..`, or consists solely or a root of /// prefix, `file` will return `None`. pub fn file_name(&self) -> Option<&OsStr> { self.components().next_back().and_then(|p| match p { Component::Normal(p) => Some(p.as_os_str()), _ => None }) } /// Returns a path that, when joined onto `base`, yields `self`. pub fn relative_from<'a, P: ?Sized>(&'a self, base: &'a P) -> Option<&Path> where P: AsPath { iter_after(self.components(), base.as_path().components()).map(|c| c.as_path()) } /// Determines whether `base` is a prefix of `self`. pub fn starts_with(&self, base: &P) -> bool where P: AsPath { iter_after(self.components(), base.as_path().components()).is_some() } /// Determines whether `base` is a suffix of `self`. pub fn ends_with(&self, child: &P) -> bool where P: AsPath { iter_after(self.components().rev(), child.as_path().components().rev()).is_some() } /// Extract the stem (non-extension) portion of `self.file()`. /// /// The stem is: /// /// * None, if there is no file name; /// * The entire file name if there is no embedded `.`; /// * The entire file name if the file name begins with `.` and has no other `.`s within; /// * Otherwise, the portion of the file name before the final `.` pub fn file_stem(&self) -> Option<&OsStr> { self.file_name().map(split_file_at_dot).and_then(|(before, after)| before.or(after)) } /// Extract the extension of `self.file()`, if possible. /// /// The extension is: /// /// * None, if there is no file name; /// * None, if there is no embedded `.`; /// * None, if the file name begins with `.` and has no other `.`s within; /// * Otherwise, the portion of the file name after the final `.` pub fn extension(&self) -> Option<&OsStr> { self.file_name().map(split_file_at_dot).and_then(|(before, after)| before.and(after)) } /// Creates an owned `PathBuf` with `path` adjoined to `self`. /// /// See `PathBuf::push` for more details on what it means to adjoin a path. pub fn join(&self, path: &P) -> PathBuf where P: AsPath { let mut buf = self.to_path_buf(); buf.push(path); buf } /// Creates an owned `PathBuf` like `self` but with the given file name. /// /// See `PathBuf::set_file_name` for more details. pub fn with_file_name(&self, file_name: &S) -> PathBuf where S: AsOsStr { let mut buf = self.to_path_buf(); buf.set_file_name(file_name); buf } /// Creates an owned `PathBuf` like `self` but with the given extension. /// /// See `PathBuf::set_extension` for more details. pub fn with_extension(&self, extension: &S) -> PathBuf where S: AsOsStr { let mut buf = self.to_path_buf(); buf.set_extension(extension); buf } /// Produce an iterator over the components of the path. pub fn components(&self) -> Components { let prefix = parse_prefix(self.as_os_str()); Components { path: self.as_u8_slice(), prefix: prefix, has_physical_root: has_physical_root(self.as_u8_slice(), prefix), front: State::Prefix, back: if has_suffix(self.as_u8_slice(), prefix) { State::Suffix } else { State::Body }, } } /// Produce an iterator over the path's components viewed as `OsStr` slices. pub fn iter(&self) -> Iter { Iter { inner: self.components() } } /// Returns an object that implements `Display` for safely printing paths /// that may contain non-Unicode data. pub fn display(&self) -> Display { Display { path: self } } } impl AsOsStr for Path { fn as_os_str(&self) -> &OsStr { &self.inner } } impl fmt::Debug for Path { fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> { self.inner.fmt(formatter) } } /// Helper struct for safely printing paths with `format!()` and `{}` pub struct Display<'a> { path: &'a Path } impl<'a> fmt::Debug for Display<'a> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(&self.path.to_string_lossy(), f) } } impl<'a> fmt::Display for Display<'a> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(&self.path.to_string_lossy(), f) } } impl cmp::PartialEq for Path { fn eq(&self, other: &Path) -> bool { iter::order::eq(self.components(), other.components()) } } impl cmp::Eq for Path {} impl cmp::PartialOrd for Path { fn partial_cmp(&self, other: &Path) -> Option { self.components().partial_cmp(&other.components()) } } impl cmp::Ord for Path { fn cmp(&self, other: &Path) -> cmp::Ordering { self.components().cmp(&other.components()) } } /// Freely convertible to a `Path`. pub trait AsPath { /// Convert to a `Path`. fn as_path(&self) -> &Path; } impl AsPath for T { fn as_path(&self) -> &Path { Path::new(self.as_os_str()) } } #[cfg(test)] mod tests { use super::*; use ffi::OsStr; use core::prelude::*; use string::{ToString, String}; use vec::Vec; macro_rules! t( ($path:expr, iter: $iter:expr) => ( { let path = Path::new($path); // Forward iteration let comps = path.iter() .map(|p| p.to_string_lossy().into_owned()) .collect::>(); let exp: &[&str] = &$iter; let exps = exp.iter().map(|s| s.to_string()).collect::>(); assert!(comps == exps, "iter: Expected {:?}, found {:?}", exps, comps); // Reverse iteration let comps = Path::new($path).iter().rev() .map(|p| p.to_string_lossy().into_owned()) .collect::>(); let exps = exps.into_iter().rev().collect::>(); assert!(comps == exps, "iter().rev(): Expected {:?}, found {:?}", exps, comps); } ); ($path:expr, has_root: $has_root:expr, is_absolute: $is_absolute:expr) => ( { let path = Path::new($path); let act_root = path.has_root(); assert!(act_root == $has_root, "has_root: Expected {:?}, found {:?}", $has_root, act_root); let act_abs = path.is_absolute(); assert!(act_abs == $is_absolute, "is_absolute: Expected {:?}, found {:?}", $is_absolute, act_abs); } ); ($path:expr, parent: $parent:expr, file_name: $file:expr) => ( { let path = Path::new($path); let parent = path.parent().map(|p| p.to_str().unwrap()); let exp_parent: Option<&str> = $parent; assert!(parent == exp_parent, "parent: Expected {:?}, found {:?}", exp_parent, parent); let file = path.file_name().map(|p| p.to_str().unwrap()); let exp_file: Option<&str> = $file; assert!(file == exp_file, "file_name: Expected {:?}, found {:?}", exp_file, file); } ); ($path:expr, file_stem: $file_stem:expr, extension: $extension:expr) => ( { let path = Path::new($path); let stem = path.file_stem().map(|p| p.to_str().unwrap()); let exp_stem: Option<&str> = $file_stem; assert!(stem == exp_stem, "file_stem: Expected {:?}, found {:?}", exp_stem, stem); let ext = path.extension().map(|p| p.to_str().unwrap()); let exp_ext: Option<&str> = $extension; assert!(ext == exp_ext, "extension: Expected {:?}, found {:?}", exp_ext, ext); } ); ($path:expr, iter: $iter:expr, has_root: $has_root:expr, is_absolute: $is_absolute:expr, parent: $parent:expr, file_name: $file:expr, file_stem: $file_stem:expr, extension: $extension:expr) => ( { t!($path, iter: $iter); t!($path, has_root: $has_root, is_absolute: $is_absolute); t!($path, parent: $parent, file_name: $file); t!($path, file_stem: $file_stem, extension: $extension); } ); ); #[test] #[cfg(unix)] pub fn test_decompositions_unix() { t!("", iter: [], has_root: false, is_absolute: false, parent: None, file_name: None, file_stem: None, extension: None ); t!("foo", iter: ["foo"], has_root: false, is_absolute: false, parent: None, file_name: Some("foo"), file_stem: Some("foo"), extension: None ); t!("/", iter: ["/", "."], has_root: true, is_absolute: true, parent: None, file_name: None, file_stem: None, extension: None ); t!("/foo", iter: ["/", "foo"], has_root: true, is_absolute: true, parent: Some("/"), file_name: Some("foo"), file_stem: Some("foo"), extension: None ); t!("foo/", iter: ["foo", "."], has_root: false, is_absolute: false, parent: Some("foo"), file_name: None, file_stem: None, extension: None ); t!("/foo/", iter: ["/", "foo", "."], has_root: true, is_absolute: true, parent: Some("/foo"), file_name: None, file_stem: None, extension: None ); t!("foo/bar", iter: ["foo", "bar"], has_root: false, is_absolute: false, parent: Some("foo"), file_name: Some("bar"), file_stem: Some("bar"), extension: None ); t!("/foo/bar", iter: ["/", "foo", "bar"], has_root: true, is_absolute: true, parent: Some("/foo"), file_name: Some("bar"), file_stem: Some("bar"), extension: None ); t!("///foo///", iter: ["/", "foo", "."], has_root: true, is_absolute: true, parent: Some("///foo"), file_name: None, file_stem: None, extension: None ); t!("///foo///bar", iter: ["/", "foo", "bar"], has_root: true, is_absolute: true, parent: Some("///foo"), file_name: Some("bar"), file_stem: Some("bar"), extension: None ); t!("./.", iter: [".", "."], has_root: false, is_absolute: false, parent: Some("."), file_name: None, file_stem: None, extension: None ); t!("./.", iter: [".", "."], has_root: false, is_absolute: false, parent: Some("."), file_name: None, file_stem: None, extension: None ); t!("/..", iter: ["/", ".."], has_root: true, is_absolute: true, parent: Some("/"), file_name: None, file_stem: None, extension: None ); t!("../", iter: ["..", "."], has_root: false, is_absolute: false, parent: Some(".."), file_name: None, file_stem: None, extension: None ); t!("foo/.", iter: ["foo", "."], has_root: false, is_absolute: false, parent: Some("foo"), file_name: None, file_stem: None, extension: None ); t!("foo/..", iter: ["foo", ".."], has_root: false, is_absolute: false, parent: Some("foo"), file_name: None, file_stem: None, extension: None ); t!("foo/./", iter: ["foo", ".", "."], has_root: false, is_absolute: false, parent: Some("foo/."), file_name: None, file_stem: None, extension: None ); t!("foo/./bar", iter: ["foo", ".", "bar"], has_root: false, is_absolute: false, parent: Some("foo/."), file_name: Some("bar"), file_stem: Some("bar"), extension: None ); t!("foo/../", iter: ["foo", "..", "."], has_root: false, is_absolute: false, parent: Some("foo/.."), file_name: None, file_stem: None, extension: None ); t!("foo/../bar", iter: ["foo", "..", "bar"], has_root: false, is_absolute: false, parent: Some("foo/.."), file_name: Some("bar"), file_stem: Some("bar"), extension: None ); t!("./a", iter: [".", "a"], has_root: false, is_absolute: false, parent: Some("."), file_name: Some("a"), file_stem: Some("a"), extension: None ); t!(".", iter: ["."], has_root: false, is_absolute: false, parent: None, file_name: None, file_stem: None, extension: None ); t!("./", iter: [".", "."], has_root: false, is_absolute: false, parent: Some("."), file_name: None, file_stem: None, extension: None ); t!("a/b", iter: ["a", "b"], has_root: false, is_absolute: false, parent: Some("a"), file_name: Some("b"), file_stem: Some("b"), extension: None ); t!("a//b", iter: ["a", "b"], has_root: false, is_absolute: false, parent: Some("a"), file_name: Some("b"), file_stem: Some("b"), extension: None ); t!("a/./b", iter: ["a", ".", "b"], has_root: false, is_absolute: false, parent: Some("a/."), file_name: Some("b"), file_stem: Some("b"), extension: None ); t!("a/b/c", iter: ["a", "b", "c"], has_root: false, is_absolute: false, parent: Some("a/b"), file_name: Some("c"), file_stem: Some("c"), extension: None ); } #[test] #[cfg(windows)] pub fn test_decompositions_windows() { t!("", iter: [], has_root: false, is_absolute: false, parent: None, file_name: None, file_stem: None, extension: None ); t!("foo", iter: ["foo"], has_root: false, is_absolute: false, parent: None, file_name: Some("foo"), file_stem: Some("foo"), extension: None ); t!("/", iter: ["\\", "."], has_root: true, is_absolute: false, parent: None, file_name: None, file_stem: None, extension: None ); t!("\\", iter: ["\\", "."], has_root: true, is_absolute: false, parent: None, file_name: None, file_stem: None, extension: None ); t!("c:", iter: ["c:", "."], has_root: false, is_absolute: false, parent: None, file_name: None, file_stem: None, extension: None ); t!("c:\\", iter: ["c:", "\\", "."], has_root: true, is_absolute: true, parent: None, file_name: None, file_stem: None, extension: None ); t!("c:\\", iter: ["c:", "\\", "."], has_root: true, is_absolute: true, parent: None, file_name: None, file_stem: None, extension: None ); t!("c:/", iter: ["c:", "\\", "."], has_root: true, is_absolute: true, parent: None, file_name: None, file_stem: None, extension: None ); t!("/foo", iter: ["\\", "foo"], has_root: true, is_absolute: false, parent: Some("/"), file_name: Some("foo"), file_stem: Some("foo"), extension: None ); t!("foo/", iter: ["foo", "."], has_root: false, is_absolute: false, parent: Some("foo"), file_name: None, file_stem: None, extension: None ); t!("/foo/", iter: ["\\", "foo", "."], has_root: true, is_absolute: false, parent: Some("/foo"), file_name: None, file_stem: None, extension: None ); t!("foo/bar", iter: ["foo", "bar"], has_root: false, is_absolute: false, parent: Some("foo"), file_name: Some("bar"), file_stem: Some("bar"), extension: None ); t!("/foo/bar", iter: ["\\", "foo", "bar"], has_root: true, is_absolute: false, parent: Some("/foo"), file_name: Some("bar"), file_stem: Some("bar"), extension: None ); t!("///foo///", iter: ["\\", "foo", "."], has_root: true, is_absolute: false, parent: Some("///foo"), file_name: None, file_stem: None, extension: None ); t!("///foo///bar", iter: ["\\", "foo", "bar"], has_root: true, is_absolute: false, parent: Some("///foo"), file_name: Some("bar"), file_stem: Some("bar"), extension: None ); t!("./.", iter: [".", "."], has_root: false, is_absolute: false, parent: Some("."), file_name: None, file_stem: None, extension: None ); t!("./.", iter: [".", "."], has_root: false, is_absolute: false, parent: Some("."), file_name: None, file_stem: None, extension: None ); t!("/..", iter: ["\\", ".."], has_root: true, is_absolute: false, parent: Some("/"), file_name: None, file_stem: None, extension: None ); t!("../", iter: ["..", "."], has_root: false, is_absolute: false, parent: Some(".."), file_name: None, file_stem: None, extension: None ); t!("foo/.", iter: ["foo", "."], has_root: false, is_absolute: false, parent: Some("foo"), file_name: None, file_stem: None, extension: None ); t!("foo/..", iter: ["foo", ".."], has_root: false, is_absolute: false, parent: Some("foo"), file_name: None, file_stem: None, extension: None ); t!("foo/./", iter: ["foo", ".", "."], has_root: false, is_absolute: false, parent: Some("foo/."), file_name: None, file_stem: None, extension: None ); t!("foo/./bar", iter: ["foo", ".", "bar"], has_root: false, is_absolute: false, parent: Some("foo/."), file_name: Some("bar"), file_stem: Some("bar"), extension: None ); t!("foo/../", iter: ["foo", "..", "."], has_root: false, is_absolute: false, parent: Some("foo/.."), file_name: None, file_stem: None, extension: None ); t!("foo/../bar", iter: ["foo", "..", "bar"], has_root: false, is_absolute: false, parent: Some("foo/.."), file_name: Some("bar"), file_stem: Some("bar"), extension: None ); t!("./a", iter: [".", "a"], has_root: false, is_absolute: false, parent: Some("."), file_name: Some("a"), file_stem: Some("a"), extension: None ); t!(".", iter: ["."], has_root: false, is_absolute: false, parent: None, file_name: None, file_stem: None, extension: None ); t!("./", iter: [".", "."], has_root: false, is_absolute: false, parent: Some("."), file_name: None, file_stem: None, extension: None ); t!("a/b", iter: ["a", "b"], has_root: false, is_absolute: false, parent: Some("a"), file_name: Some("b"), file_stem: Some("b"), extension: None ); t!("a//b", iter: ["a", "b"], has_root: false, is_absolute: false, parent: Some("a"), file_name: Some("b"), file_stem: Some("b"), extension: None ); t!("a/./b", iter: ["a", ".", "b"], has_root: false, is_absolute: false, parent: Some("a/."), file_name: Some("b"), file_stem: Some("b"), extension: None ); t!("a/b/c", iter: ["a", "b", "c"], has_root: false, is_absolute: false, parent: Some("a/b"), file_name: Some("c"), file_stem: Some("c"), extension: None); t!("a\\b\\c", iter: ["a", "b", "c"], has_root: false, is_absolute: false, parent: Some("a\\b"), file_name: Some("c"), file_stem: Some("c"), extension: None ); t!("\\a", iter: ["\\", "a"], has_root: true, is_absolute: false, parent: Some("\\"), file_name: Some("a"), file_stem: Some("a"), extension: None ); t!("c:\\foo.txt", iter: ["c:", "\\", "foo.txt"], has_root: true, is_absolute: true, parent: Some("c:\\"), file_name: Some("foo.txt"), file_stem: Some("foo"), extension: Some("txt") ); t!("\\\\server\\share\\foo.txt", iter: ["\\\\server\\share", "\\", "foo.txt"], has_root: true, is_absolute: true, parent: Some("\\\\server\\share\\"), file_name: Some("foo.txt"), file_stem: Some("foo"), extension: Some("txt") ); t!("\\\\server\\share", iter: ["\\\\server\\share", "\\", "."], has_root: true, is_absolute: true, parent: None, file_name: None, file_stem: None, extension: None ); t!("\\\\server", iter: ["\\", "server"], has_root: true, is_absolute: false, parent: Some("\\"), file_name: Some("server"), file_stem: Some("server"), extension: None ); t!("\\\\?\\bar\\foo.txt", iter: ["\\\\?\\bar", "\\", "foo.txt"], has_root: true, is_absolute: true, parent: Some("\\\\?\\bar\\"), file_name: Some("foo.txt"), file_stem: Some("foo"), extension: Some("txt") ); t!("\\\\?\\bar", iter: ["\\\\?\\bar"], has_root: true, is_absolute: true, parent: None, file_name: None, file_stem: None, extension: None ); t!("\\\\?\\", iter: ["\\\\?\\"], has_root: true, is_absolute: true, parent: None, file_name: None, file_stem: None, extension: None ); t!("\\\\?\\UNC\\server\\share\\foo.txt", iter: ["\\\\?\\UNC\\server\\share", "\\", "foo.txt"], has_root: true, is_absolute: true, parent: Some("\\\\?\\UNC\\server\\share\\"), file_name: Some("foo.txt"), file_stem: Some("foo"), extension: Some("txt") ); t!("\\\\?\\UNC\\server", iter: ["\\\\?\\UNC\\server"], has_root: true, is_absolute: true, parent: None, file_name: None, file_stem: None, extension: None ); t!("\\\\?\\UNC\\", iter: ["\\\\?\\UNC\\"], has_root: true, is_absolute: true, parent: None, file_name: None, file_stem: None, extension: None ); t!("\\\\?\\C:\\foo.txt", iter: ["\\\\?\\C:", "\\", "foo.txt"], has_root: true, is_absolute: true, parent: Some("\\\\?\\C:\\"), file_name: Some("foo.txt"), file_stem: Some("foo"), extension: Some("txt") ); t!("\\\\?\\C:\\", iter: ["\\\\?\\C:", "\\", ""], has_root: true, is_absolute: true, parent: None, file_name: None, file_stem: None, extension: None ); t!("\\\\?\\C:", iter: ["\\\\?\\C:"], has_root: true, is_absolute: true, parent: None, file_name: None, file_stem: None, extension: None ); t!("\\\\?\\foo/bar", iter: ["\\\\?\\foo/bar"], has_root: true, is_absolute: true, parent: None, file_name: None, file_stem: None, extension: None ); t!("\\\\?\\C:/foo", iter: ["\\\\?\\C:/foo"], has_root: true, is_absolute: true, parent: None, file_name: None, file_stem: None, extension: None ); t!("\\\\.\\foo\\bar", iter: ["\\\\.\\foo", "\\", "bar"], has_root: true, is_absolute: true, parent: Some("\\\\.\\foo\\"), file_name: Some("bar"), file_stem: Some("bar"), extension: None ); t!("\\\\.\\foo", iter: ["\\\\.\\foo", "\\", "."], has_root: true, is_absolute: true, parent: None, file_name: None, file_stem: None, extension: None ); t!("\\\\.\\foo/bar", iter: ["\\\\.\\foo/bar", "\\", "."], has_root: true, is_absolute: true, parent: None, file_name: None, file_stem: None, extension: None ); t!("\\\\.\\foo\\bar/baz", iter: ["\\\\.\\foo", "\\", "bar", "baz"], has_root: true, is_absolute: true, parent: Some("\\\\.\\foo\\bar"), file_name: Some("baz"), file_stem: Some("baz"), extension: None ); t!("\\\\.\\", iter: ["\\\\.\\", "\\", "."], has_root: true, is_absolute: true, parent: None, file_name: None, file_stem: None, extension: None ); t!("\\\\?\\a\\b\\", iter: ["\\\\?\\a", "\\", "b", ""], has_root: true, is_absolute: true, parent: Some("\\\\?\\a\\b"), file_name: None, file_stem: None, extension: None ); } #[test] pub fn test_stem_ext() { t!("foo", file_stem: Some("foo"), extension: None ); t!("foo.", file_stem: Some("foo"), extension: Some("") ); t!(".foo", file_stem: Some(".foo"), extension: None ); t!("foo.txt", file_stem: Some("foo"), extension: Some("txt") ); t!("foo.bar.txt", file_stem: Some("foo.bar"), extension: Some("txt") ); t!("foo.bar.", file_stem: Some("foo.bar"), extension: Some("") ); t!(".", file_stem: None, extension: None ); t!("..", file_stem: None, extension: None ); t!("", file_stem: None, extension: None ); } #[test] pub fn test_push() { macro_rules! tp( ($path:expr, $push:expr, $expected:expr) => ( { let mut actual = PathBuf::new($path); actual.push($push); assert!(actual.to_str() == Some($expected), "pushing {:?} onto {:?}: Expected {:?}, got {:?}", $push, $path, $expected, actual.to_str().unwrap()); }); ); if cfg!(unix) { tp!("", "foo", "foo"); tp!("foo", "bar", "foo/bar"); tp!("foo/", "bar", "foo/bar"); tp!("foo//", "bar", "foo//bar"); tp!("foo/.", "bar", "foo/./bar"); tp!("foo./.", "bar", "foo././bar"); tp!("foo", "", "foo/"); tp!("foo", ".", "foo/."); tp!("foo", "..", "foo/.."); tp!("foo", "/", "/"); tp!("/foo/bar", "/", "/"); tp!("/foo/bar", "/baz", "/baz"); tp!("/foo/bar", "./baz", "/foo/bar/./baz"); } else { tp!("", "foo", "foo"); tp!("foo", "bar", r"foo\bar"); tp!("foo/", "bar", r"foo/bar"); tp!(r"foo\", "bar", r"foo\bar"); tp!("foo//", "bar", r"foo//bar"); tp!(r"foo\\", "bar", r"foo\\bar"); tp!("foo/.", "bar", r"foo/.\bar"); tp!("foo./.", "bar", r"foo./.\bar"); tp!(r"foo\.", "bar", r"foo\.\bar"); tp!(r"foo.\.", "bar", r"foo.\.\bar"); tp!("foo", "", "foo\\"); tp!("foo", ".", r"foo\."); tp!("foo", "..", r"foo\.."); tp!("foo", "/", "/"); tp!("foo", r"\", r"\"); tp!("/foo/bar", "/", "/"); tp!(r"\foo\bar", r"\", r"\"); tp!("/foo/bar", "/baz", "/baz"); tp!("/foo/bar", r"\baz", r"\baz"); tp!("/foo/bar", "./baz", r"/foo/bar\./baz"); tp!("/foo/bar", r".\baz", r"/foo/bar\.\baz"); tp!("c:\\", "windows", "c:\\windows"); tp!("c:", "windows", "c:windows"); tp!("a\\b\\c", "d", "a\\b\\c\\d"); tp!("\\a\\b\\c", "d", "\\a\\b\\c\\d"); tp!("a\\b", "c\\d", "a\\b\\c\\d"); tp!("a\\b", "\\c\\d", "\\c\\d"); tp!("a\\b", ".", "a\\b\\."); tp!("a\\b", "..\\c", "a\\b\\..\\c"); tp!("a\\b", "C:a.txt", "C:a.txt"); tp!("a\\b", "C:\\a.txt", "C:\\a.txt"); tp!("C:\\a", "C:\\b.txt", "C:\\b.txt"); tp!("C:\\a\\b\\c", "C:d", "C:d"); tp!("C:a\\b\\c", "C:d", "C:d"); tp!("C:", r"a\b\c", r"C:a\b\c"); tp!("C:", r"..\a", r"C:..\a"); tp!("\\\\server\\share\\foo", "bar", "\\\\server\\share\\foo\\bar"); tp!("\\\\server\\share\\foo", "C:baz", "C:baz"); tp!("\\\\?\\C:\\a\\b", "C:c\\d", "C:c\\d"); tp!("\\\\?\\C:a\\b", "C:c\\d", "C:c\\d"); tp!("\\\\?\\C:\\a\\b", "C:\\c\\d", "C:\\c\\d"); tp!("\\\\?\\foo\\bar", "baz", "\\\\?\\foo\\bar\\baz"); tp!("\\\\?\\UNC\\server\\share\\foo", "bar", "\\\\?\\UNC\\server\\share\\foo\\bar"); tp!("\\\\?\\UNC\\server\\share", "C:\\a", "C:\\a"); tp!("\\\\?\\UNC\\server\\share", "C:a", "C:a"); // Note: modified from old path API tp!("\\\\?\\UNC\\server", "foo", "\\\\?\\UNC\\server\\foo"); tp!("C:\\a", "\\\\?\\UNC\\server\\share", "\\\\?\\UNC\\server\\share"); tp!("\\\\.\\foo\\bar", "baz", "\\\\.\\foo\\bar\\baz"); tp!("\\\\.\\foo\\bar", "C:a", "C:a"); // again, not sure about the following, but I'm assuming \\.\ should be verbatim tp!("\\\\.\\foo", "..\\bar", "\\\\.\\foo\\..\\bar"); tp!("\\\\?\\C:", "foo", "\\\\?\\C:\\foo"); // this is a weird one } } #[test] pub fn test_pop() { macro_rules! tp( ($path:expr, $expected:expr, $output:expr) => ( { let mut actual = PathBuf::new($path); let output = actual.pop(); assert!(actual.to_str() == Some($expected) && output == $output, "popping from {:?}: Expected {:?}/{:?}, got {:?}/{:?}", $path, $expected, $output, actual.to_str().unwrap(), output); }); ); tp!("", "", false); tp!("/", "/", false); tp!("foo", "foo", false); tp!(".", ".", false); tp!("/foo", "/", true); tp!("/foo/bar", "/foo", true); tp!("foo/bar", "foo", true); tp!("foo/.", "foo", true); tp!("foo//bar", "foo", true); if cfg!(windows) { tp!("a\\b\\c", "a\\b", true); tp!("\\a", "\\", true); tp!("\\", "\\", false); tp!("C:\\a\\b", "C:\\a", true); tp!("C:\\a", "C:\\", true); tp!("C:\\", "C:\\", false); tp!("C:a\\b", "C:a", true); tp!("C:a", "C:", true); tp!("C:", "C:", false); tp!("\\\\server\\share\\a\\b", "\\\\server\\share\\a", true); tp!("\\\\server\\share\\a", "\\\\server\\share\\", true); tp!("\\\\server\\share", "\\\\server\\share", false); tp!("\\\\?\\a\\b\\c", "\\\\?\\a\\b", true); tp!("\\\\?\\a\\b", "\\\\?\\a\\", true); tp!("\\\\?\\a", "\\\\?\\a", false); tp!("\\\\?\\C:\\a\\b", "\\\\?\\C:\\a", true); tp!("\\\\?\\C:\\a", "\\\\?\\C:\\", true); tp!("\\\\?\\C:\\", "\\\\?\\C:\\", false); tp!("\\\\?\\UNC\\server\\share\\a\\b", "\\\\?\\UNC\\server\\share\\a", true); tp!("\\\\?\\UNC\\server\\share\\a", "\\\\?\\UNC\\server\\share\\", true); tp!("\\\\?\\UNC\\server\\share", "\\\\?\\UNC\\server\\share", false); tp!("\\\\.\\a\\b\\c", "\\\\.\\a\\b", true); tp!("\\\\.\\a\\b", "\\\\.\\a\\", true); tp!("\\\\.\\a", "\\\\.\\a", false); tp!("\\\\?\\a\\b\\", "\\\\?\\a\\b", true); } } #[test] pub fn test_set_file_name() { macro_rules! tfn( ($path:expr, $file:expr, $expected:expr) => ( { let mut p = PathBuf::new($path); p.set_file_name($file); assert!(p.to_str() == Some($expected), "setting file name of {:?} to {:?}: Expected {:?}, got {:?}", $path, $file, $expected, p.to_str().unwrap()); }); ); tfn!("foo", "foo", "foo"); tfn!("foo", "bar", "bar"); tfn!("foo", "", ""); tfn!("", "foo", "foo"); if cfg!(unix) { tfn!(".", "foo", "./foo"); tfn!("foo/", "bar", "foo/bar"); tfn!("foo/.", "bar", "foo/./bar"); tfn!("..", "foo", "../foo"); tfn!("foo/..", "bar", "foo/../bar"); tfn!("/", "foo", "/foo"); } else { tfn!(".", "foo", r".\foo"); tfn!(r"foo\", "bar", r"foo\bar"); tfn!(r"foo\.", "bar", r"foo\.\bar"); tfn!("..", "foo", r"..\foo"); tfn!(r"foo\..", "bar", r"foo\..\bar"); tfn!(r"\", "foo", r"\foo"); } } #[test] pub fn test_set_extension() { macro_rules! tfe( ($path:expr, $ext:expr, $expected:expr, $output:expr) => ( { let mut p = PathBuf::new($path); let output = p.set_extension($ext); assert!(p.to_str() == Some($expected) && output == $output, "setting extension of {:?} to {:?}: Expected {:?}/{:?}, got {:?}/{:?}", $path, $ext, $expected, $output, p.to_str().unwrap(), output); }); ); tfe!("foo", "txt", "foo.txt", true); tfe!("foo.bar", "txt", "foo.txt", true); tfe!("foo.bar.baz", "txt", "foo.bar.txt", true); tfe!(".test", "txt", ".test.txt", true); tfe!("foo.txt", "", "foo", true); tfe!("foo", "", "foo", true); tfe!("", "foo", "", false); tfe!(".", "foo", ".", false); tfe!("foo/", "bar", "foo/", false); tfe!("foo/.", "bar", "foo/.", false); tfe!("..", "foo", "..", false); tfe!("foo/..", "bar", "foo/..", false); tfe!("/", "foo", "/", false); } #[test] pub fn test_compare() { macro_rules! tc( ($path1:expr, $path2:expr, eq: $eq:expr, starts_with: $starts_with:expr, ends_with: $ends_with:expr, relative_from: $relative_from:expr) => ({ let path1 = Path::new($path1); let path2 = Path::new($path2); let eq = path1 == path2; assert!(eq == $eq, "{:?} == {:?}, expected {:?}, got {:?}", $path1, $path2, $eq, eq); let starts_with = path1.starts_with(path2); assert!(starts_with == $starts_with, "{:?}.starts_with({:?}), expected {:?}, got {:?}", $path1, $path2, $starts_with, starts_with); let ends_with = path1.ends_with(path2); assert!(ends_with == $ends_with, "{:?}.ends_with({:?}), expected {:?}, got {:?}", $path1, $path2, $ends_with, ends_with); let relative_from = path1.relative_from(path2).map(|p| p.to_str().unwrap()); let exp: Option<&str> = $relative_from; assert!(relative_from == exp, "{:?}.relative_from({:?}), expected {:?}, got {:?}", $path1, $path2, exp, relative_from); }); ); tc!("", "", eq: true, starts_with: true, ends_with: true, relative_from: Some("") ); tc!("foo", "", eq: false, starts_with: true, ends_with: true, relative_from: Some("foo") ); tc!("", "foo", eq: false, starts_with: false, ends_with: false, relative_from: None ); tc!("foo", "foo", eq: true, starts_with: true, ends_with: true, relative_from: Some("") ); tc!("foo/", "foo", eq: false, starts_with: true, ends_with: false, relative_from: Some(".") ); tc!("foo/bar", "foo", eq: false, starts_with: true, ends_with: false, relative_from: Some("bar") ); tc!("foo/bar/baz", "foo/bar", eq: false, starts_with: true, ends_with: false, relative_from: Some("baz") ); tc!("foo/bar", "foo/bar/baz", eq: false, starts_with: false, ends_with: false, relative_from: None ); tc!("./foo/bar/", ".", eq: false, starts_with: true, ends_with: true, relative_from: Some("foo/bar/") ); } }