// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A doubly-linked list with owned nodes. //! //! The `LinkedList` allows pushing and popping elements at either end and is thus //! efficiently usable as a double-ended queue. // LinkedList is constructed like a singly-linked list over the field `next`. // including the last link being None; each Node owns its `next` field. // // Backlinks over LinkedList::prev are raw pointers that form a full chain in // the reverse direction. #![stable(feature = "rust1", since = "1.0.0")] use core::prelude::*; use alloc::boxed::Box; use core::cmp::Ordering; use core::fmt; use core::hash::{Hasher, Hash}; use core::iter::{self, FromIterator}; use core::mem; use core::ptr; /// A doubly-linked list. #[stable(feature = "rust1", since = "1.0.0")] pub struct LinkedList { length: usize, list_head: Link, list_tail: Rawlink>, } type Link = Option>>; struct Rawlink { p: *mut T, } impl Copy for Rawlink {} unsafe impl Send for Rawlink {} unsafe impl Sync for Rawlink {} struct Node { next: Link, prev: Rawlink>, value: T, } /// An iterator over references to the items of a `LinkedList`. #[stable(feature = "rust1", since = "1.0.0")] pub struct Iter<'a, T:'a> { head: &'a Link, tail: Rawlink>, nelem: usize, } // FIXME #19839: deriving is too aggressive on the bounds (T doesn't need to be Clone). #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> Clone for Iter<'a, T> { fn clone(&self) -> Iter<'a, T> { Iter { head: self.head.clone(), tail: self.tail, nelem: self.nelem, } } } /// An iterator over mutable references to the items of a `LinkedList`. #[stable(feature = "rust1", since = "1.0.0")] pub struct IterMut<'a, T:'a> { list: &'a mut LinkedList, head: Rawlink>, tail: Rawlink>, nelem: usize, } /// An iterator over mutable references to the items of a `LinkedList`. #[derive(Clone)] #[stable(feature = "rust1", since = "1.0.0")] pub struct IntoIter { list: LinkedList } /// Rawlink is a type like Option but for holding a raw pointer impl Rawlink { /// Like Option::None for Rawlink fn none() -> Rawlink { Rawlink{p: ptr::null_mut()} } /// Like Option::Some for Rawlink fn some(n: &mut T) -> Rawlink { Rawlink{p: n} } /// Convert the `Rawlink` into an Option value fn resolve_immut<'a>(&self) -> Option<&'a T> { unsafe { mem::transmute(self.p.as_ref()) } } /// Convert the `Rawlink` into an Option value fn resolve<'a>(&mut self) -> Option<&'a mut T> { if self.p.is_null() { None } else { Some(unsafe { mem::transmute(self.p) }) } } /// Return the `Rawlink` and replace with `Rawlink::none()` fn take(&mut self) -> Rawlink { mem::replace(self, Rawlink::none()) } } impl Clone for Rawlink { #[inline] fn clone(&self) -> Rawlink { Rawlink{p: self.p} } } impl Node { fn new(v: T) -> Node { Node{value: v, next: None, prev: Rawlink::none()} } } /// Set the .prev field on `next`, then return `Some(next)` fn link_with_prev(mut next: Box>, prev: Rawlink>) -> Link { next.prev = prev; Some(next) } // private methods impl LinkedList { /// Add a Node first in the list #[inline] fn push_front_node(&mut self, mut new_head: Box>) { match self.list_head { None => { self.list_tail = Rawlink::some(&mut *new_head); self.list_head = link_with_prev(new_head, Rawlink::none()); } Some(ref mut head) => { new_head.prev = Rawlink::none(); head.prev = Rawlink::some(&mut *new_head); mem::swap(head, &mut new_head); head.next = Some(new_head); } } self.length += 1; } /// Remove the first Node and return it, or None if the list is empty #[inline] fn pop_front_node(&mut self) -> Option>> { self.list_head.take().map(|mut front_node| { self.length -= 1; match front_node.next.take() { Some(node) => self.list_head = link_with_prev(node, Rawlink::none()), None => self.list_tail = Rawlink::none() } front_node }) } /// Add a Node last in the list #[inline] fn push_back_node(&mut self, mut new_tail: Box>) { match self.list_tail.resolve() { None => return self.push_front_node(new_tail), Some(tail) => { self.list_tail = Rawlink::some(&mut *new_tail); tail.next = link_with_prev(new_tail, Rawlink::some(tail)); } } self.length += 1; } /// Remove the last Node and return it, or None if the list is empty #[inline] fn pop_back_node(&mut self) -> Option>> { self.list_tail.resolve().map_or(None, |tail| { self.length -= 1; self.list_tail = tail.prev; match tail.prev.resolve() { None => self.list_head.take(), Some(tail_prev) => tail_prev.next.take() } }) } } #[stable(feature = "rust1", since = "1.0.0")] impl Default for LinkedList { #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn default() -> LinkedList { LinkedList::new() } } impl LinkedList { /// Creates an empty `LinkedList`. #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn new() -> LinkedList { LinkedList{list_head: None, list_tail: Rawlink::none(), length: 0} } /// Moves all elements from `other` to the end of the list. /// /// This reuses all the nodes from `other` and moves them into `self`. After /// this operation, `other` becomes empty. /// /// This operation should compute in O(1) time and O(1) memory. /// /// # Examples /// /// ``` /// # #![feature(collections)] /// use std::collections::LinkedList; /// /// let mut a = LinkedList::new(); /// let mut b = LinkedList::new(); /// a.push_back(1); /// a.push_back(2); /// b.push_back(3); /// b.push_back(4); /// /// a.append(&mut b); /// /// for e in a.iter() { /// println!("{}", e); // prints 1, then 2, then 3, then 4 /// } /// println!("{}", b.len()); // prints 0 /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn append(&mut self, other: &mut LinkedList) { match self.list_tail.resolve() { None => { self.length = other.length; self.list_head = other.list_head.take(); self.list_tail = other.list_tail.take(); }, Some(tail) => { // Carefully empty `other`. let o_tail = other.list_tail.take(); let o_length = other.length; match other.list_head.take() { None => return, Some(node) => { tail.next = link_with_prev(node, self.list_tail); self.list_tail = o_tail; self.length += o_length; } } } } other.length = 0; } /// Provides a forward iterator. #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn iter(&self) -> Iter { Iter{nelem: self.len(), head: &self.list_head, tail: self.list_tail} } /// Provides a forward iterator with mutable references. #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn iter_mut(&mut self) -> IterMut { let head_raw = match self.list_head { Some(ref mut h) => Rawlink::some(&mut **h), None => Rawlink::none(), }; IterMut{ nelem: self.len(), head: head_raw, tail: self.list_tail, list: self } } /// Returns `true` if the `LinkedList` is empty. /// /// This operation should compute in O(1) time. /// /// # Examples /// /// ``` /// use std::collections::LinkedList; /// /// let mut dl = LinkedList::new(); /// assert!(dl.is_empty()); /// /// dl.push_front("foo"); /// assert!(!dl.is_empty()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn is_empty(&self) -> bool { self.list_head.is_none() } /// Returns the length of the `LinkedList`. /// /// This operation should compute in O(1) time. /// /// # Examples /// /// ``` /// use std::collections::LinkedList; /// /// let mut dl = LinkedList::new(); /// /// dl.push_front(2); /// assert_eq!(dl.len(), 1); /// /// dl.push_front(1); /// assert_eq!(dl.len(), 2); /// /// dl.push_back(3); /// assert_eq!(dl.len(), 3); /// /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn len(&self) -> usize { self.length } /// Removes all elements from the `LinkedList`. /// /// This operation should compute in O(n) time. /// /// # Examples /// /// ``` /// use std::collections::LinkedList; /// /// let mut dl = LinkedList::new(); /// /// dl.push_front(2); /// dl.push_front(1); /// assert_eq!(dl.len(), 2); /// assert_eq!(dl.front(), Some(&1)); /// /// dl.clear(); /// assert_eq!(dl.len(), 0); /// assert_eq!(dl.front(), None); /// /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn clear(&mut self) { *self = LinkedList::new() } /// Provides a reference to the front element, or `None` if the list is /// empty. /// /// # Examples /// /// ``` /// use std::collections::LinkedList; /// /// let mut dl = LinkedList::new(); /// assert_eq!(dl.front(), None); /// /// dl.push_front(1); /// assert_eq!(dl.front(), Some(&1)); /// /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn front(&self) -> Option<&T> { self.list_head.as_ref().map(|head| &head.value) } /// Provides a mutable reference to the front element, or `None` if the list /// is empty. /// /// # Examples /// /// ``` /// use std::collections::LinkedList; /// /// let mut dl = LinkedList::new(); /// assert_eq!(dl.front(), None); /// /// dl.push_front(1); /// assert_eq!(dl.front(), Some(&1)); /// /// match dl.front_mut() { /// None => {}, /// Some(x) => *x = 5, /// } /// assert_eq!(dl.front(), Some(&5)); /// /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn front_mut(&mut self) -> Option<&mut T> { self.list_head.as_mut().map(|head| &mut head.value) } /// Provides a reference to the back element, or `None` if the list is /// empty. /// /// # Examples /// /// ``` /// use std::collections::LinkedList; /// /// let mut dl = LinkedList::new(); /// assert_eq!(dl.back(), None); /// /// dl.push_back(1); /// assert_eq!(dl.back(), Some(&1)); /// /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn back(&self) -> Option<&T> { self.list_tail.resolve_immut().as_ref().map(|tail| &tail.value) } /// Provides a mutable reference to the back element, or `None` if the list /// is empty. /// /// # Examples /// /// ``` /// use std::collections::LinkedList; /// /// let mut dl = LinkedList::new(); /// assert_eq!(dl.back(), None); /// /// dl.push_back(1); /// assert_eq!(dl.back(), Some(&1)); /// /// match dl.back_mut() { /// None => {}, /// Some(x) => *x = 5, /// } /// assert_eq!(dl.back(), Some(&5)); /// /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn back_mut(&mut self) -> Option<&mut T> { self.list_tail.resolve().map(|tail| &mut tail.value) } /// Adds an element first in the list. /// /// This operation should compute in O(1) time. /// /// # Examples /// /// ``` /// # #![feature(collections)] /// use std::collections::LinkedList; /// /// let mut dl = LinkedList::new(); /// /// dl.push_front(2); /// assert_eq!(dl.front().unwrap(), &2); /// /// dl.push_front(1); /// assert_eq!(dl.front().unwrap(), &1); /// /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn push_front(&mut self, elt: T) { self.push_front_node(box Node::new(elt)) } /// Removes the first element and returns it, or `None` if the list is /// empty. /// /// This operation should compute in O(1) time. /// /// # Examples /// /// ``` /// use std::collections::LinkedList; /// /// let mut d = LinkedList::new(); /// assert_eq!(d.pop_front(), None); /// /// d.push_front(1); /// d.push_front(3); /// assert_eq!(d.pop_front(), Some(3)); /// assert_eq!(d.pop_front(), Some(1)); /// assert_eq!(d.pop_front(), None); /// /// ``` /// #[stable(feature = "rust1", since = "1.0.0")] pub fn pop_front(&mut self) -> Option { self.pop_front_node().map(|box Node{value, ..}| value) } /// Appends an element to the back of a list /// /// # Examples /// /// ``` /// # #![feature(collections)] /// use std::collections::LinkedList; /// /// let mut d = LinkedList::new(); /// d.push_back(1); /// d.push_back(3); /// assert_eq!(3, *d.back().unwrap()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn push_back(&mut self, elt: T) { self.push_back_node(box Node::new(elt)) } /// Removes the last element from a list and returns it, or `None` if /// it is empty. /// /// # Examples /// /// ``` /// # #![feature(collections)] /// use std::collections::LinkedList; /// /// let mut d = LinkedList::new(); /// assert_eq!(d.pop_back(), None); /// d.push_back(1); /// d.push_back(3); /// assert_eq!(d.pop_back(), Some(3)); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn pop_back(&mut self) -> Option { self.pop_back_node().map(|box Node{value, ..}| value) } /// Splits the list into two at the given index. Returns everything after the given index, /// including the index. /// /// # Panics /// /// Panics if `at > len`. /// /// This operation should compute in O(n) time. /// /// # Examples /// /// ``` /// # #![feature(collections)] /// use std::collections::LinkedList; /// /// let mut d = LinkedList::new(); /// /// d.push_front(1); /// d.push_front(2); /// d.push_front(3); /// /// let mut splitted = d.split_off(2); /// /// assert_eq!(splitted.pop_front(), Some(1)); /// assert_eq!(splitted.pop_front(), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn split_off(&mut self, at: usize) -> LinkedList { let len = self.len(); assert!(at <= len, "Cannot split off at a nonexistent index"); if at == 0 { return mem::replace(self, LinkedList::new()); } else if at == len { return LinkedList::new(); } // Below, we iterate towards the `i-1`th node, either from the start or the end, // depending on which would be faster. let mut split_node = if at - 1 <= len - 1 - (at - 1) { let mut iter = self.iter_mut(); // instead of skipping using .skip() (which creates a new struct), // we skip manually so we can access the head field without // depending on implementation details of Skip for _ in 0..at - 1 { iter.next(); } iter.head } else { // better off starting from the end let mut iter = self.iter_mut(); for _ in 0..len - 1 - (at - 1) { iter.next_back(); } iter.tail }; let mut splitted_list = LinkedList { list_head: None, list_tail: self.list_tail, length: len - at }; mem::swap(&mut split_node.resolve().unwrap().next, &mut splitted_list.list_head); self.list_tail = split_node; self.length = at; splitted_list } } #[unsafe_destructor] #[stable(feature = "rust1", since = "1.0.0")] impl Drop for LinkedList { fn drop(&mut self) { // Dissolve the linked_list in backwards direction // Just dropping the list_head can lead to stack exhaustion // when length is >> 1_000_000 let mut tail = self.list_tail; loop { match tail.resolve() { None => break, Some(prev) => { prev.next.take(); // release Box> tail = prev.prev; } } } self.length = 0; self.list_head = None; self.list_tail = Rawlink::none(); } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, A> Iterator for Iter<'a, A> { type Item = &'a A; #[inline] fn next(&mut self) -> Option<&'a A> { if self.nelem == 0 { return None; } self.head.as_ref().map(|head| { self.nelem -= 1; self.head = &head.next; &head.value }) } #[inline] fn size_hint(&self) -> (usize, Option) { (self.nelem, Some(self.nelem)) } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, A> DoubleEndedIterator for Iter<'a, A> { #[inline] fn next_back(&mut self) -> Option<&'a A> { if self.nelem == 0 { return None; } self.tail.resolve_immut().as_ref().map(|prev| { self.nelem -= 1; self.tail = prev.prev; &prev.value }) } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, A> ExactSizeIterator for Iter<'a, A> {} #[stable(feature = "rust1", since = "1.0.0")] impl<'a, A> Iterator for IterMut<'a, A> { type Item = &'a mut A; #[inline] fn next(&mut self) -> Option<&'a mut A> { if self.nelem == 0 { return None; } self.head.resolve().map(|next| { self.nelem -= 1; self.head = match next.next { Some(ref mut node) => Rawlink::some(&mut **node), None => Rawlink::none(), }; &mut next.value }) } #[inline] fn size_hint(&self) -> (usize, Option) { (self.nelem, Some(self.nelem)) } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, A> DoubleEndedIterator for IterMut<'a, A> { #[inline] fn next_back(&mut self) -> Option<&'a mut A> { if self.nelem == 0 { return None; } self.tail.resolve().map(|prev| { self.nelem -= 1; self.tail = prev.prev; &mut prev.value }) } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, A> ExactSizeIterator for IterMut<'a, A> {} // private methods for IterMut impl<'a, A> IterMut<'a, A> { fn insert_next_node(&mut self, mut ins_node: Box>) { // Insert before `self.head` so that it is between the // previously yielded element and self.head. // // The inserted node will not appear in further iteration. match self.head.resolve() { None => { self.list.push_back_node(ins_node); } Some(node) => { let prev_node = match node.prev.resolve() { None => return self.list.push_front_node(ins_node), Some(prev) => prev, }; let node_own = prev_node.next.take().unwrap(); ins_node.next = link_with_prev(node_own, Rawlink::some(&mut *ins_node)); prev_node.next = link_with_prev(ins_node, Rawlink::some(prev_node)); self.list.length += 1; } } } } impl<'a, A> IterMut<'a, A> { /// Inserts `elt` just after the element most recently returned by `.next()`. /// The inserted element does not appear in the iteration. /// /// # Examples /// /// ``` /// # #![feature(collections)] /// use std::collections::LinkedList; /// /// let mut list: LinkedList<_> = vec![1, 3, 4].into_iter().collect(); /// /// { /// let mut it = list.iter_mut(); /// assert_eq!(it.next().unwrap(), &1); /// // insert `2` after `1` /// it.insert_next(2); /// } /// { /// let vec: Vec<_> = list.into_iter().collect(); /// assert_eq!(vec, [1, 2, 3, 4]); /// } /// ``` #[inline] #[unstable(feature = "collections", reason = "this is probably better handled by a cursor type -- we'll see")] pub fn insert_next(&mut self, elt: A) { self.insert_next_node(box Node::new(elt)) } /// Provides a reference to the next element, without changing the iterator. /// /// # Examples /// /// ``` /// # #![feature(collections)] /// use std::collections::LinkedList; /// /// let mut list: LinkedList<_> = vec![1, 2, 3].into_iter().collect(); /// /// let mut it = list.iter_mut(); /// assert_eq!(it.next().unwrap(), &1); /// assert_eq!(it.peek_next().unwrap(), &2); /// // We just peeked at 2, so it was not consumed from the iterator. /// assert_eq!(it.next().unwrap(), &2); /// ``` #[inline] #[unstable(feature = "collections", reason = "this is probably better handled by a cursor type -- we'll see")] pub fn peek_next(&mut self) -> Option<&mut A> { if self.nelem == 0 { return None } self.head.resolve().map(|head| &mut head.value) } } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for IntoIter { type Item = A; #[inline] fn next(&mut self) -> Option { self.list.pop_front() } #[inline] fn size_hint(&self) -> (usize, Option) { (self.list.length, Some(self.list.length)) } } #[stable(feature = "rust1", since = "1.0.0")] impl DoubleEndedIterator for IntoIter { #[inline] fn next_back(&mut self) -> Option { self.list.pop_back() } } impl ExactSizeIterator for IntoIter {} #[stable(feature = "rust1", since = "1.0.0")] impl FromIterator for LinkedList { fn from_iter>(iter: T) -> LinkedList { let mut ret = LinkedList::new(); ret.extend(iter); ret } } #[stable(feature = "rust1", since = "1.0.0")] impl IntoIterator for LinkedList { type Item = T; type IntoIter = IntoIter; /// Consumes the list into an iterator yielding elements by value. #[inline] fn into_iter(self) -> IntoIter { IntoIter{list: self} } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> IntoIterator for &'a LinkedList { type Item = &'a T; type IntoIter = Iter<'a, T>; fn into_iter(self) -> Iter<'a, T> { self.iter() } } impl<'a, T> IntoIterator for &'a mut LinkedList { type Item = &'a mut T; type IntoIter = IterMut<'a, T>; fn into_iter(mut self) -> IterMut<'a, T> { self.iter_mut() } } #[stable(feature = "rust1", since = "1.0.0")] impl Extend for LinkedList { fn extend>(&mut self, iter: T) { for elt in iter { self.push_back(elt); } } } #[stable(feature = "rust1", since = "1.0.0")] impl PartialEq for LinkedList { fn eq(&self, other: &LinkedList) -> bool { self.len() == other.len() && iter::order::eq(self.iter(), other.iter()) } fn ne(&self, other: &LinkedList) -> bool { self.len() != other.len() || iter::order::ne(self.iter(), other.iter()) } } #[stable(feature = "rust1", since = "1.0.0")] impl Eq for LinkedList {} #[stable(feature = "rust1", since = "1.0.0")] impl PartialOrd for LinkedList { fn partial_cmp(&self, other: &LinkedList) -> Option { iter::order::partial_cmp(self.iter(), other.iter()) } } #[stable(feature = "rust1", since = "1.0.0")] impl Ord for LinkedList { #[inline] fn cmp(&self, other: &LinkedList) -> Ordering { iter::order::cmp(self.iter(), other.iter()) } } #[stable(feature = "rust1", since = "1.0.0")] impl Clone for LinkedList { fn clone(&self) -> LinkedList { self.iter().cloned().collect() } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for LinkedList { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.iter().fold(f.debug_list(), |b, e| b.entry(e)).finish() } } #[stable(feature = "rust1", since = "1.0.0")] impl Hash for LinkedList { fn hash(&self, state: &mut H) { self.len().hash(state); for elt in self { elt.hash(state); } } } #[cfg(test)] mod tests { use std::clone::Clone; use std::iter::{Iterator, IntoIterator}; use std::option::Option::{Some, None, self}; use std::__rand::{thread_rng, Rng}; use std::thread; use std::vec::Vec; use super::{LinkedList, Node}; #[cfg(test)] fn list_from(v: &[T]) -> LinkedList { v.iter().cloned().collect() } pub fn check_links(list: &LinkedList) { let mut len = 0; let mut last_ptr: Option<&Node> = None; let mut node_ptr: &Node; match list.list_head { None => { assert_eq!(0, list.length); return } Some(ref node) => node_ptr = &**node, } loop { match (last_ptr, node_ptr.prev.resolve_immut()) { (None , None ) => {} (None , _ ) => panic!("prev link for list_head"), (Some(p), Some(pptr)) => { assert_eq!(p as *const Node, pptr as *const Node); } _ => panic!("prev link is none, not good"), } match node_ptr.next { Some(ref next) => { last_ptr = Some(node_ptr); node_ptr = &**next; len += 1; } None => { len += 1; break; } } } assert_eq!(len, list.length); } #[test] fn test_append() { // Empty to empty { let mut m = LinkedList::::new(); let mut n = LinkedList::new(); m.append(&mut n); check_links(&m); assert_eq!(m.len(), 0); assert_eq!(n.len(), 0); } // Non-empty to empty { let mut m = LinkedList::new(); let mut n = LinkedList::new(); n.push_back(2); m.append(&mut n); check_links(&m); assert_eq!(m.len(), 1); assert_eq!(m.pop_back(), Some(2)); assert_eq!(n.len(), 0); check_links(&m); } // Empty to non-empty { let mut m = LinkedList::new(); let mut n = LinkedList::new(); m.push_back(2); m.append(&mut n); check_links(&m); assert_eq!(m.len(), 1); assert_eq!(m.pop_back(), Some(2)); check_links(&m); } // Non-empty to non-empty let v = vec![1,2,3,4,5]; let u = vec![9,8,1,2,3,4,5]; let mut m = list_from(&v); let mut n = list_from(&u); m.append(&mut n); check_links(&m); let mut sum = v; sum.push_all(&u); assert_eq!(sum.len(), m.len()); for elt in sum { assert_eq!(m.pop_front(), Some(elt)) } assert_eq!(n.len(), 0); // let's make sure it's working properly, since we // did some direct changes to private members n.push_back(3); assert_eq!(n.len(), 1); assert_eq!(n.pop_front(), Some(3)); check_links(&n); } #[test] fn test_insert_prev() { let mut m = list_from(&[0,2,4,6,8]); let len = m.len(); { let mut it = m.iter_mut(); it.insert_next(-2); loop { match it.next() { None => break, Some(elt) => { it.insert_next(*elt + 1); match it.peek_next() { Some(x) => assert_eq!(*x, *elt + 2), None => assert_eq!(8, *elt), } } } } it.insert_next(0); it.insert_next(1); } check_links(&m); assert_eq!(m.len(), 3 + len * 2); assert_eq!(m.into_iter().collect::>(), [-2,0,1,2,3,4,5,6,7,8,9,0,1]); } #[test] fn test_send() { let n = list_from(&[1,2,3]); thread::spawn(move || { check_links(&n); let a: &[_] = &[&1,&2,&3]; assert_eq!(a, &n.iter().collect::>()[..]); }).join().ok().unwrap(); } #[test] fn test_fuzz() { for _ in 0..25 { fuzz_test(3); fuzz_test(16); fuzz_test(189); } } #[cfg(test)] fn fuzz_test(sz: i32) { let mut m: LinkedList<_> = LinkedList::new(); let mut v = vec![]; for i in 0..sz { check_links(&m); let r: u8 = thread_rng().next_u32() as u8; match r % 6 { 0 => { m.pop_back(); v.pop(); } 1 => { if !v.is_empty() { m.pop_front(); v.remove(0); } } 2 | 4 => { m.push_front(-i); v.insert(0, -i); } 3 | 5 | _ => { m.push_back(i); v.push(i); } } } check_links(&m); let mut i = 0; for (a, &b) in m.into_iter().zip(v.iter()) { i += 1; assert_eq!(a, b); } assert_eq!(i, v.len()); } }