提交 d92e594c 编写于 作者: E Eduard Burtescu

typeck: record `impl Trait` concrete resolutions.

上级 1ef7ddfd
......@@ -194,6 +194,14 @@ fn visit_stmt(&mut self, stmt: &'ast Stmt) {
});
}
fn visit_ty(&mut self, ty: &'ast Ty) {
self.insert(ty.id, NodeTy(ty));
self.with_parent(ty.id, |this| {
intravisit::walk_ty(this, ty);
});
}
fn visit_fn(&mut self, fk: intravisit::FnKind<'ast>, fd: &'ast FnDecl,
b: &'ast Block, s: Span, id: NodeId) {
assert_eq!(self.parent_node, id);
......
......@@ -50,6 +50,7 @@ pub enum Node<'ast> {
NodeVariant(&'ast Variant),
NodeExpr(&'ast Expr),
NodeStmt(&'ast Stmt),
NodeTy(&'ast Ty),
NodeLocal(&'ast Pat),
NodePat(&'ast Pat),
NodeBlock(&'ast Block),
......@@ -76,6 +77,7 @@ pub enum MapEntry<'ast> {
EntryVariant(NodeId, &'ast Variant),
EntryExpr(NodeId, &'ast Expr),
EntryStmt(NodeId, &'ast Stmt),
EntryTy(NodeId, &'ast Ty),
EntryLocal(NodeId, &'ast Pat),
EntryPat(NodeId, &'ast Pat),
EntryBlock(NodeId, &'ast Block),
......@@ -104,6 +106,7 @@ fn from_node(p: NodeId, node: Node<'ast>) -> MapEntry<'ast> {
NodeVariant(n) => EntryVariant(p, n),
NodeExpr(n) => EntryExpr(p, n),
NodeStmt(n) => EntryStmt(p, n),
NodeTy(n) => EntryTy(p, n),
NodeLocal(n) => EntryLocal(p, n),
NodePat(n) => EntryPat(p, n),
NodeBlock(n) => EntryBlock(p, n),
......@@ -122,6 +125,7 @@ fn parent_node(self) -> Option<NodeId> {
EntryVariant(id, _) => id,
EntryExpr(id, _) => id,
EntryStmt(id, _) => id,
EntryTy(id, _) => id,
EntryLocal(id, _) => id,
EntryPat(id, _) => id,
EntryBlock(id, _) => id,
......@@ -144,6 +148,7 @@ fn to_node(self) -> Option<Node<'ast>> {
EntryVariant(_, n) => NodeVariant(n),
EntryExpr(_, n) => NodeExpr(n),
EntryStmt(_, n) => NodeStmt(n),
EntryTy(_, n) => NodeTy(n),
EntryLocal(_, n) => NodeLocal(n),
EntryPat(_, n) => NodePat(n),
EntryBlock(_, n) => NodeBlock(n),
......@@ -257,6 +262,7 @@ fn dep_node(&self, id0: NodeId) -> DepNode<DefId> {
EntryVariant(p, _) |
EntryExpr(p, _) |
EntryStmt(p, _) |
EntryTy(p, _) |
EntryLocal(p, _) |
EntryPat(p, _) |
EntryBlock(p, _) |
......@@ -297,6 +303,7 @@ fn dep_node(&self, id0: NodeId) -> DepNode<DefId> {
EntryVariant(p, _) |
EntryExpr(p, _) |
EntryStmt(p, _) |
EntryTy(p, _) |
EntryLocal(p, _) |
EntryPat(p, _) |
EntryBlock(p, _) |
......@@ -680,6 +687,7 @@ pub fn opt_span(&self, id: NodeId) -> Option<Span> {
Some(NodeVariant(variant)) => variant.span,
Some(NodeExpr(expr)) => expr.span,
Some(NodeStmt(stmt)) => stmt.span,
Some(NodeTy(ty)) => ty.span,
Some(NodeLocal(pat)) => pat.span,
Some(NodePat(pat)) => pat.span,
Some(NodeBlock(block)) => block.span,
......@@ -971,6 +979,7 @@ fn print_node(&mut self, node: &Node) -> io::Result<()> {
NodeVariant(a) => self.print_variant(&a),
NodeExpr(a) => self.print_expr(&a),
NodeStmt(a) => self.print_stmt(&a),
NodeTy(a) => self.print_type(&a),
NodePat(a) => self.print_pat(&a),
NodeBlock(a) => self.print_block(&a),
NodeLifetime(a) => self.print_lifetime(&a),
......@@ -1059,6 +1068,9 @@ fn node_id_to_string(map: &Map, id: NodeId, include_id: bool) -> String {
Some(NodeStmt(ref stmt)) => {
format!("stmt {}{}", pprust::stmt_to_string(&stmt), id_str)
}
Some(NodeTy(ref ty)) => {
format!("type {}{}", pprust::ty_to_string(&ty), id_str)
}
Some(NodeLocal(ref pat)) => {
format!("local {}{}", pprust::pat_to_string(&pat), id_str)
}
......
......@@ -1390,6 +1390,20 @@ fn visit_foreign_item(&mut self, ni: &'tcx hir::ForeignItem) {
intravisit::walk_foreign_item(self, ni);
encode_info_for_foreign_item(self.ecx, self.rbml_w_for_visit_item, ni, self.index);
}
fn visit_ty(&mut self, ty: &'tcx hir::Ty) {
intravisit::walk_ty(self, ty);
if let hir::TyImplTrait(_) = ty.node {
let rbml_w = &mut *self.rbml_w_for_visit_item;
let def_id = self.ecx.tcx.map.local_def_id(ty.id);
let _task = self.index.record(def_id, rbml_w);
rbml_w.start_tag(tag_items_data_item);
encode_def_id_and_key(self.ecx, rbml_w, def_id);
encode_family(rbml_w, 'y');
encode_bounds_and_type_for_item(rbml_w, self.ecx, self.index, ty.id);
rbml_w.end_tag();
}
}
}
fn encode_info_for_items<'a, 'tcx>(ecx: &EncodeContext<'a, 'tcx>,
......
......@@ -1763,25 +1763,28 @@ pub fn ast_ty_to_ty(&self, rscope: &RegionScope, ast_ty: &hir::Ty) -> Ty<'tcx> {
// Create the anonymized type.
let def_id = tcx.map.local_def_id(ast_ty.id);
let substs = if let Some(anon_scope) = rscope.anon_type_scope() {
anon_scope.fresh_substs(tcx)
if let Some(anon_scope) = rscope.anon_type_scope() {
let substs = anon_scope.fresh_substs(tcx);
let ty = tcx.mk_anon(tcx.map.local_def_id(ast_ty.id), substs);
// Collect the bounds, i.e. the `A+B+'c` in `impl A+B+'c`.
let bounds = compute_bounds(self, ty, bounds,
SizedByDefault::Yes,
Some(anon_scope),
ast_ty.span);
let predicates = bounds.predicates(tcx, ty);
let predicates = tcx.lift_to_global(&predicates).unwrap();
tcx.predicates.borrow_mut().insert(def_id, ty::GenericPredicates {
predicates: VecPerParamSpace::new(vec![], vec![], predicates)
});
ty
} else {
span_err!(tcx.sess, ast_ty.span, E0562,
"`impl Trait` not allowed outside of function \
and inherent method return types");
tcx.mk_substs(Substs::empty())
};
let ty = tcx.mk_anon(tcx.map.local_def_id(ast_ty.id), substs);
// Collect the bounds, i.e. the `A+B+'c` in `impl A+B+'c`.
let bounds = compute_bounds(self, ty, bounds, SizedByDefault::Yes, ast_ty.span);
let predicates = tcx.lift_to_global(&bounds.predicates(tcx, ty)).unwrap();
let predicates = ty::GenericPredicates {
predicates: VecPerParamSpace::new(vec![], vec![], predicates)
};
tcx.predicates.borrow_mut().insert(def_id, predicates);
ty
tcx.types.err
}
}
hir::TyPath(ref maybe_qself, ref path) => {
debug!("ast_ty_to_ty: maybe_qself={:?} path={:?}", maybe_qself, path);
......
......@@ -96,7 +96,7 @@
use rustc::ty::{self, ToPolyTraitRef, Ty, TyCtxt, Visibility};
use rustc::ty::{MethodCall, MethodCallee};
use rustc::ty::adjustment;
use rustc::ty::fold::TypeFoldable;
use rustc::ty::fold::{BottomUpFolder, TypeFoldable};
use rustc::ty::util::{Representability, IntTypeExt};
use require_c_abi_if_variadic;
use rscope::{ElisionFailureInfo, RegionScope};
......@@ -172,6 +172,12 @@ pub struct Inherited<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
deferred_call_resolutions: RefCell<DefIdMap<Vec<DeferredCallResolutionHandler<'gcx, 'tcx>>>>,
deferred_cast_checks: RefCell<Vec<cast::CastCheck<'tcx>>>,
// Anonymized types found in explicit return types and their
// associated fresh inference variable. Writeback resolves these
// variables to get the concrete type, which can be used to
// deanonymize TyAnon, after typeck is done with all functions.
anon_types: RefCell<DefIdMap<Ty<'tcx>>>,
}
impl<'a, 'gcx, 'tcx> Deref for Inherited<'a, 'gcx, 'tcx> {
......@@ -408,6 +414,7 @@ fn enter<F, R>(&'tcx mut self, f: F) -> R
locals: RefCell::new(NodeMap()),
deferred_call_resolutions: RefCell::new(DefIdMap()),
deferred_cast_checks: RefCell::new(Vec::new()),
anon_types: RefCell::new(DefIdMap()),
})
})
}
......@@ -631,32 +638,29 @@ fn check_fn<'a, 'gcx, 'tcx>(inherited: &'a Inherited<'a, 'gcx, 'tcx>,
body: &'gcx hir::Block)
-> FnCtxt<'a, 'gcx, 'tcx>
{
let arg_tys = &fn_sig.inputs;
let ret_ty = fn_sig.output;
let mut fn_sig = fn_sig.clone();
debug!("check_fn(arg_tys={:?}, ret_ty={:?}, fn_id={})",
arg_tys,
ret_ty,
fn_id);
debug!("check_fn(sig={:?}, fn_id={})", fn_sig, fn_id);
// Create the function context. This is either derived from scratch or,
// in the case of function expressions, based on the outer context.
let fcx = FnCtxt::new(inherited, ret_ty, body.id);
let mut fcx = FnCtxt::new(inherited, fn_sig.output, body.id);
*fcx.ps.borrow_mut() = UnsafetyState::function(unsafety, unsafety_id);
if let ty::FnConverging(ret_ty) = ret_ty {
fcx.require_type_is_sized(ret_ty, decl.output.span(), traits::ReturnType);
}
debug!("fn-sig-map: fn_id={} fn_sig={:?}", fn_id, fn_sig);
inherited.tables.borrow_mut().liberated_fn_sigs.insert(fn_id, fn_sig.clone());
fn_sig.output = match fcx.ret_ty {
ty::FnConverging(orig_ret_ty) => {
fcx.require_type_is_sized(orig_ret_ty, decl.output.span(), traits::ReturnType);
ty::FnConverging(fcx.instantiate_anon_types(&orig_ret_ty))
}
ty::FnDiverging => ty::FnDiverging
};
fcx.ret_ty = fn_sig.output;
{
let mut visit = GatherLocalsVisitor { fcx: &fcx, };
// Add formal parameters.
for (arg_ty, input) in arg_tys.iter().zip(&decl.inputs) {
for (arg_ty, input) in fn_sig.inputs.iter().zip(&decl.inputs) {
// The type of the argument must be well-formed.
//
// NB -- this is now checked in wfcheck, but that
......@@ -672,21 +676,20 @@ fn check_fn<'a, 'gcx, 'tcx>(inherited: &'a Inherited<'a, 'gcx, 'tcx>,
});
// Check the pattern.
fcx.check_pat(&input.pat, *arg_ty);
fcx.check_pat(&input.pat, arg_ty);
fcx.write_ty(input.id, arg_ty);
}
visit.visit_block(body);
}
fcx.check_block_with_expected(body, match ret_ty {
inherited.tables.borrow_mut().liberated_fn_sigs.insert(fn_id, fn_sig);
fcx.check_block_with_expected(body, match fcx.ret_ty {
ty::FnConverging(result_type) => ExpectHasType(result_type),
ty::FnDiverging => NoExpectation
});
for (input, arg) in decl.inputs.iter().zip(arg_tys) {
fcx.write_ty(input.id, arg);
}
fcx
}
......@@ -1623,6 +1626,41 @@ fn instantiate_bounds(&self,
}
}
/// Replace all anonymized types with fresh inference variables
/// and record them for writeback.
fn instantiate_anon_types<T: TypeFoldable<'tcx>>(&self, value: &T) -> T {
value.fold_with(&mut BottomUpFolder { tcx: self.tcx, fldop: |ty| {
if let ty::TyAnon(def_id, substs) = ty.sty {
// Use the same type variable if the exact same TyAnon appears more
// than once in the return type (e.g. if it's pased to a type alias).
if let Some(ty_var) = self.anon_types.borrow().get(&def_id) {
return ty_var;
}
let ty_var = self.next_ty_var();
self.anon_types.borrow_mut().insert(def_id, ty_var);
let item_predicates = self.tcx.lookup_predicates(def_id);
let bounds = item_predicates.instantiate(self.tcx, substs);
let span = self.tcx.map.def_id_span(def_id, codemap::DUMMY_SP);
for predicate in bounds.predicates {
// Change the predicate to refer to the type variable,
// which will be the concrete type, instead of the TyAnon.
// This also instantiates nested `impl Trait`.
let predicate = self.instantiate_anon_types(&predicate);
// Require that the predicate holds for the concrete type.
let cause = traits::ObligationCause::new(span, self.body_id,
traits::ReturnType);
self.register_predicate(traits::Obligation::new(cause, predicate));
}
ty_var
} else {
ty
}
}})
}
fn normalize_associated_types_in<T>(&self, span: Span, value: &T) -> T
where T : TypeFoldable<'tcx>
......
......@@ -18,7 +18,9 @@
use rustc::ty::{self, Ty, TyCtxt, MethodCall, MethodCallee};
use rustc::ty::adjustment;
use rustc::ty::fold::{TypeFolder,TypeFoldable};
use rustc::ty::subst::ParamSpace;
use rustc::infer::{InferCtxt, FixupError};
use rustc::util::nodemap::DefIdMap;
use write_substs_to_tcx;
use write_ty_to_tcx;
......@@ -62,6 +64,7 @@ pub fn resolve_type_vars_in_fn(&self, decl: &hir::FnDecl, blk: &hir::Block) {
wbcx.visit_closures();
wbcx.visit_liberated_fn_sigs();
wbcx.visit_fru_field_types();
wbcx.visit_anon_types();
}
}
......@@ -75,11 +78,48 @@ pub fn resolve_type_vars_in_fn(&self, decl: &hir::FnDecl, blk: &hir::Block) {
struct WritebackCx<'cx, 'gcx: 'cx+'tcx, 'tcx: 'cx> {
fcx: &'cx FnCtxt<'cx, 'gcx, 'tcx>,
// Mapping from free regions of the function to the
// early-bound versions of them, visible from the
// outside of the function. This is needed by, and
// only populated if there are any `impl Trait`.
free_to_bound_regions: DefIdMap<ty::Region>
}
impl<'cx, 'gcx, 'tcx> WritebackCx<'cx, 'gcx, 'tcx> {
fn new(fcx: &'cx FnCtxt<'cx, 'gcx, 'tcx>) -> WritebackCx<'cx, 'gcx, 'tcx> {
WritebackCx { fcx: fcx }
let mut wbcx = WritebackCx {
fcx: fcx,
free_to_bound_regions: DefIdMap()
};
// Only build the reverse mapping if `impl Trait` is used.
if fcx.anon_types.borrow().is_empty() {
return wbcx;
}
let free_substs = fcx.parameter_environment.free_substs;
for &space in &ParamSpace::all() {
for (i, r) in free_substs.regions.get_slice(space).iter().enumerate() {
match *r {
ty::ReFree(ty::FreeRegion {
bound_region: ty::BoundRegion::BrNamed(def_id, name, _), ..
}) => {
let bound_region = ty::ReEarlyBound(ty::EarlyBoundRegion {
space: space,
index: i as u32,
name: name,
});
wbcx.free_to_bound_regions.insert(def_id, bound_region);
}
_ => {
bug!("{:?} is not a free region for an early-bound lifetime", r);
}
}
}
}
wbcx
}
fn tcx(&self) -> TyCtxt<'cx, 'gcx, 'tcx> {
......@@ -255,6 +295,58 @@ fn visit_closures(&self) {
}
}
fn visit_anon_types(&self) {
if self.fcx.writeback_errors.get() {
return
}
let gcx = self.tcx().global_tcx();
for (&def_id, &concrete_ty) in self.fcx.anon_types.borrow().iter() {
let reason = ResolvingAnonTy(def_id);
let inside_ty = self.resolve(&concrete_ty, reason);
// Convert the type from the function into a type valid outside
// the function, by replacing free regions with early-bound ones.
let outside_ty = gcx.fold_regions(&inside_ty, &mut false, |r, _| {
match r {
// 'static is valid everywhere.
ty::ReStatic => ty::ReStatic,
// Free regions that come from early-bound regions are valid.
ty::ReFree(ty::FreeRegion {
bound_region: ty::BoundRegion::BrNamed(def_id, _, _), ..
}) if self.free_to_bound_regions.contains_key(&def_id) => {
self.free_to_bound_regions[&def_id]
}
ty::ReFree(_) |
ty::ReEarlyBound(_) |
ty::ReLateBound(..) |
ty::ReScope(_) |
ty::ReSkolemized(..) => {
let span = reason.span(self.tcx());
span_err!(self.tcx().sess, span, E0564,
"only named lifetimes are allowed in `impl Trait`, \
but `{}` was found in the type `{}`", r, inside_ty);
ty::ReStatic
}
ty::ReVar(_) |
ty::ReEmpty |
ty::ReErased => {
let span = reason.span(self.tcx());
span_bug!(span, "invalid region in impl Trait: {:?}", r);
}
}
});
gcx.tcache.borrow_mut().insert(def_id, ty::TypeScheme {
ty: outside_ty,
generics: ty::Generics::empty()
});
}
}
fn visit_node_id(&self, reason: ResolveReason, id: ast::NodeId) {
// Resolve any borrowings for the node with id `id`
self.visit_adjustments(reason, id);
......@@ -377,7 +469,8 @@ enum ResolveReason {
ResolvingUpvar(ty::UpvarId),
ResolvingClosure(DefId),
ResolvingFnSig(ast::NodeId),
ResolvingFieldTypes(ast::NodeId)
ResolvingFieldTypes(ast::NodeId),
ResolvingAnonTy(DefId),
}
impl<'a, 'gcx, 'tcx> ResolveReason {
......@@ -395,12 +488,9 @@ fn span(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Span {
ResolvingFieldTypes(id) => {
tcx.map.span(id)
}
ResolvingClosure(did) => {
if let Some(node_id) = tcx.map.as_local_node_id(did) {
tcx.expr_span(node_id)
} else {
DUMMY_SP
}
ResolvingClosure(did) |
ResolvingAnonTy(did) => {
tcx.map.def_id_span(did, DUMMY_SP)
}
}
}
......@@ -483,6 +573,12 @@ fn report_error(&self, e: FixupError) {
span,
&format!("cannot resolve some aspect of data for {:?}", id));
}
ResolvingAnonTy(_) => {
let span = self.reason.span(self.tcx);
span_err!(self.tcx.sess, span, E0563,
"cannot determine a type for this `impl Trait`: {}", e)
}
}
}
}
......
......@@ -1194,10 +1194,11 @@ fn ensure_super_predicates_step(ccx: &CrateCtxt,
// Convert the bounds that follow the colon, e.g. `Bar+Zed` in `trait Foo : Bar+Zed`.
let self_param_ty = tcx.mk_self_type();
let superbounds1 = compute_bounds(&ccx.icx(scope),
self_param_ty,
bounds,
SizedByDefault::No,
item.span);
self_param_ty,
bounds,
SizedByDefault::No,
None,
item.span);
let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
......@@ -1407,6 +1408,7 @@ fn predicates_for_associated_types<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
assoc_ty,
bounds,
SizedByDefault::Yes,
None,
trait_item.span);
bounds.predicates(ccx.tcx, assoc_ty).into_iter()
......@@ -1780,6 +1782,7 @@ fn ty_generic_predicates<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
param_ty,
&param.bounds,
SizedByDefault::Yes,
None,
param.span);
let predicates = bounds.predicates(ccx.tcx, param_ty);
result.predicates.extend(space, predicates.into_iter());
......@@ -2052,25 +2055,43 @@ pub fn compute_bounds<'gcx: 'tcx, 'tcx>(astconv: &AstConv<'gcx, 'tcx>,
param_ty: ty::Ty<'tcx>,
ast_bounds: &[hir::TyParamBound],
sized_by_default: SizedByDefault,
anon_scope: Option<AnonTypeScope>,
span: Span)
-> Bounds<'tcx>
{
let mut bounds =
conv_param_bounds(astconv,
span,
param_ty,
ast_bounds);
let tcx = astconv.tcx();
let PartitionedBounds {
mut builtin_bounds,
trait_bounds,
region_bounds
} = partition_bounds(tcx, span, &ast_bounds);
if let SizedByDefault::Yes = sized_by_default {
add_unsized_bound(astconv,
&mut bounds.builtin_bounds,
ast_bounds,
span);
add_unsized_bound(astconv, &mut builtin_bounds, ast_bounds, span);
}
bounds.trait_bounds.sort_by(|a,b| a.def_id().cmp(&b.def_id()));
let mut projection_bounds = vec![];
let rscope = MaybeWithAnonTypes::new(ExplicitRscope, anon_scope);
let mut trait_bounds: Vec<_> = trait_bounds.iter().map(|&bound| {
astconv.instantiate_poly_trait_ref(&rscope,
bound,
Some(param_ty),
&mut projection_bounds)
}).collect();
let region_bounds = region_bounds.into_iter().map(|r| {
ast_region_to_region(tcx, r)
}).collect();
trait_bounds.sort_by(|a,b| a.def_id().cmp(&b.def_id()));
bounds
Bounds {
region_bounds: region_bounds,
builtin_bounds: builtin_bounds,
trait_bounds: trait_bounds,
projection_bounds: projection_bounds,
}
}
/// Converts a specific TyParamBound from the AST into a set of
......@@ -2116,42 +2137,6 @@ fn conv_poly_trait_ref<'gcx: 'tcx, 'tcx>(astconv: &AstConv<'gcx, 'tcx>,
projections)
}
fn conv_param_bounds<'gcx: 'tcx, 'tcx>(astconv: &AstConv<'gcx, 'tcx>,
span: Span,
param_ty: ty::Ty<'tcx>,
ast_bounds: &[hir::TyParamBound])
-> Bounds<'tcx>
{
let tcx = astconv.tcx();
let PartitionedBounds {
builtin_bounds,
trait_bounds,
region_bounds
} = partition_bounds(tcx, span, &ast_bounds);
let mut projection_bounds = Vec::new();
let trait_bounds: Vec<ty::PolyTraitRef> =
trait_bounds.iter()
.map(|bound| conv_poly_trait_ref(astconv,
param_ty,
*bound,
&mut projection_bounds))
.collect();
let region_bounds: Vec<ty::Region> =
region_bounds.into_iter()
.map(|r| ast_region_to_region(tcx, r))
.collect();
Bounds {
region_bounds: region_bounds,
builtin_bounds: builtin_bounds,
trait_bounds: trait_bounds,
projection_bounds: projection_bounds,
}
}
fn compute_type_scheme_of_foreign_fn_decl<'a, 'tcx>(
ccx: &CrateCtxt<'a, 'tcx>,
id: DefId,
......
......@@ -4086,4 +4086,7 @@ struct Simba {
E0533, // `{}` does not name a unit variant, unit struct or a constant
E0562, // `impl Trait` not allowed outside of function
// and inherent method return types
E0563, // cannot determine a type for this `impl Trait`: {}
E0564, // only named lifetimes are allowed in `impl Trait`,
// but `{}` was found in the type `{}`
}
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(conservative_impl_trait, fn_traits, step_trait, unboxed_closures)]
//! Derived from: <https://raw.githubusercontent.com/quickfur/dcal/master/dcal.d>.
//!
//! Originally converted to Rust by [Daniel Keep](https://github.com/DanielKeep).
use std::fmt::Write;
use std::mem;
/// Date representation.
#[derive(Copy, Clone, Debug, Eq, Ord, PartialEq, PartialOrd)]
struct NaiveDate(i32, u32, u32);
impl NaiveDate {
pub fn from_ymd(y: i32, m: u32, d: u32) -> NaiveDate {
assert!(1 <= m && m <= 12, "m = {:?}", m);
assert!(1 <= d && d <= NaiveDate(y, m, 1).days_in_month(), "d = {:?}", d);
NaiveDate(y, m, d)
}
pub fn year(&self) -> i32 {
self.0
}
pub fn month(&self) -> u32 {
self.1
}
pub fn day(&self) -> u32 {
self.2
}
pub fn succ(&self) -> NaiveDate {
let (mut y, mut m, mut d, n) = (
self.year(), self.month(), self.day()+1, self.days_in_month());
if d > n {
d = 1;
m += 1;
}
if m > 12 {
m = 1;
y += 1;
}
NaiveDate::from_ymd(y, m, d)
}
pub fn weekday(&self) -> Weekday {
use Weekday::*;
// 0 = Sunday
let year = self.year();
let dow_jan_1 = (year*365 + ((year-1) / 4) - ((year-1) / 100) + ((year-1) / 400)) % 7;
let dow = (dow_jan_1 + (self.day_of_year() as i32 - 1)) % 7;
[Sun, Mon, Tue, Wed, Thu, Fri, Sat][dow as usize]
}
pub fn isoweekdate(&self) -> (i32, u32, Weekday) {
let first_dow_mon_0 = self.year_first_day_of_week().num_days_from_monday();
// Work out this date's DOtY and week number, not including year adjustment.
let doy_0 = self.day_of_year() - 1;
let mut week_mon_0: i32 = ((first_dow_mon_0 + doy_0) / 7) as i32;
if self.first_week_in_prev_year() {
week_mon_0 -= 1;
}
let weeks_in_year = self.last_week_number();
// Work out the final result.
// If the week is -1 or >= weeks_in_year, we will need to adjust the year.
let year = self.year();
let wd = self.weekday();
if week_mon_0 < 0 {
(year - 1, NaiveDate::from_ymd(year - 1, 1, 1).last_week_number(), wd)
} else if week_mon_0 >= weeks_in_year as i32 {
(year + 1, (week_mon_0 + 1 - weeks_in_year as i32) as u32, wd)
} else {
(year, (week_mon_0 + 1) as u32, wd)
}
}
fn first_week_in_prev_year(&self) -> bool {
let first_dow_mon_0 = self.year_first_day_of_week().num_days_from_monday();
// Any day in the year *before* the first Monday of that year
// is considered to be in the last week of the previous year,
// assuming the first week has *less* than four days in it.
// Adjust the week appropriately.
((7 - first_dow_mon_0) % 7) < 4
}
fn year_first_day_of_week(&self) -> Weekday {
NaiveDate::from_ymd(self.year(), 1, 1).weekday()
}
fn weeks_in_year(&self) -> u32 {
let days_in_last_week = self.year_first_day_of_week().num_days_from_monday() + 1;
if days_in_last_week >= 4 { 53 } else { 52 }
}
fn last_week_number(&self) -> u32 {
let wiy = self.weeks_in_year();
if self.first_week_in_prev_year() { wiy - 1 } else { wiy }
}
fn day_of_year(&self) -> u32 {
(1..self.1).map(|m| NaiveDate::from_ymd(self.year(), m, 1).days_in_month())
.fold(0, |a,b| a+b) + self.day()
}
fn is_leap_year(&self) -> bool {
let year = self.year();
if year % 4 != 0 {
return false
} else if year % 100 != 0 {
return true
} else if year % 400 != 0 {
return false
} else {
return true
}
}
fn days_in_month(&self) -> u32 {
match self.month() {
/* Jan */ 1 => 31,
/* Feb */ 2 => if self.is_leap_year() { 29 } else { 28 },
/* Mar */ 3 => 31,
/* Apr */ 4 => 30,
/* May */ 5 => 31,
/* Jun */ 6 => 30,
/* Jul */ 7 => 31,
/* Aug */ 8 => 31,
/* Sep */ 9 => 30,
/* Oct */ 10 => 31,
/* Nov */ 11 => 30,
/* Dec */ 12 => 31,
_ => unreachable!()
}
}
}
impl<'a, 'b> std::ops::Add<&'b NaiveDate> for &'a NaiveDate {
type Output = NaiveDate;
fn add(self, other: &'b NaiveDate) -> NaiveDate {
assert_eq!(*other, NaiveDate(0, 0, 1));
self.succ()
}
}
impl std::iter::Step for NaiveDate {
fn step(&self, by: &Self) -> Option<Self> {
Some(self + by)
}
fn steps_between(_: &Self, _: &Self, _: &Self) -> Option<usize> {
unimplemented!()
}
fn steps_between_by_one(_: &Self, _: &Self) -> Option<usize> {
unimplemented!()
}
fn is_negative(&self) -> bool {
false
}
fn replace_one(&mut self) -> Self {
mem::replace(self, NaiveDate(0, 0, 1))
}
fn replace_zero(&mut self) -> Self {
mem::replace(self, NaiveDate(0, 0, 0))
}
fn add_one(&self) -> Self {
self.succ()
}
fn sub_one(&self) -> Self {
unimplemented!()
}
}
#[derive(Copy, Clone, Debug, Eq, Ord, PartialEq, PartialOrd)]
pub enum Weekday {
Mon,
Tue,
Wed,
Thu,
Fri,
Sat,
Sun,
}
impl Weekday {
pub fn num_days_from_monday(&self) -> u32 {
use Weekday::*;
match *self {
Mon => 0,
Tue => 1,
Wed => 2,
Thu => 3,
Fri => 4,
Sat => 5,
Sun => 6,
}
}
pub fn num_days_from_sunday(&self) -> u32 {
use Weekday::*;
match *self {
Sun => 0,
Mon => 1,
Tue => 2,
Wed => 3,
Thu => 4,
Fri => 5,
Sat => 6,
}
}
}
/// Wrapper for zero-sized closures.
// HACK(eddyb) Only needed because closures can't implement Copy.
struct Fn0<F>(std::marker::PhantomData<F>);
impl<F> Copy for Fn0<F> {}
impl<F> Clone for Fn0<F> {
fn clone(&self) -> Self { *self }
}
impl<F: FnOnce<A>, A> FnOnce<A> for Fn0<F> {
type Output = F::Output;
extern "rust-call" fn call_once(self, args: A) -> Self::Output {
let f = unsafe { std::mem::uninitialized::<F>() };
f.call_once(args)
}
}
impl<F: FnMut<A>, A> FnMut<A> for Fn0<F> {
extern "rust-call" fn call_mut(&mut self, args: A) -> Self::Output {
let mut f = unsafe { std::mem::uninitialized::<F>() };
f.call_mut(args)
}
}
trait AsFn0<A>: Sized {
fn copyable(self) -> Fn0<Self>;
}
impl<F: FnMut<A>, A> AsFn0<A> for F {
fn copyable(self) -> Fn0<Self> {
assert_eq!(std::mem::size_of::<F>(), 0);
Fn0(std::marker::PhantomData)
}
}
/// GroupBy implementation.
struct GroupBy<It: Iterator, F> {
it: std::iter::Peekable<It>,
f: F,
}
impl<It, F> Clone for GroupBy<It, F>
where It: Iterator + Clone, It::Item: Clone, F: Clone {
fn clone(&self) -> GroupBy<It, F> {
GroupBy {
it: self.it.clone(),
f: self.f.clone()
}
}
}
impl<'a, G, It: 'a, F: 'a> Iterator for GroupBy<It, F>
where It: Iterator + Clone,
It::Item: Clone,
F: Clone + FnMut(&It::Item) -> G,
G: Eq + Clone
{
type Item = (G, InGroup<std::iter::Peekable<It>, F, G>);
fn next(&mut self) -> Option<Self::Item> {
self.it.peek().map(&mut self.f).map(|key| {
let start = self.it.clone();
while let Some(k) = self.it.peek().map(&mut self.f) {
if key != k {
break;
}
self.it.next();
}
(key.clone(), InGroup {
it: start,
f: self.f.clone(),
g: key
})
})
}
}
#[derive(Copy, Clone)]
struct InGroup<It, F, G> {
it: It,
f: F,
g: G
}
impl<It: Iterator, F: FnMut(&It::Item) -> G, G: Eq> Iterator for InGroup<It, F, G> {
type Item = It::Item;
fn next(&mut self) -> Option<It::Item> {
self.it.next().and_then(|x| {
if (self.f)(&x) == self.g { Some(x) } else { None }
})
}
}
trait IteratorExt: Iterator + Sized {
fn group_by<G, F>(self, f: F) -> GroupBy<Self, Fn0<F>>
where F: FnMut(&Self::Item) -> G,
G: Eq
{
GroupBy {
it: self.peekable(),
f: f.copyable(),
}
}
fn join(mut self, sep: &str) -> String
where Self::Item: std::fmt::Display {
let mut s = String::new();
if let Some(e) = self.next() {
write!(s, "{}", e);
for e in self {
s.push_str(sep);
write!(s, "{}", e);
}
}
s
}
// HACK(eddyb) Only needed because `impl Trait` can't be
// used with trait methods: `.foo()` becomes `.__(foo)`.
fn __<F, R>(self, f: F) -> R
where F: FnOnce(Self) -> R {
f(self)
}
}
impl<It> IteratorExt for It where It: Iterator {}
///
/// Generates an iterator that yields exactly n spaces.
///
fn spaces(n: usize) -> std::iter::Take<std::iter::Repeat<char>> {
std::iter::repeat(' ').take(n)
}
fn test_spaces() {
assert_eq!(spaces(0).collect::<String>(), "");
assert_eq!(spaces(10).collect::<String>(), " ")
}
///
/// Returns an iterator of dates in a given year.
///
fn dates_in_year(year: i32) -> impl Iterator<Item=NaiveDate>+Clone {
InGroup {
it: NaiveDate::from_ymd(year, 1, 1)..,
f: (|d: &NaiveDate| d.year()).copyable(),
g: year
}
}
fn test_dates_in_year() {
{
let mut dates = dates_in_year(2013);
assert_eq!(dates.next(), Some(NaiveDate::from_ymd(2013, 1, 1)));
// Check increment
assert_eq!(dates.next(), Some(NaiveDate::from_ymd(2013, 1, 2)));
// Check monthly rollover
for _ in 3..31 {
assert!(dates.next() != None);
}
assert_eq!(dates.next(), Some(NaiveDate::from_ymd(2013, 1, 31)));
assert_eq!(dates.next(), Some(NaiveDate::from_ymd(2013, 2, 1)));
}
{
// Check length of year
let mut dates = dates_in_year(2013);
for _ in 0..365 {
assert!(dates.next() != None);
}
assert_eq!(dates.next(), None);
}
{
// Check length of leap year
let mut dates = dates_in_year(1984);
for _ in 0..366 {
assert!(dates.next() != None);
}
assert_eq!(dates.next(), None);
}
}
///
/// Convenience trait for verifying that a given type iterates over
/// `NaiveDate`s.
///
trait DateIterator: Iterator<Item=NaiveDate> + Clone {}
impl<It> DateIterator for It where It: Iterator<Item=NaiveDate> + Clone {}
fn test_group_by() {
let input = [
[1, 1],
[1, 1],
[1, 2],
[2, 2],
[2, 3],
[2, 3],
[3, 3]
];
let by_x = input.iter().cloned().group_by(|a| a[0]);
let expected_1: &[&[[i32; 2]]] = &[
&[[1, 1], [1, 1], [1, 2]],
&[[2, 2], [2, 3], [2, 3]],
&[[3, 3]]
];
for ((_, a), b) in by_x.zip(expected_1.iter().cloned()) {
assert_eq!(&a.collect::<Vec<_>>()[..], b);
}
let by_y = input.iter().cloned().group_by(|a| a[1]);
let expected_2: &[&[[i32; 2]]] = &[
&[[1, 1], [1, 1]],
&[[1, 2], [2, 2]],
&[[2, 3], [2, 3], [3, 3]]
];
for ((_, a), b) in by_y.zip(expected_2.iter().cloned()) {
assert_eq!(&a.collect::<Vec<_>>()[..], b);
}
}
///
/// Groups an iterator of dates by month.
///
fn by_month<It>(it: It)
-> impl Iterator<Item=(u32, impl Iterator<Item=NaiveDate> + Clone)> + Clone
where It: Iterator<Item=NaiveDate> + Clone {
it.group_by(|d| d.month())
}
fn test_by_month() {
let mut months = dates_in_year(2013).__(by_month);
for (month, (_, mut date)) in (1..13).zip(&mut months) {
assert_eq!(date.nth(0).unwrap(), NaiveDate::from_ymd(2013, month, 1));
}
assert!(months.next().is_none());
}
///
/// Groups an iterator of dates by week.
///
fn by_week<It>(it: It)
-> impl Iterator<Item=(u32, impl DateIterator)> + Clone
where It: DateIterator {
// We go forward one day because `isoweekdate` considers the week to start on a Monday.
it.group_by(|d| d.succ().isoweekdate().1)
}
fn test_isoweekdate() {
fn weeks_uniq(year: i32) -> Vec<((i32, u32), u32)> {
let mut weeks = dates_in_year(year).map(|d| d.isoweekdate())
.map(|(y,w,_)| (y,w));
let mut result = vec![];
let mut accum = (weeks.next().unwrap(), 1);
for yw in weeks {
if accum.0 == yw {
accum.1 += 1;
} else {
result.push(accum);
accum = (yw, 1);
}
}
result.push(accum);
result
}
let wu_1984 = weeks_uniq(1984);
assert_eq!(&wu_1984[..2], &[((1983, 52), 1), ((1984, 1), 7)]);
assert_eq!(&wu_1984[wu_1984.len()-2..], &[((1984, 52), 7), ((1985, 1), 1)]);
let wu_2013 = weeks_uniq(2013);
assert_eq!(&wu_2013[..2], &[((2013, 1), 6), ((2013, 2), 7)]);
assert_eq!(&wu_2013[wu_2013.len()-2..], &[((2013, 52), 7), ((2014, 1), 2)]);
let wu_2015 = weeks_uniq(2015);
assert_eq!(&wu_2015[..2], &[((2015, 1), 4), ((2015, 2), 7)]);
assert_eq!(&wu_2015[wu_2015.len()-2..], &[((2015, 52), 7), ((2015, 53), 4)]);
}
fn test_by_week() {
let mut weeks = dates_in_year(2013).__(by_week);
assert_eq!(
&*weeks.next().unwrap().1.collect::<Vec<_>>(),
&[
NaiveDate::from_ymd(2013, 1, 1),
NaiveDate::from_ymd(2013, 1, 2),
NaiveDate::from_ymd(2013, 1, 3),
NaiveDate::from_ymd(2013, 1, 4),
NaiveDate::from_ymd(2013, 1, 5),
]
);
assert_eq!(
&*weeks.next().unwrap().1.collect::<Vec<_>>(),
&[
NaiveDate::from_ymd(2013, 1, 6),
NaiveDate::from_ymd(2013, 1, 7),
NaiveDate::from_ymd(2013, 1, 8),
NaiveDate::from_ymd(2013, 1, 9),
NaiveDate::from_ymd(2013, 1, 10),
NaiveDate::from_ymd(2013, 1, 11),
NaiveDate::from_ymd(2013, 1, 12),
]
);
assert_eq!(weeks.next().unwrap().1.nth(0).unwrap(), NaiveDate::from_ymd(2013, 1, 13));
}
/// The number of columns per day in the formatted output.
const COLS_PER_DAY: u32 = 3;
/// The number of columns per week in the formatted output.
const COLS_PER_WEEK: u32 = 7 * COLS_PER_DAY;
///
/// Formats an iterator of weeks into an iterator of strings.
///
fn format_weeks<It>(it: It) -> impl Iterator<Item=String>
where It: Iterator, It::Item: DateIterator {
it.map(|week| {
let mut buf = String::with_capacity((COLS_PER_DAY * COLS_PER_WEEK + 2) as usize);
// Format each day into its own cell and append to target string.
let mut last_day = 0;
let mut first = true;
for d in week {
last_day = d.weekday().num_days_from_sunday();
// Insert enough filler to align the first day with its respective day-of-week.
if first {
buf.extend(spaces((COLS_PER_DAY * last_day) as usize));
first = false;
}
write!(buf, " {:>2}", d.day());
}
// Insert more filler at the end to fill up the remainder of the week,
// if its a short week (e.g. at the end of the month).
buf.extend(spaces((COLS_PER_DAY * (6 - last_day)) as usize));
buf
})
}
fn test_format_weeks() {
let jan_2013 = dates_in_year(2013)
.__(by_month).next() // pick January 2013 for testing purposes
// NOTE: This `map` is because `next` returns an `Option<_>`.
.map(|(_, month)|
month.__(by_week)
.map(|(_, weeks)| weeks)
.__(format_weeks)
.join("\n"));
assert_eq!(
jan_2013.as_ref().map(|s| &**s),
Some(" 1 2 3 4 5\n\
\x20 6 7 8 9 10 11 12\n\
\x2013 14 15 16 17 18 19\n\
\x2020 21 22 23 24 25 26\n\
\x2027 28 29 30 31 ")
);
}
///
/// Formats the name of a month, centered on COLS_PER_WEEK.
///
fn month_title(month: u32) -> String {
const MONTH_NAMES: &'static [&'static str] = &[
"January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"
];
assert_eq!(MONTH_NAMES.len(), 12);
// Determine how many spaces before and after the month name
// we need to center it over the formatted weeks in the month.
let name = MONTH_NAMES[(month - 1) as usize];
assert!(name.len() < COLS_PER_WEEK as usize);
let before = (COLS_PER_WEEK as usize - name.len()) / 2;
let after = COLS_PER_WEEK as usize - name.len() - before;
// NOTE: Being slightly more verbose to avoid extra allocations.
let mut result = String::with_capacity(COLS_PER_WEEK as usize);
result.extend(spaces(before));
result.push_str(name);
result.extend(spaces(after));
result
}
fn test_month_title() {
assert_eq!(month_title(1).len(), COLS_PER_WEEK as usize);
}
///
/// Formats a month.
///
fn format_month<It: DateIterator>(it: It) -> impl Iterator<Item=String> {
let mut month_days = it.peekable();
let title = month_title(month_days.peek().unwrap().month());
Some(title).into_iter()
.chain(month_days.__(by_week)
.map(|(_, week)| week)
.__(format_weeks))
}
fn test_format_month() {
let month_fmt = dates_in_year(2013)
.__(by_month).next() // Pick January as a test case
.map(|(_, days)| days.into_iter()
.__(format_month)
.join("\n"));
assert_eq!(
month_fmt.as_ref().map(|s| &**s),
Some(" January \n\
\x20 1 2 3 4 5\n\
\x20 6 7 8 9 10 11 12\n\
\x2013 14 15 16 17 18 19\n\
\x2020 21 22 23 24 25 26\n\
\x2027 28 29 30 31 ")
);
}
///
/// Formats an iterator of months.
///
fn format_months<It>(it: It) -> impl Iterator<Item=impl Iterator<Item=String>>
where It: Iterator, It::Item: DateIterator {
it.map(format_month)
}
///
/// Takes an iterator of iterators of strings; the sub-iterators are consumed
/// in lock-step, with their elements joined together.
///
trait PasteBlocks: Iterator + Sized
where Self::Item: Iterator<Item=String> {
fn paste_blocks(self, sep_width: usize) -> PasteBlocksIter<Self::Item> {
PasteBlocksIter {
iters: self.collect(),
cache: vec![],
col_widths: None,
sep_width: sep_width,
}
}
}
impl<It> PasteBlocks for It where It: Iterator, It::Item: Iterator<Item=String> {}
struct PasteBlocksIter<StrIt>
where StrIt: Iterator<Item=String> {
iters: Vec<StrIt>,
cache: Vec<Option<String>>,
col_widths: Option<Vec<usize>>,
sep_width: usize,
}
impl<StrIt> Iterator for PasteBlocksIter<StrIt>
where StrIt: Iterator<Item=String> {
type Item = String;
fn next(&mut self) -> Option<String> {
self.cache.clear();
// `cache` is now the next line from each iterator.
self.cache.extend(self.iters.iter_mut().map(|it| it.next()));
// If every line in `cache` is `None`, we have nothing further to do.
if self.cache.iter().all(|e| e.is_none()) { return None }
// Get the column widths if we haven't already.
let col_widths = match self.col_widths {
Some(ref v) => &**v,
None => {
self.col_widths = Some(self.cache.iter()
.map(|ms| ms.as_ref().map(|s| s.len()).unwrap_or(0))
.collect());
&**self.col_widths.as_ref().unwrap()
}
};
// Fill in any `None`s with spaces.
let mut parts = col_widths.iter().cloned().zip(self.cache.iter_mut())
.map(|(w,ms)| ms.take().unwrap_or_else(|| spaces(w).collect()));
// Join them all together.
let first = parts.next().unwrap_or(String::new());
let sep_width = self.sep_width;
Some(parts.fold(first, |mut accum, next| {
accum.extend(spaces(sep_width));
accum.push_str(&next);
accum
}))
}
}
fn test_paste_blocks() {
let row = dates_in_year(2013)
.__(by_month).map(|(_, days)| days)
.take(3)
.__(format_months)
.paste_blocks(1)
.join("\n");
assert_eq!(
&*row,
" January February March \n\
\x20 1 2 3 4 5 1 2 1 2\n\
\x20 6 7 8 9 10 11 12 3 4 5 6 7 8 9 3 4 5 6 7 8 9\n\
\x2013 14 15 16 17 18 19 10 11 12 13 14 15 16 10 11 12 13 14 15 16\n\
\x2020 21 22 23 24 25 26 17 18 19 20 21 22 23 17 18 19 20 21 22 23\n\
\x2027 28 29 30 31 24 25 26 27 28 24 25 26 27 28 29 30\n\
\x20 31 "
);
}
///
/// Produces an iterator that yields `n` elements at a time.
///
trait Chunks: Iterator + Sized {
fn chunks(self, n: usize) -> ChunksIter<Self> {
assert!(n > 0);
ChunksIter {
it: self,
n: n,
}
}
}
impl<It> Chunks for It where It: Iterator {}
struct ChunksIter<It>
where It: Iterator {
it: It,
n: usize,
}
// NOTE: `chunks` in Rust is more-or-less impossible without overhead of some kind.
// Aliasing rules mean you need to add dynamic borrow checking, and the design of
// `Iterator` means that you need to have the iterator's state kept in an allocation
// that is jointly owned by the iterator itself and the sub-iterator.
// As such, I've chosen to cop-out and just heap-allocate each chunk.
impl<It> Iterator for ChunksIter<It>
where It: Iterator {
type Item = Vec<It::Item>;
fn next(&mut self) -> Option<Vec<It::Item>> {
let first = match self.it.next() {
Some(e) => e,
None => return None
};
let mut result = Vec::with_capacity(self.n);
result.push(first);
Some((&mut self.it).take(self.n-1)
.fold(result, |mut acc, next| { acc.push(next); acc }))
}
}
fn test_chunks() {
let r = &[1, 2, 3, 4, 5, 6, 7];
let c = r.iter().cloned().chunks(3).collect::<Vec<_>>();
assert_eq!(&*c, &[vec![1, 2, 3], vec![4, 5, 6], vec![7]]);
}
///
/// Formats a year.
///
fn format_year(year: i32, months_per_row: usize) -> String {
const COL_SPACING: usize = 1;
// Start by generating all dates for the given year.
dates_in_year(year)
// Group them by month and throw away month number.
.__(by_month).map(|(_, days)| days)
// Group the months into horizontal rows.
.chunks(months_per_row)
// Format each row
.map(|r| r.into_iter()
// By formatting each month
.__(format_months)
// Horizontally pasting each respective month's lines together.
.paste_blocks(COL_SPACING)
.join("\n")
)
// Insert a blank line between each row
.join("\n\n")
}
fn test_format_year() {
const MONTHS_PER_ROW: usize = 3;
macro_rules! assert_eq_cal {
($lhs:expr, $rhs:expr) => {
if $lhs != $rhs {
println!("got:\n```\n{}\n```\n", $lhs.replace(" ", "."));
println!("expected:\n```\n{}\n```", $rhs.replace(" ", "."));
panic!("calendars didn't match!");
}
}
}
assert_eq_cal!(&format_year(1984, MONTHS_PER_ROW), "\
\x20 January February March \n\
\x20 1 2 3 4 5 6 7 1 2 3 4 1 2 3\n\
\x20 8 9 10 11 12 13 14 5 6 7 8 9 10 11 4 5 6 7 8 9 10\n\
\x2015 16 17 18 19 20 21 12 13 14 15 16 17 18 11 12 13 14 15 16 17\n\
\x2022 23 24 25 26 27 28 19 20 21 22 23 24 25 18 19 20 21 22 23 24\n\
\x2029 30 31 26 27 28 29 25 26 27 28 29 30 31\n\
\n\
\x20 April May June \n\
\x20 1 2 3 4 5 6 7 1 2 3 4 5 1 2\n\
\x20 8 9 10 11 12 13 14 6 7 8 9 10 11 12 3 4 5 6 7 8 9\n\
\x2015 16 17 18 19 20 21 13 14 15 16 17 18 19 10 11 12 13 14 15 16\n\
\x2022 23 24 25 26 27 28 20 21 22 23 24 25 26 17 18 19 20 21 22 23\n\
\x2029 30 27 28 29 30 31 24 25 26 27 28 29 30\n\
\n\
\x20 July August September \n\
\x20 1 2 3 4 5 6 7 1 2 3 4 1\n\
\x20 8 9 10 11 12 13 14 5 6 7 8 9 10 11 2 3 4 5 6 7 8\n\
\x2015 16 17 18 19 20 21 12 13 14 15 16 17 18 9 10 11 12 13 14 15\n\
\x2022 23 24 25 26 27 28 19 20 21 22 23 24 25 16 17 18 19 20 21 22\n\
\x2029 30 31 26 27 28 29 30 31 23 24 25 26 27 28 29\n\
\x20 30 \n\
\n\
\x20 October November December \n\
\x20 1 2 3 4 5 6 1 2 3 1\n\
\x20 7 8 9 10 11 12 13 4 5 6 7 8 9 10 2 3 4 5 6 7 8\n\
\x2014 15 16 17 18 19 20 11 12 13 14 15 16 17 9 10 11 12 13 14 15\n\
\x2021 22 23 24 25 26 27 18 19 20 21 22 23 24 16 17 18 19 20 21 22\n\
\x2028 29 30 31 25 26 27 28 29 30 23 24 25 26 27 28 29\n\
\x20 30 31 ");
assert_eq_cal!(&format_year(2015, MONTHS_PER_ROW), "\
\x20 January February March \n\
\x20 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 6 7\n\
\x20 4 5 6 7 8 9 10 8 9 10 11 12 13 14 8 9 10 11 12 13 14\n\
\x2011 12 13 14 15 16 17 15 16 17 18 19 20 21 15 16 17 18 19 20 21\n\
\x2018 19 20 21 22 23 24 22 23 24 25 26 27 28 22 23 24 25 26 27 28\n\
\x2025 26 27 28 29 30 31 29 30 31 \n\
\n\
\x20 April May June \n\
\x20 1 2 3 4 1 2 1 2 3 4 5 6\n\
\x20 5 6 7 8 9 10 11 3 4 5 6 7 8 9 7 8 9 10 11 12 13\n\
\x2012 13 14 15 16 17 18 10 11 12 13 14 15 16 14 15 16 17 18 19 20\n\
\x2019 20 21 22 23 24 25 17 18 19 20 21 22 23 21 22 23 24 25 26 27\n\
\x2026 27 28 29 30 24 25 26 27 28 29 30 28 29 30 \n\
\x20 31 \n\
\n\
\x20 July August September \n\
\x20 1 2 3 4 1 1 2 3 4 5\n\
\x20 5 6 7 8 9 10 11 2 3 4 5 6 7 8 6 7 8 9 10 11 12\n\
\x2012 13 14 15 16 17 18 9 10 11 12 13 14 15 13 14 15 16 17 18 19\n\
\x2019 20 21 22 23 24 25 16 17 18 19 20 21 22 20 21 22 23 24 25 26\n\
\x2026 27 28 29 30 31 23 24 25 26 27 28 29 27 28 29 30 \n\
\x20 30 31 \n\
\n\
\x20 October November December \n\
\x20 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5\n\
\x20 4 5 6 7 8 9 10 8 9 10 11 12 13 14 6 7 8 9 10 11 12\n\
\x2011 12 13 14 15 16 17 15 16 17 18 19 20 21 13 14 15 16 17 18 19\n\
\x2018 19 20 21 22 23 24 22 23 24 25 26 27 28 20 21 22 23 24 25 26\n\
\x2025 26 27 28 29 30 31 29 30 27 28 29 30 31 ");
}
fn main() {
// Run tests.
test_spaces();
test_dates_in_year();
test_group_by();
test_by_month();
test_isoweekdate();
test_by_week();
test_format_weeks();
test_month_title();
test_format_month();
test_paste_blocks();
test_chunks();
test_format_year();
}
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(conservative_impl_trait, question_mark)]
struct State;
type Error = ();
trait Bind<F> {
type Output;
fn bind(self, f: F) -> Self::Output;
}
fn bind<T, U, A, B, F>(mut a: A, mut f: F)
-> impl FnMut(&mut State) -> Result<U, Error>
where F: FnMut(T) -> B,
A: FnMut(&mut State) -> Result<T, Error>,
B: FnMut(&mut State) -> Result<U, Error>
{
move |state | {
let r = a(state)?;
f(r)(state)
}
}
fn atom<T>(x: T) -> impl FnMut(&mut State) -> Result<T, Error> {
let mut x = Some(x);
move |_| x.take().map_or(Err(()), Ok)
}
fn main() {
assert_eq!(bind(atom(5), |x| atom(x > 4))(&mut State), Ok(true));
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册