提交 2df1ceb0 编写于 作者: N Nick Cameron

resolve: factor out resolve imports to its own module

上级 432011d1
......@@ -14,16 +14,17 @@
//! any imports resolved.
use {DefModifiers, PUBLIC, IMPORTABLE};
use ImportDirective;
use ImportDirectiveSubclass::{self, SingleImport, GlobImport};
use ImportResolution;
use resolve_imports::ImportDirective;
use resolve_imports::ImportDirectiveSubclass::{self, SingleImport, GlobImport};
use resolve_imports::ImportResolution;
use Module;
use ModuleKind::*;
use Namespace::{TypeNS, ValueNS};
use NameBindings;
use {names_to_string, module_to_string};
use ParentLink::{self, ModuleParentLink, BlockParentLink};
use Resolver;
use Shadowable;
use resolve_imports::Shadowable;
use TypeNsDef;
use self::DuplicateCheckingMode::*;
......@@ -381,7 +382,7 @@ fn build_reduced_graph_for_item(&mut self, item: &Item, parent: &Rc<Module>) ->
false,
true));
debug!("(build reduced graph for item) found extern `{}`",
self.module_to_string(&*external_module));
module_to_string(&*external_module));
self.check_for_conflicts_between_external_crates(&**parent, name, sp);
parent.external_module_children.borrow_mut()
.insert(name, external_module.clone());
......@@ -836,7 +837,7 @@ fn build_reduced_graph_for_external_crate_def(&mut self,
/// Builds the reduced graph rooted at the given external module.
fn populate_external_module(&mut self, module: &Rc<Module>) {
debug!("(populating external module) attempting to populate {}",
self.module_to_string(&**module));
module_to_string(&**module));
let def_id = match module.def_id.get() {
None => {
......@@ -903,7 +904,7 @@ fn build_import_directive(&mut self,
match subclass {
SingleImport(target, _) => {
debug!("(building import directive) building import directive: {}::{}",
self.names_to_string(&module_.imports.borrow().last().unwrap().module_path),
names_to_string(&module_.imports.borrow().last().unwrap().module_path),
token::get_name(target));
let mut import_resolutions = module_.import_resolutions.borrow_mut();
......
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
......@@ -38,7 +38,6 @@
use self::Namespace::*;
use self::NamespaceResult::*;
use self::NameDefinition::*;
use self::ImportDirectiveSubclass::*;
use self::ResolveResult::*;
use self::FallbackSuggestion::*;
use self::TypeParameters::*;
......@@ -98,6 +97,10 @@
use std::rc::{Rc, Weak};
use std::usize;
use resolve_imports::{Target, ImportDirective, ImportResolution};
use resolve_imports::Shadowable;
// NB: This module needs to be declared first so diagnostics are
// registered before they are used.
pub mod diagnostics;
......@@ -105,6 +108,7 @@
mod check_unused;
mod record_exports;
mod build_reduced_graph;
mod resolve_imports;
#[derive(Copy)]
struct BindingInfo {
......@@ -253,13 +257,6 @@ fn visit_fn(&mut self,
}
}
/// Contains data for specific types of import directives.
#[derive(Copy,Debug)]
enum ImportDirectiveSubclass {
SingleImport(Name /* target */, Name /* source */),
GlobImport
}
type ErrorMessage = Option<(Span, String)>;
enum ResolveResult<T> {
......@@ -366,146 +363,6 @@ fn new(kind: RibKind) -> Rib {
}
}
/// Whether an import can be shadowed by another import.
#[derive(Debug,PartialEq,Clone,Copy)]
enum Shadowable {
Always,
Never
}
/// One import directive.
#[derive(Debug)]
struct ImportDirective {
module_path: Vec<Name>,
subclass: ImportDirectiveSubclass,
span: Span,
id: NodeId,
is_public: bool, // see note in ImportResolution about how to use this
shadowable: Shadowable,
}
impl ImportDirective {
fn new(module_path: Vec<Name> ,
subclass: ImportDirectiveSubclass,
span: Span,
id: NodeId,
is_public: bool,
shadowable: Shadowable)
-> ImportDirective {
ImportDirective {
module_path: module_path,
subclass: subclass,
span: span,
id: id,
is_public: is_public,
shadowable: shadowable,
}
}
}
/// The item that an import resolves to.
#[derive(Clone,Debug)]
struct Target {
target_module: Rc<Module>,
bindings: Rc<NameBindings>,
shadowable: Shadowable,
}
impl Target {
fn new(target_module: Rc<Module>,
bindings: Rc<NameBindings>,
shadowable: Shadowable)
-> Target {
Target {
target_module: target_module,
bindings: bindings,
shadowable: shadowable,
}
}
}
/// An ImportResolution represents a particular `use` directive.
#[derive(Debug)]
struct ImportResolution {
/// Whether this resolution came from a `use` or a `pub use`. Note that this
/// should *not* be used whenever resolution is being performed. Privacy
/// testing occurs during a later phase of compilation.
is_public: bool,
// The number of outstanding references to this name. When this reaches
// zero, outside modules can count on the targets being correct. Before
// then, all bets are off; future imports could override this name.
// Note that this is usually either 0 or 1 - shadowing is forbidden the only
// way outstanding_references is > 1 in a legal program is if the name is
// used in both namespaces.
outstanding_references: uint,
/// The value that this `use` directive names, if there is one.
value_target: Option<Target>,
/// The source node of the `use` directive leading to the value target
/// being non-none
value_id: NodeId,
/// The type that this `use` directive names, if there is one.
type_target: Option<Target>,
/// The source node of the `use` directive leading to the type target
/// being non-none
type_id: NodeId,
}
impl ImportResolution {
fn new(id: NodeId, is_public: bool) -> ImportResolution {
ImportResolution {
type_id: id,
value_id: id,
outstanding_references: 0,
value_target: None,
type_target: None,
is_public: is_public,
}
}
fn target_for_namespace(&self, namespace: Namespace)
-> Option<Target> {
match namespace {
TypeNS => self.type_target.clone(),
ValueNS => self.value_target.clone(),
}
}
fn id(&self, namespace: Namespace) -> NodeId {
match namespace {
TypeNS => self.type_id,
ValueNS => self.value_id,
}
}
fn shadowable(&self, namespace: Namespace) -> Shadowable {
let target = self.target_for_namespace(namespace);
if target.is_none() {
return Shadowable::Always;
}
target.unwrap().shadowable
}
fn set_target_and_id(&mut self,
namespace: Namespace,
target: Option<Target>,
id: NodeId) {
match namespace {
TypeNS => {
self.type_target = target;
self.type_id = id;
}
ValueNS => {
self.value_target = target;
self.value_id = id;
}
}
}
}
/// The link from a module up to its nearest parent node.
#[derive(Clone,Debug)]
enum ParentLink {
......@@ -978,7 +835,6 @@ enum FallbackChecks {
OnlyTraitAndStatics
}
impl<'a, 'tcx> Resolver<'a, 'tcx> {
fn new(session: &'a Session,
ast_map: &'a ast_map::Map<'tcx>,
......@@ -1038,151 +894,6 @@ fn new(session: &'a Session,
}
}
// Import resolution
//
// This is a fixed-point algorithm. We resolve imports until our efforts
// are stymied by an unresolved import; then we bail out of the current
// module and continue. We terminate successfully once no more imports
// remain or unsuccessfully when no forward progress in resolving imports
// is made.
/// Resolves all imports for the crate. This method performs the fixed-
/// point iteration.
fn resolve_imports(&mut self) {
let mut i = 0;
let mut prev_unresolved_imports = 0;
loop {
debug!("(resolving imports) iteration {}, {} imports left",
i, self.unresolved_imports);
let module_root = self.graph_root.get_module();
self.resolve_imports_for_module_subtree(module_root.clone());
if self.unresolved_imports == 0 {
debug!("(resolving imports) success");
break;
}
if self.unresolved_imports == prev_unresolved_imports {
self.report_unresolved_imports(module_root);
break;
}
i += 1;
prev_unresolved_imports = self.unresolved_imports;
}
}
/// Attempts to resolve imports for the given module and all of its
/// submodules.
fn resolve_imports_for_module_subtree(&mut self, module_: Rc<Module>) {
debug!("(resolving imports for module subtree) resolving {}",
self.module_to_string(&*module_));
let orig_module = replace(&mut self.current_module, module_.clone());
self.resolve_imports_for_module(module_.clone());
self.current_module = orig_module;
build_reduced_graph::populate_module_if_necessary(self, &module_);
for (_, child_node) in &*module_.children.borrow() {
match child_node.get_module_if_available() {
None => {
// Nothing to do.
}
Some(child_module) => {
self.resolve_imports_for_module_subtree(child_module);
}
}
}
for (_, child_module) in &*module_.anonymous_children.borrow() {
self.resolve_imports_for_module_subtree(child_module.clone());
}
}
/// Attempts to resolve imports for the given module only.
fn resolve_imports_for_module(&mut self, module: Rc<Module>) {
if module.all_imports_resolved() {
debug!("(resolving imports for module) all imports resolved for \
{}",
self.module_to_string(&*module));
return;
}
let imports = module.imports.borrow();
let import_count = imports.len();
while module.resolved_import_count.get() < import_count {
let import_index = module.resolved_import_count.get();
let import_directive = &(*imports)[import_index];
match self.resolve_import_for_module(module.clone(),
import_directive) {
Failed(err) => {
let (span, help) = match err {
Some((span, msg)) => (span, format!(". {}", msg)),
None => (import_directive.span, String::new())
};
let msg = format!("unresolved import `{}`{}",
self.import_path_to_string(
&import_directive.module_path,
import_directive.subclass),
help);
self.resolve_error(span, &msg[..]);
}
Indeterminate => break, // Bail out. We'll come around next time.
Success(()) => () // Good. Continue.
}
module.resolved_import_count
.set(module.resolved_import_count.get() + 1);
}
}
fn names_to_string(&self, names: &[Name]) -> String {
let mut first = true;
let mut result = String::new();
for name in names {
if first {
first = false
} else {
result.push_str("::")
}
result.push_str(&token::get_name(*name));
};
result
}
fn path_names_to_string(&self, path: &Path, depth: usize) -> String {
let names: Vec<ast::Name> = path.segments[..path.segments.len()-depth]
.iter()
.map(|seg| seg.identifier.name)
.collect();
self.names_to_string(&names[..])
}
fn import_directive_subclass_to_string(&mut self,
subclass: ImportDirectiveSubclass)
-> String {
match subclass {
SingleImport(_, source) => {
token::get_name(source).to_string()
}
GlobImport => "*".to_string()
}
}
fn import_path_to_string(&mut self,
names: &[Name],
subclass: ImportDirectiveSubclass)
-> String {
if names.is_empty() {
self.import_directive_subclass_to_string(subclass)
} else {
(format!("{}::{}",
self.names_to_string(names),
self.import_directive_subclass_to_string(
subclass))).to_string()
}
}
#[inline]
fn record_import_use(&mut self, import_id: NodeId, name: Name) {
if !self.make_glob_map {
......@@ -1206,102 +917,6 @@ fn get_trait_name(&self, did: DefId) -> Name {
}
}
/// Attempts to resolve the given import. The return value indicates
/// failure if we're certain the name does not exist, indeterminate if we
/// don't know whether the name exists at the moment due to other
/// currently-unresolved imports, or success if we know the name exists.
/// If successful, the resolved bindings are written into the module.
fn resolve_import_for_module(&mut self,
module_: Rc<Module>,
import_directive: &ImportDirective)
-> ResolveResult<()> {
let mut resolution_result = Failed(None);
let module_path = &import_directive.module_path;
debug!("(resolving import for module) resolving import `{}::...` in `{}`",
self.names_to_string(&module_path[..]),
self.module_to_string(&*module_));
// First, resolve the module path for the directive, if necessary.
let container = if module_path.len() == 0 {
// Use the crate root.
Some((self.graph_root.get_module(), LastMod(AllPublic)))
} else {
match self.resolve_module_path(module_.clone(),
&module_path[..],
DontUseLexicalScope,
import_directive.span,
ImportSearch) {
Failed(err) => {
resolution_result = Failed(err);
None
},
Indeterminate => {
resolution_result = Indeterminate;
None
}
Success(container) => Some(container),
}
};
match container {
None => {}
Some((containing_module, lp)) => {
// We found the module that the target is contained
// within. Attempt to resolve the import within it.
match import_directive.subclass {
SingleImport(target, source) => {
resolution_result =
self.resolve_single_import(&module_,
containing_module,
target,
source,
import_directive,
lp);
}
GlobImport => {
resolution_result =
self.resolve_glob_import(&module_,
containing_module,
import_directive,
lp);
}
}
}
}
// Decrement the count of unresolved imports.
match resolution_result {
Success(()) => {
assert!(self.unresolved_imports >= 1);
self.unresolved_imports -= 1;
}
_ => {
// Nothing to do here; just return the error.
}
}
// Decrement the count of unresolved globs if necessary. But only if
// the resolution result is indeterminate -- otherwise we'll stop
// processing imports here. (See the loop in
// resolve_imports_for_module).
if !resolution_result.indeterminate() {
match import_directive.subclass {
GlobImport => {
assert!(module_.glob_count.get() >= 1);
module_.glob_count.set(module_.glob_count.get() - 1);
}
SingleImport(..) => {
// Ignore.
}
}
}
return resolution_result;
}
fn create_name_bindings_from_module(module: Rc<Module>) -> NameBindings {
NameBindings {
type_def: RefCell::new(Some(TypeNsDef {
......@@ -1314,612 +929,6 @@ fn create_name_bindings_from_module(module: Rc<Module>) -> NameBindings {
}
}
fn resolve_single_import(&mut self,
module_: &Module,
target_module: Rc<Module>,
target: Name,
source: Name,
directive: &ImportDirective,
lp: LastPrivate)
-> ResolveResult<()> {
debug!("(resolving single import) resolving `{}` = `{}::{}` from \
`{}` id {}, last private {:?}",
token::get_name(target),
self.module_to_string(&*target_module),
token::get_name(source),
self.module_to_string(module_),
directive.id,
lp);
let lp = match lp {
LastMod(lp) => lp,
LastImport {..} => {
self.session
.span_bug(directive.span,
"not expecting Import here, must be LastMod")
}
};
// We need to resolve both namespaces for this to succeed.
//
let mut value_result = UnknownResult;
let mut type_result = UnknownResult;
// Search for direct children of the containing module.
build_reduced_graph::populate_module_if_necessary(self, &target_module);
match target_module.children.borrow().get(&source) {
None => {
// Continue.
}
Some(ref child_name_bindings) => {
// pub_err makes sure we don't give the same error twice.
let mut pub_err = false;
if child_name_bindings.defined_in_namespace(ValueNS) {
debug!("(resolving single import) found value binding");
value_result = BoundResult(target_module.clone(),
(*child_name_bindings).clone());
if directive.is_public && !child_name_bindings.is_public(ValueNS) {
let msg = format!("`{}` is private", token::get_name(source));
span_err!(self.session, directive.span, E0364, "{}", &msg);
pub_err = true;
}
}
if child_name_bindings.defined_in_namespace(TypeNS) {
debug!("(resolving single import) found type binding");
type_result = BoundResult(target_module.clone(),
(*child_name_bindings).clone());
if !pub_err && directive.is_public && !child_name_bindings.is_public(TypeNS) {
let msg = format!("`{}` is private", token::get_name(source));
span_err!(self.session, directive.span, E0365, "{}", &msg);
}
}
}
}
// Unless we managed to find a result in both namespaces (unlikely),
// search imports as well.
let mut value_used_reexport = false;
let mut type_used_reexport = false;
match (value_result.clone(), type_result.clone()) {
(BoundResult(..), BoundResult(..)) => {} // Continue.
_ => {
// If there is an unresolved glob at this point in the
// containing module, bail out. We don't know enough to be
// able to resolve this import.
if target_module.glob_count.get() > 0 {
debug!("(resolving single import) unresolved glob; \
bailing out");
return Indeterminate;
}
// Now search the exported imports within the containing module.
match target_module.import_resolutions.borrow().get(&source) {
None => {
debug!("(resolving single import) no import");
// The containing module definitely doesn't have an
// exported import with the name in question. We can
// therefore accurately report that the names are
// unbound.
if value_result.is_unknown() {
value_result = UnboundResult;
}
if type_result.is_unknown() {
type_result = UnboundResult;
}
}
Some(import_resolution)
if import_resolution.outstanding_references == 0 => {
fn get_binding(this: &mut Resolver,
import_resolution: &ImportResolution,
namespace: Namespace,
source: &Name)
-> NamespaceResult {
// Import resolutions must be declared with "pub"
// in order to be exported.
if !import_resolution.is_public {
return UnboundResult;
}
match import_resolution.target_for_namespace(namespace) {
None => {
return UnboundResult;
}
Some(Target {
target_module,
bindings,
shadowable: _
}) => {
debug!("(resolving single import) found \
import in ns {:?}", namespace);
let id = import_resolution.id(namespace);
// track used imports and extern crates as well
this.used_imports.insert((id, namespace));
this.record_import_use(id, *source);
match target_module.def_id.get() {
Some(DefId{krate: kid, ..}) => {
this.used_crates.insert(kid);
},
_ => {}
}
return BoundResult(target_module, bindings);
}
}
}
// The name is an import which has been fully
// resolved. We can, therefore, just follow it.
if value_result.is_unknown() {
value_result = get_binding(self,
import_resolution,
ValueNS,
&source);
value_used_reexport = import_resolution.is_public;
}
if type_result.is_unknown() {
type_result = get_binding(self,
import_resolution,
TypeNS,
&source);
type_used_reexport = import_resolution.is_public;
}
}
Some(_) => {
// If target_module is the same module whose import we are resolving
// and there it has an unresolved import with the same name as `source`,
// then the user is actually trying to import an item that is declared
// in the same scope
//
// e.g
// use self::submodule;
// pub mod submodule;
//
// In this case we continue as if we resolved the import and let the
// check_for_conflicts_between_imports_and_items call below handle
// the conflict
match (module_.def_id.get(), target_module.def_id.get()) {
(Some(id1), Some(id2)) if id1 == id2 => {
if value_result.is_unknown() {
value_result = UnboundResult;
}
if type_result.is_unknown() {
type_result = UnboundResult;
}
}
_ => {
// The import is unresolved. Bail out.
debug!("(resolving single import) unresolved import; \
bailing out");
return Indeterminate;
}
}
}
}
}
}
let mut value_used_public = false;
let mut type_used_public = false;
// If we didn't find a result in the type namespace, search the
// external modules.
match type_result {
BoundResult(..) => {}
_ => {
match target_module.external_module_children.borrow_mut().get(&source).cloned() {
None => {} // Continue.
Some(module) => {
debug!("(resolving single import) found external module");
// track the module as used.
match module.def_id.get() {
Some(DefId{krate: kid, ..}) => { self.used_crates.insert(kid); },
_ => {}
}
let name_bindings =
Rc::new(Resolver::create_name_bindings_from_module(module));
type_result = BoundResult(target_module.clone(), name_bindings);
type_used_public = true;
}
}
}
}
// We've successfully resolved the import. Write the results in.
let mut import_resolutions = module_.import_resolutions.borrow_mut();
let import_resolution = &mut (*import_resolutions)[target];
{
let mut check_and_write_import = |namespace, result: &_, used_public: &mut bool| {
let namespace_name = match namespace {
TypeNS => "type",
ValueNS => "value",
};
match *result {
BoundResult(ref target_module, ref name_bindings) => {
debug!("(resolving single import) found {:?} target: {:?}",
namespace_name,
name_bindings.def_for_namespace(namespace));
self.check_for_conflicting_import(
&import_resolution.target_for_namespace(namespace),
directive.span,
target,
namespace);
self.check_that_import_is_importable(
&**name_bindings,
directive.span,
target,
namespace);
let target = Some(Target::new(target_module.clone(),
name_bindings.clone(),
directive.shadowable));
import_resolution.set_target_and_id(namespace, target, directive.id);
import_resolution.is_public = directive.is_public;
*used_public = name_bindings.defined_in_public_namespace(namespace);
}
UnboundResult => { /* Continue. */ }
UnknownResult => {
panic!("{:?} result should be known at this point", namespace_name);
}
}
};
check_and_write_import(ValueNS, &value_result, &mut value_used_public);
check_and_write_import(TypeNS, &type_result, &mut type_used_public);
}
self.check_for_conflicts_between_imports_and_items(
module_,
import_resolution,
directive.span,
target);
if value_result.is_unbound() && type_result.is_unbound() {
let msg = format!("There is no `{}` in `{}`",
token::get_name(source),
self.module_to_string(&target_module));
return Failed(Some((directive.span, msg)));
}
let value_used_public = value_used_reexport || value_used_public;
let type_used_public = type_used_reexport || type_used_public;
assert!(import_resolution.outstanding_references >= 1);
import_resolution.outstanding_references -= 1;
// Record what this import resolves to for later uses in documentation,
// this may resolve to either a value or a type, but for documentation
// purposes it's good enough to just favor one over the other.
let value_def_and_priv = import_resolution.value_target.as_ref().map(|target| {
let def = target.bindings.def_for_namespace(ValueNS).unwrap();
(def, if value_used_public { lp } else { DependsOn(def.def_id()) })
});
let type_def_and_priv = import_resolution.type_target.as_ref().map(|target| {
let def = target.bindings.def_for_namespace(TypeNS).unwrap();
(def, if type_used_public { lp } else { DependsOn(def.def_id()) })
});
let import_lp = LastImport {
value_priv: value_def_and_priv.map(|(_, p)| p),
value_used: Used,
type_priv: type_def_and_priv.map(|(_, p)| p),
type_used: Used
};
if let Some((def, _)) = value_def_and_priv {
self.def_map.borrow_mut().insert(directive.id, PathResolution {
base_def: def,
last_private: import_lp,
depth: 0
});
}
if let Some((def, _)) = type_def_and_priv {
self.def_map.borrow_mut().insert(directive.id, PathResolution {
base_def: def,
last_private: import_lp,
depth: 0
});
}
debug!("(resolving single import) successfully resolved import");
return Success(());
}
// Resolves a glob import. Note that this function cannot fail; it either
// succeeds or bails out (as importing * from an empty module or a module
// that exports nothing is valid). target_module is the module we are
// actually importing, i.e., `foo` in `use foo::*`.
fn resolve_glob_import(&mut self,
module_: &Module,
target_module: Rc<Module>,
import_directive: &ImportDirective,
lp: LastPrivate)
-> ResolveResult<()> {
let id = import_directive.id;
let is_public = import_directive.is_public;
// This function works in a highly imperative manner; it eagerly adds
// everything it can to the list of import resolutions of the module
// node.
debug!("(resolving glob import) resolving glob import {}", id);
// We must bail out if the node has unresolved imports of any kind
// (including globs).
if !(*target_module).all_imports_resolved() {
debug!("(resolving glob import) target module has unresolved \
imports; bailing out");
return Indeterminate;
}
assert_eq!(target_module.glob_count.get(), 0);
// Add all resolved imports from the containing module.
let import_resolutions = target_module.import_resolutions.borrow();
for (ident, target_import_resolution) in &*import_resolutions {
debug!("(resolving glob import) writing module resolution \
{} into `{}`",
token::get_name(*ident),
self.module_to_string(module_));
if !target_import_resolution.is_public {
debug!("(resolving glob import) nevermind, just kidding");
continue
}
// Here we merge two import resolutions.
let mut import_resolutions = module_.import_resolutions.borrow_mut();
match import_resolutions.get_mut(ident) {
Some(dest_import_resolution) => {
// Merge the two import resolutions at a finer-grained
// level.
match target_import_resolution.value_target {
None => {
// Continue.
}
Some(ref value_target) => {
self.check_for_conflicting_import(&dest_import_resolution.value_target,
import_directive.span,
*ident,
ValueNS);
dest_import_resolution.value_target = Some(value_target.clone());
}
}
match target_import_resolution.type_target {
None => {
// Continue.
}
Some(ref type_target) => {
self.check_for_conflicting_import(&dest_import_resolution.type_target,
import_directive.span,
*ident,
TypeNS);
dest_import_resolution.type_target = Some(type_target.clone());
}
}
dest_import_resolution.is_public = is_public;
continue;
}
None => {}
}
// Simple: just copy the old import resolution.
let mut new_import_resolution = ImportResolution::new(id, is_public);
new_import_resolution.value_target =
target_import_resolution.value_target.clone();
new_import_resolution.type_target =
target_import_resolution.type_target.clone();
import_resolutions.insert(*ident, new_import_resolution);
}
// Add all children from the containing module.
build_reduced_graph::populate_module_if_necessary(self, &target_module);
for (&name, name_bindings) in &*target_module.children.borrow() {
self.merge_import_resolution(module_,
target_module.clone(),
import_directive,
name,
name_bindings.clone());
}
// Add external module children from the containing module.
for (&name, module) in &*target_module.external_module_children.borrow() {
let name_bindings =
Rc::new(Resolver::create_name_bindings_from_module(module.clone()));
self.merge_import_resolution(module_,
target_module.clone(),
import_directive,
name,
name_bindings);
}
// Record the destination of this import
if let Some(did) = target_module.def_id.get() {
self.def_map.borrow_mut().insert(id, PathResolution {
base_def: DefMod(did),
last_private: lp,
depth: 0
});
}
debug!("(resolving glob import) successfully resolved import");
return Success(());
}
fn merge_import_resolution(&mut self,
module_: &Module,
containing_module: Rc<Module>,
import_directive: &ImportDirective,
name: Name,
name_bindings: Rc<NameBindings>) {
let id = import_directive.id;
let is_public = import_directive.is_public;
let mut import_resolutions = module_.import_resolutions.borrow_mut();
let dest_import_resolution = import_resolutions.entry(name).get().unwrap_or_else(
|vacant_entry| {
// Create a new import resolution from this child.
vacant_entry.insert(ImportResolution::new(id, is_public))
});
debug!("(resolving glob import) writing resolution `{}` in `{}` \
to `{}`",
&token::get_name(name),
self.module_to_string(&*containing_module),
self.module_to_string(module_));
// Merge the child item into the import resolution.
{
let mut merge_child_item = |namespace| {
if name_bindings.defined_in_namespace_with(namespace, IMPORTABLE | PUBLIC) {
let namespace_name = match namespace {
TypeNS => "type",
ValueNS => "value",
};
debug!("(resolving glob import) ... for {} target", namespace_name);
if dest_import_resolution.shadowable(namespace) == Shadowable::Never {
let msg = format!("a {} named `{}` has already been imported \
in this module",
namespace_name,
&token::get_name(name));
span_err!(self.session, import_directive.span, E0251, "{}", msg);
} else {
let target = Target::new(containing_module.clone(),
name_bindings.clone(),
import_directive.shadowable);
dest_import_resolution.set_target_and_id(namespace,
Some(target),
id);
}
}
};
merge_child_item(ValueNS);
merge_child_item(TypeNS);
}
dest_import_resolution.is_public = is_public;
self.check_for_conflicts_between_imports_and_items(
module_,
dest_import_resolution,
import_directive.span,
name);
}
/// Checks that imported names and items don't have the same name.
fn check_for_conflicting_import(&mut self,
target: &Option<Target>,
import_span: Span,
name: Name,
namespace: Namespace) {
debug!("check_for_conflicting_import: {}; target exists: {}",
&token::get_name(name),
target.is_some());
match *target {
Some(ref target) if target.shadowable != Shadowable::Always => {
let msg = format!("a {} named `{}` has already been imported \
in this module",
match namespace {
TypeNS => "type",
ValueNS => "value",
},
&token::get_name(name));
span_err!(self.session, import_span, E0252, "{}", &msg[..]);
}
Some(_) | None => {}
}
}
/// Checks that an import is actually importable
fn check_that_import_is_importable(&mut self,
name_bindings: &NameBindings,
import_span: Span,
name: Name,
namespace: Namespace) {
if !name_bindings.defined_in_namespace_with(namespace, IMPORTABLE) {
let msg = format!("`{}` is not directly importable",
token::get_name(name));
span_err!(self.session, import_span, E0253, "{}", &msg[..]);
}
}
/// Checks that imported names and items don't have the same name.
fn check_for_conflicts_between_imports_and_items(&mut self,
module: &Module,
import_resolution:
&ImportResolution,
import_span: Span,
name: Name) {
// First, check for conflicts between imports and `extern crate`s.
if module.external_module_children
.borrow()
.contains_key(&name) {
match import_resolution.type_target {
Some(ref target) if target.shadowable != Shadowable::Always => {
let msg = format!("import `{0}` conflicts with imported \
crate in this module \
(maybe you meant `use {0}::*`?)",
&token::get_name(name));
span_err!(self.session, import_span, E0254, "{}", &msg[..]);
}
Some(_) | None => {}
}
}
// Check for item conflicts.
let children = module.children.borrow();
let name_bindings = match children.get(&name) {
None => {
// There can't be any conflicts.
return
}
Some(ref name_bindings) => (*name_bindings).clone(),
};
match import_resolution.value_target {
Some(ref target) if target.shadowable != Shadowable::Always => {
if let Some(ref value) = *name_bindings.value_def.borrow() {
span_err!(self.session, import_span, E0255,
"import `{}` conflicts with value in this module",
&token::get_name(name));
if let Some(span) = value.value_span {
self.session.span_note(span, "conflicting value here");
}
}
}
Some(_) | None => {}
}
match import_resolution.type_target {
Some(ref target) if target.shadowable != Shadowable::Always => {
if let Some(ref ty) = *name_bindings.type_def.borrow() {
let (what, note) = if ty.module_def.is_some() {
("existing submodule", "note conflicting module here")
} else {
("type in this module", "note conflicting type here")
};
span_err!(self.session, import_span, E0256,
"import `{}` conflicts with {}",
&token::get_name(name), what);
if let Some(span) = ty.type_span {
self.session.span_note(span, note);
}
}
}
Some(_) | None => {}
}
}
/// Checks that the names of external crates don't collide with other
/// external crates.
fn check_for_conflicts_between_external_crates(&self,
......@@ -1987,7 +996,7 @@ fn search_parent_externals(needle: Name, module: &Rc<Module>)
false) {
Failed(None) => {
let segment_name = token::get_name(name);
let module_name = self.module_to_string(&*search_module);
let module_name = module_to_string(&*search_module);
let mut span = span;
let msg = if "???" == &module_name[..] {
span.hi = span.lo + Pos::from_usize(segment_name.len());
......@@ -1995,10 +1004,10 @@ fn search_parent_externals(needle: Name, module: &Rc<Module>)
match search_parent_externals(name,
&self.current_module) {
Some(module) => {
let path_str = self.names_to_string(module_path);
let target_mod_str = self.module_to_string(&*module);
let path_str = names_to_string(module_path);
let target_mod_str = module_to_string(&*module);
let current_mod_str =
self.module_to_string(&*self.current_module);
module_to_string(&*self.current_module);
let prefix = if target_mod_str == current_mod_str {
"self::".to_string()
......@@ -2089,8 +1098,8 @@ fn resolve_module_path(&mut self,
assert!(module_path_len > 0);
debug!("(resolving module path for import) processing `{}` rooted at `{}`",
self.names_to_string(module_path),
self.module_to_string(&*module_));
names_to_string(module_path),
module_to_string(&*module_));
// Resolve the module prefix, if any.
let module_prefix_result = self.resolve_module_prefix(module_.clone(),
......@@ -2101,7 +1110,7 @@ fn resolve_module_path(&mut self,
let last_private;
match module_prefix_result {
Failed(None) => {
let mpath = self.names_to_string(module_path);
let mpath = names_to_string(module_path);
let mpath = &mpath[..];
match mpath.rfind(':') {
Some(idx) => {
......@@ -2184,7 +1193,7 @@ fn resolve_item_in_lexical_scope(&mut self,
namespace {:?} in `{}`",
token::get_name(name),
namespace,
self.module_to_string(&*module_));
module_to_string(&*module_));
// The current module node is handled specially. First, check for
// its immediate children.
......@@ -2421,7 +1430,7 @@ fn resolve_module_prefix(&mut self,
break
}
debug!("(resolving module prefix) resolving `super` at {}",
self.module_to_string(&*containing_module));
module_to_string(&*containing_module));
match self.get_nearest_normal_module_parent(containing_module) {
None => return Failed(None),
Some(new_module) => {
......@@ -2432,7 +1441,7 @@ fn resolve_module_prefix(&mut self,
}
debug!("(resolving module prefix) finished resolving prefix at {}",
self.module_to_string(&*containing_module));
module_to_string(&*containing_module));
return Success(PrefixFound(containing_module, i));
}
......@@ -2452,7 +1461,7 @@ fn resolve_name_in_module(&mut self,
-> ResolveResult<(Target, bool)> {
debug!("(resolving name in module) resolving `{}` in `{}`",
&token::get_name(name),
self.module_to_string(&*module_));
module_to_string(&*module_));
// First, check the direct children of the module.
build_reduced_graph::populate_module_if_necessary(self, &module_);
......@@ -2606,7 +1615,7 @@ fn with_scope<F>(&mut self, name: Option<Name>, f: F) where
None => {
debug!("!!! (with scope) didn't find `{}` in `{}`",
token::get_name(name),
self.module_to_string(&*orig_module));
module_to_string(&*orig_module));
}
Some(name_bindings) => {
match (*name_bindings).get_module_if_available() {
......@@ -2614,7 +1623,7 @@ fn with_scope<F>(&mut self, name: Option<Name>, f: F) where
debug!("!!! (with scope) didn't find module \
for `{}` in `{}`",
token::get_name(name),
self.module_to_string(&*orig_module));
module_to_string(&*orig_module));
}
Some(module_) => {
self.current_module = module_;
......@@ -2993,7 +2002,7 @@ fn resolve_trait_reference(&mut self,
} else {
self.resolve_error(trait_path.span,
&format!("`{}` is not a trait",
self.path_names_to_string(trait_path, path_depth)));
path_names_to_string(trait_path, path_depth)));
// If it's a typedef, give a note
if let DefTy(..) = path_res.base_def {
......@@ -3004,7 +2013,7 @@ fn resolve_trait_reference(&mut self,
}
} else {
let msg = format!("use of undeclared trait name `{}`",
self.path_names_to_string(trait_path, path_depth));
path_names_to_string(trait_path, path_depth));
self.resolve_error(trait_path.span, &msg);
Err(())
}
......@@ -3120,7 +2129,7 @@ fn check_trait_item(&self, name: Name, span: Span) {
// If there is a TraitRef in scope for an impl, then the method must be in the trait.
if let Some((did, ref trait_ref)) = self.current_trait_ref {
if !self.trait_item_map.contains_key(&(name, did)) {
let path_str = self.path_names_to_string(&trait_ref.path, 0);
let path_str = path_names_to_string(&trait_ref.path, 0);
self.resolve_error(span,
&format!("method `{}` is not a member of trait `{}`",
token::get_name(name),
......@@ -3302,7 +2311,7 @@ fn resolve_type(&mut self, ty: &Ty) {
// Write the result into the def map.
debug!("(resolving type) writing resolution for `{}` \
(id {}) = {:?}",
self.path_names_to_string(path, 0),
path_names_to_string(path, 0),
ty.id, def);
self.record_def(ty.id, def);
}
......@@ -3317,7 +2326,7 @@ fn resolve_type(&mut self, ty: &Ty) {
};
let msg = format!("use of undeclared {} `{}`", kind,
self.path_names_to_string(path, 0));
path_names_to_string(path, 0));
self.resolve_error(ty.span, &msg[..]);
}
}
......@@ -3488,7 +2497,7 @@ struct or enum variant",
debug!("(resolving pattern) didn't find struct \
def: {:?}", result);
let msg = format!("`{}` does not name a structure",
self.path_names_to_string(path, 0));
path_names_to_string(path, 0));
self.resolve_error(path.span, &msg[..]);
}
}
......@@ -3741,7 +2750,7 @@ fn resolve_module_relative_path(&mut self,
Some((span, msg)) => (span, msg),
None => {
let msg = format!("Use of undeclared type or module `{}`",
self.names_to_string(&module_path));
names_to_string(&module_path));
(span, msg)
}
};
......@@ -3801,7 +2810,7 @@ fn resolve_crate_relative_path(&mut self,
Some((span, msg)) => (span, msg),
None => {
let msg = format!("Use of undeclared module `::{}`",
self.names_to_string(&module_path[..]));
names_to_string(&module_path[..]));
(span, msg)
}
};
......@@ -4021,7 +3030,7 @@ fn is_static_method(this: &Resolver, did: DefId) -> bool {
if let Some(binding) = module.children.borrow().get(&name) {
if let Some(DefMethod(did, _)) = binding.def_for_namespace(ValueNS) {
if is_static_method(self, did) {
return StaticMethod(self.path_names_to_string(&path, 0))
return StaticMethod(path_names_to_string(&path, 0))
}
if self.current_trait_ref.is_some() {
return TraitItem;
......@@ -4036,7 +3045,7 @@ fn is_static_method(this: &Resolver, did: DefId) -> bool {
if let Some((trait_did, ref trait_ref)) = self.current_trait_ref {
if let Some(&did) = self.trait_item_map.get(&(name, trait_did)) {
if is_static_method(self, did) {
return TraitMethod(self.path_names_to_string(&trait_ref.path, 0));
return TraitMethod(path_names_to_string(&trait_ref.path, 0));
} else {
return TraitItem;
}
......@@ -4128,7 +3137,7 @@ fn resolve_expr(&mut self, expr: &Expr) {
if let Some(path_res) = resolution {
// Check if struct variant
if let DefVariant(_, _, true) = path_res.base_def {
let path_name = self.path_names_to_string(path, 0);
let path_name = path_names_to_string(path, 0);
self.resolve_error(expr.span,
&format!("`{}` is a struct variant name, but \
this expression \
......@@ -4146,7 +3155,7 @@ fn resolve_expr(&mut self, expr: &Expr) {
} else {
// Write the result into the def map.
debug!("(resolving expr) resolved `{}`",
self.path_names_to_string(path, 0));
path_names_to_string(path, 0));
// Partial resolutions will need the set of traits in scope,
// so they can be completed during typeck.
......@@ -4163,7 +3172,7 @@ fn resolve_expr(&mut self, expr: &Expr) {
// (The pattern matching def_tys where the id is in self.structs
// matches on regular structs while excluding tuple- and enum-like
// structs, which wouldn't result in this error.)
let path_name = self.path_names_to_string(path, 0);
let path_name = path_names_to_string(path, 0);
let type_res = self.with_no_errors(|this| {
this.resolve_path(expr.id, path, 0, TypeNS, false)
});
......@@ -4250,7 +3259,7 @@ fn resolve_expr(&mut self, expr: &Expr) {
None => {
debug!("(resolving expression) didn't find struct def",);
let msg = format!("`{}` does not name a structure",
self.path_names_to_string(path, 0));
path_names_to_string(path, 0));
self.resolve_error(path.span, &msg[..]);
}
}
......@@ -4440,36 +3449,9 @@ fn enforce_default_binding_mode(&mut self,
// hit.
//
/// A somewhat inefficient routine to obtain the name of a module.
fn module_to_string(&self, module: &Module) -> String {
let mut names = Vec::new();
fn collect_mod(names: &mut Vec<ast::Name>, module: &Module) {
match module.parent_link {
NoParentLink => {}
ModuleParentLink(ref module, name) => {
names.push(name);
collect_mod(names, &*module.upgrade().unwrap());
}
BlockParentLink(ref module, _) => {
// danger, shouldn't be ident?
names.push(special_idents::opaque.name);
collect_mod(names, &*module.upgrade().unwrap());
}
}
}
collect_mod(&mut names, module);
if names.len() == 0 {
return "???".to_string();
}
self.names_to_string(&names.into_iter().rev()
.collect::<Vec<ast::Name>>())
}
#[allow(dead_code)] // useful for debugging
fn dump_module(&mut self, module_: Rc<Module>) {
debug!("Dump of module `{}`:", self.module_to_string(&*module_));
debug!("Dump of module `{}`:", module_to_string(&*module_));
debug!("Children:");
build_reduced_graph::populate_module_if_necessary(self, &module_);
......@@ -4503,6 +3485,56 @@ fn dump_module(&mut self, module_: Rc<Module>) {
}
}
fn names_to_string(names: &[Name]) -> String {
let mut first = true;
let mut result = String::new();
for name in names {
if first {
first = false
} else {
result.push_str("::")
}
result.push_str(&token::get_name(*name));
};
result
}
fn path_names_to_string(path: &Path, depth: usize) -> String {
let names: Vec<ast::Name> = path.segments[..path.segments.len()-depth]
.iter()
.map(|seg| seg.identifier.name)
.collect();
names_to_string(&names[..])
}
/// A somewhat inefficient routine to obtain the name of a module.
fn module_to_string(module: &Module) -> String {
let mut names = Vec::new();
fn collect_mod(names: &mut Vec<ast::Name>, module: &Module) {
match module.parent_link {
NoParentLink => {}
ModuleParentLink(ref module, name) => {
names.push(name);
collect_mod(names, &*module.upgrade().unwrap());
}
BlockParentLink(ref module, _) => {
// danger, shouldn't be ident?
names.push(special_idents::opaque.name);
collect_mod(names, &*module.upgrade().unwrap());
}
}
}
collect_mod(&mut names, module);
if names.len() == 0 {
return "???".to_string();
}
names_to_string(&names.into_iter().rev().collect::<Vec<ast::Name>>())
}
pub struct CrateMap {
pub def_map: DefMap,
pub freevars: RefCell<FreevarMap>,
......@@ -4530,7 +3562,7 @@ pub fn resolve_crate<'a, 'tcx>(session: &'a Session,
build_reduced_graph::build_reduced_graph(&mut resolver, krate);
session.abort_if_errors();
resolver.resolve_imports();
resolve_imports::resolve_imports(&mut resolver);
session.abort_if_errors();
record_exports::record(&mut resolver);
......
......@@ -22,6 +22,7 @@
use Namespace::{self, TypeNS, ValueNS};
use build_reduced_graph;
use module_to_string;
use rustc::middle::def::Export;
use syntax::ast;
......@@ -60,19 +61,19 @@ fn record_exports_for_module_subtree(&mut self,
// OK. Continue.
debug!("(recording exports for module subtree) recording \
exports for local module `{}`",
self.module_to_string(&*module_));
module_to_string(&*module_));
}
None => {
// Record exports for the root module.
debug!("(recording exports for module subtree) recording \
exports for root module `{}`",
self.module_to_string(&*module_));
module_to_string(&*module_));
}
Some(_) => {
// Bail out.
debug!("(recording exports for module subtree) not recording \
exports for `{}`",
self.module_to_string(&*module_));
module_to_string(&*module_));
return;
}
}
......
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use self::ImportDirectiveSubclass::*;
use {PUBLIC, IMPORTABLE};
use Module;
use Namespace::{self, TypeNS, ValueNS};
use NameBindings;
use NamespaceResult::{BoundResult, UnboundResult, UnknownResult};
use NamespaceResult;
use NameSearchType;
use ResolveResult;
use Resolver;
use UseLexicalScopeFlag;
use {names_to_string, module_to_string};
use build_reduced_graph;
use rustc::middle::def::*;
use rustc::middle::privacy::*;
use syntax::ast::{DefId, NodeId, Name};
use syntax::attr::AttrMetaMethods;
use syntax::parse::token;
use syntax::codemap::Span;
use std::mem::replace;
use std::rc::Rc;
/// Contains data for specific types of import directives.
#[derive(Copy,Debug)]
pub enum ImportDirectiveSubclass {
SingleImport(Name /* target */, Name /* source */),
GlobImport
}
/// Whether an import can be shadowed by another import.
#[derive(Debug,PartialEq,Clone,Copy)]
pub enum Shadowable {
Always,
Never
}
/// One import directive.
#[derive(Debug)]
pub struct ImportDirective {
pub module_path: Vec<Name>,
pub subclass: ImportDirectiveSubclass,
pub span: Span,
pub id: NodeId,
pub is_public: bool, // see note in ImportResolution about how to use this
pub shadowable: Shadowable,
}
impl ImportDirective {
pub fn new(module_path: Vec<Name> ,
subclass: ImportDirectiveSubclass,
span: Span,
id: NodeId,
is_public: bool,
shadowable: Shadowable)
-> ImportDirective {
ImportDirective {
module_path: module_path,
subclass: subclass,
span: span,
id: id,
is_public: is_public,
shadowable: shadowable,
}
}
}
/// The item that an import resolves to.
#[derive(Clone,Debug)]
pub struct Target {
pub target_module: Rc<Module>,
pub bindings: Rc<NameBindings>,
pub shadowable: Shadowable,
}
impl Target {
pub fn new(target_module: Rc<Module>,
bindings: Rc<NameBindings>,
shadowable: Shadowable)
-> Target {
Target {
target_module: target_module,
bindings: bindings,
shadowable: shadowable,
}
}
}
/// An ImportResolution represents a particular `use` directive.
#[derive(Debug)]
pub struct ImportResolution {
/// Whether this resolution came from a `use` or a `pub use`. Note that this
/// should *not* be used whenever resolution is being performed. Privacy
/// testing occurs during a later phase of compilation.
pub is_public: bool,
// The number of outstanding references to this name. When this reaches
// zero, outside modules can count on the targets being correct. Before
// then, all bets are off; future imports could override this name.
// Note that this is usually either 0 or 1 - shadowing is forbidden the only
// way outstanding_references is > 1 in a legal program is if the name is
// used in both namespaces.
pub outstanding_references: uint,
/// The value that this `use` directive names, if there is one.
pub value_target: Option<Target>,
/// The source node of the `use` directive leading to the value target
/// being non-none
pub value_id: NodeId,
/// The type that this `use` directive names, if there is one.
pub type_target: Option<Target>,
/// The source node of the `use` directive leading to the type target
/// being non-none
pub type_id: NodeId,
}
impl ImportResolution {
pub fn new(id: NodeId, is_public: bool) -> ImportResolution {
ImportResolution {
type_id: id,
value_id: id,
outstanding_references: 0,
value_target: None,
type_target: None,
is_public: is_public,
}
}
pub fn target_for_namespace(&self, namespace: Namespace)
-> Option<Target> {
match namespace {
TypeNS => self.type_target.clone(),
ValueNS => self.value_target.clone(),
}
}
pub fn id(&self, namespace: Namespace) -> NodeId {
match namespace {
TypeNS => self.type_id,
ValueNS => self.value_id,
}
}
pub fn shadowable(&self, namespace: Namespace) -> Shadowable {
let target = self.target_for_namespace(namespace);
if target.is_none() {
return Shadowable::Always;
}
target.unwrap().shadowable
}
pub fn set_target_and_id(&mut self,
namespace: Namespace,
target: Option<Target>,
id: NodeId) {
match namespace {
TypeNS => {
self.type_target = target;
self.type_id = id;
}
ValueNS => {
self.value_target = target;
self.value_id = id;
}
}
}
}
struct ImportResolver<'a, 'b:'a, 'tcx:'b> {
resolver: &'a mut Resolver<'b, 'tcx>
}
impl<'a, 'b:'a, 'tcx:'b> ImportResolver<'a, 'b, 'tcx> {
// Import resolution
//
// This is a fixed-point algorithm. We resolve imports until our efforts
// are stymied by an unresolved import; then we bail out of the current
// module and continue. We terminate successfully once no more imports
// remain or unsuccessfully when no forward progress in resolving imports
// is made.
/// Resolves all imports for the crate. This method performs the fixed-
/// point iteration.
fn resolve_imports(&mut self) {
let mut i = 0;
let mut prev_unresolved_imports = 0;
loop {
debug!("(resolving imports) iteration {}, {} imports left",
i, self.resolver.unresolved_imports);
let module_root = self.resolver.graph_root.get_module();
self.resolve_imports_for_module_subtree(module_root.clone());
if self.resolver.unresolved_imports == 0 {
debug!("(resolving imports) success");
break;
}
if self.resolver.unresolved_imports == prev_unresolved_imports {
self.resolver.report_unresolved_imports(module_root);
break;
}
i += 1;
prev_unresolved_imports = self.resolver.unresolved_imports;
}
}
/// Attempts to resolve imports for the given module and all of its
/// submodules.
fn resolve_imports_for_module_subtree(&mut self, module_: Rc<Module>) {
debug!("(resolving imports for module subtree) resolving {}",
module_to_string(&*module_));
let orig_module = replace(&mut self.resolver.current_module, module_.clone());
self.resolve_imports_for_module(module_.clone());
self.resolver.current_module = orig_module;
build_reduced_graph::populate_module_if_necessary(self.resolver, &module_);
for (_, child_node) in &*module_.children.borrow() {
match child_node.get_module_if_available() {
None => {
// Nothing to do.
}
Some(child_module) => {
self.resolve_imports_for_module_subtree(child_module);
}
}
}
for (_, child_module) in &*module_.anonymous_children.borrow() {
self.resolve_imports_for_module_subtree(child_module.clone());
}
}
/// Attempts to resolve imports for the given module only.
fn resolve_imports_for_module(&mut self, module: Rc<Module>) {
if module.all_imports_resolved() {
debug!("(resolving imports for module) all imports resolved for \
{}",
module_to_string(&*module));
return;
}
let imports = module.imports.borrow();
let import_count = imports.len();
while module.resolved_import_count.get() < import_count {
let import_index = module.resolved_import_count.get();
let import_directive = &(*imports)[import_index];
match self.resolve_import_for_module(module.clone(),
import_directive) {
ResolveResult::Failed(err) => {
let (span, help) = match err {
Some((span, msg)) => (span, format!(". {}", msg)),
None => (import_directive.span, String::new())
};
let msg = format!("unresolved import `{}`{}",
import_path_to_string(
&import_directive.module_path,
import_directive.subclass),
help);
self.resolver.resolve_error(span, &msg[..]);
}
ResolveResult::Indeterminate => break, // Bail out. We'll come around next time.
ResolveResult::Success(()) => () // Good. Continue.
}
module.resolved_import_count
.set(module.resolved_import_count.get() + 1);
}
}
/// Attempts to resolve the given import. The return value indicates
/// failure if we're certain the name does not exist, indeterminate if we
/// don't know whether the name exists at the moment due to other
/// currently-unresolved imports, or success if we know the name exists.
/// If successful, the resolved bindings are written into the module.
fn resolve_import_for_module(&mut self,
module_: Rc<Module>,
import_directive: &ImportDirective)
-> ResolveResult<()> {
let mut resolution_result = ResolveResult::Failed(None);
let module_path = &import_directive.module_path;
debug!("(resolving import for module) resolving import `{}::...` in `{}`",
names_to_string(&module_path[..]),
module_to_string(&*module_));
// First, resolve the module path for the directive, if necessary.
let container = if module_path.len() == 0 {
// Use the crate root.
Some((self.resolver.graph_root.get_module(), LastMod(AllPublic)))
} else {
match self.resolver.resolve_module_path(module_.clone(),
&module_path[..],
UseLexicalScopeFlag::DontUseLexicalScope,
import_directive.span,
NameSearchType::ImportSearch) {
ResolveResult::Failed(err) => {
resolution_result = ResolveResult::Failed(err);
None
},
ResolveResult::Indeterminate => {
resolution_result = ResolveResult::Indeterminate;
None
}
ResolveResult::Success(container) => Some(container),
}
};
match container {
None => {}
Some((containing_module, lp)) => {
// We found the module that the target is contained
// within. Attempt to resolve the import within it.
match import_directive.subclass {
SingleImport(target, source) => {
resolution_result =
self.resolve_single_import(&module_,
containing_module,
target,
source,
import_directive,
lp);
}
GlobImport => {
resolution_result =
self.resolve_glob_import(&module_,
containing_module,
import_directive,
lp);
}
}
}
}
// Decrement the count of unresolved imports.
match resolution_result {
ResolveResult::Success(()) => {
assert!(self.resolver.unresolved_imports >= 1);
self.resolver.unresolved_imports -= 1;
}
_ => {
// Nothing to do here; just return the error.
}
}
// Decrement the count of unresolved globs if necessary. But only if
// the resolution result is indeterminate -- otherwise we'll stop
// processing imports here. (See the loop in
// resolve_imports_for_module).
if !resolution_result.indeterminate() {
match import_directive.subclass {
GlobImport => {
assert!(module_.glob_count.get() >= 1);
module_.glob_count.set(module_.glob_count.get() - 1);
}
SingleImport(..) => {
// Ignore.
}
}
}
return resolution_result;
}
fn resolve_single_import(&mut self,
module_: &Module,
target_module: Rc<Module>,
target: Name,
source: Name,
directive: &ImportDirective,
lp: LastPrivate)
-> ResolveResult<()> {
debug!("(resolving single import) resolving `{}` = `{}::{}` from \
`{}` id {}, last private {:?}",
token::get_name(target),
module_to_string(&*target_module),
token::get_name(source),
module_to_string(module_),
directive.id,
lp);
let lp = match lp {
LastMod(lp) => lp,
LastImport {..} => {
self.resolver.session
.span_bug(directive.span,
"not expecting Import here, must be LastMod")
}
};
// We need to resolve both namespaces for this to succeed.
//
let mut value_result = UnknownResult;
let mut type_result = UnknownResult;
// Search for direct children of the containing module.
build_reduced_graph::populate_module_if_necessary(self.resolver, &target_module);
match target_module.children.borrow().get(&source) {
None => {
// Continue.
}
Some(ref child_name_bindings) => {
// pub_err makes sure we don't give the same error twice.
let mut pub_err = false;
if child_name_bindings.defined_in_namespace(ValueNS) {
debug!("(resolving single import) found value binding");
value_result = BoundResult(target_module.clone(),
(*child_name_bindings).clone());
if directive.is_public && !child_name_bindings.is_public(ValueNS) {
let msg = format!("`{}` is private", token::get_name(source));
span_err!(self.resolver.session, directive.span, E0364, "{}", &msg);
pub_err = true;
}
}
if child_name_bindings.defined_in_namespace(TypeNS) {
debug!("(resolving single import) found type binding");
type_result = BoundResult(target_module.clone(),
(*child_name_bindings).clone());
if !pub_err && directive.is_public && !child_name_bindings.is_public(TypeNS) {
let msg = format!("`{}` is private", token::get_name(source));
span_err!(self.resolver.session, directive.span, E0365, "{}", &msg);
}
}
}
}
// Unless we managed to find a result in both namespaces (unlikely),
// search imports as well.
let mut value_used_reexport = false;
let mut type_used_reexport = false;
match (value_result.clone(), type_result.clone()) {
(BoundResult(..), BoundResult(..)) => {} // Continue.
_ => {
// If there is an unresolved glob at this point in the
// containing module, bail out. We don't know enough to be
// able to resolve this import.
if target_module.glob_count.get() > 0 {
debug!("(resolving single import) unresolved glob; \
bailing out");
return ResolveResult::Indeterminate;
}
// Now search the exported imports within the containing module.
match target_module.import_resolutions.borrow().get(&source) {
None => {
debug!("(resolving single import) no import");
// The containing module definitely doesn't have an
// exported import with the name in question. We can
// therefore accurately report that the names are
// unbound.
if value_result.is_unknown() {
value_result = UnboundResult;
}
if type_result.is_unknown() {
type_result = UnboundResult;
}
}
Some(import_resolution)
if import_resolution.outstanding_references == 0 => {
fn get_binding(this: &mut Resolver,
import_resolution: &ImportResolution,
namespace: Namespace,
source: &Name)
-> NamespaceResult {
// Import resolutions must be declared with "pub"
// in order to be exported.
if !import_resolution.is_public {
return UnboundResult;
}
match import_resolution.target_for_namespace(namespace) {
None => {
return UnboundResult;
}
Some(Target {
target_module,
bindings,
shadowable: _
}) => {
debug!("(resolving single import) found \
import in ns {:?}", namespace);
let id = import_resolution.id(namespace);
// track used imports and extern crates as well
this.used_imports.insert((id, namespace));
this.record_import_use(id, *source);
match target_module.def_id.get() {
Some(DefId{krate: kid, ..}) => {
this.used_crates.insert(kid);
},
_ => {}
}
return BoundResult(target_module, bindings);
}
}
}
// The name is an import which has been fully
// resolved. We can, therefore, just follow it.
if value_result.is_unknown() {
value_result = get_binding(self.resolver,
import_resolution,
ValueNS,
&source);
value_used_reexport = import_resolution.is_public;
}
if type_result.is_unknown() {
type_result = get_binding(self.resolver,
import_resolution,
TypeNS,
&source);
type_used_reexport = import_resolution.is_public;
}
}
Some(_) => {
// If target_module is the same module whose import we are resolving
// and there it has an unresolved import with the same name as `source`,
// then the user is actually trying to import an item that is declared
// in the same scope
//
// e.g
// use self::submodule;
// pub mod submodule;
//
// In this case we continue as if we resolved the import and let the
// check_for_conflicts_between_imports_and_items call below handle
// the conflict
match (module_.def_id.get(), target_module.def_id.get()) {
(Some(id1), Some(id2)) if id1 == id2 => {
if value_result.is_unknown() {
value_result = UnboundResult;
}
if type_result.is_unknown() {
type_result = UnboundResult;
}
}
_ => {
// The import is unresolved. Bail out.
debug!("(resolving single import) unresolved import; \
bailing out");
return ResolveResult::Indeterminate;
}
}
}
}
}
}
let mut value_used_public = false;
let mut type_used_public = false;
// If we didn't find a result in the type namespace, search the
// external modules.
match type_result {
BoundResult(..) => {}
_ => {
match target_module.external_module_children.borrow_mut().get(&source).cloned() {
None => {} // Continue.
Some(module) => {
debug!("(resolving single import) found external module");
// track the module as used.
match module.def_id.get() {
Some(DefId{krate: kid, ..}) => {
self.resolver.used_crates.insert(kid);
}
_ => {}
}
let name_bindings =
Rc::new(Resolver::create_name_bindings_from_module(module));
type_result = BoundResult(target_module.clone(), name_bindings);
type_used_public = true;
}
}
}
}
// We've successfully resolved the import. Write the results in.
let mut import_resolutions = module_.import_resolutions.borrow_mut();
let import_resolution = &mut (*import_resolutions)[target];
{
let mut check_and_write_import = |namespace, result: &_, used_public: &mut bool| {
let namespace_name = match namespace {
TypeNS => "type",
ValueNS => "value",
};
match *result {
BoundResult(ref target_module, ref name_bindings) => {
debug!("(resolving single import) found {:?} target: {:?}",
namespace_name,
name_bindings.def_for_namespace(namespace));
self.check_for_conflicting_import(
&import_resolution.target_for_namespace(namespace),
directive.span,
target,
namespace);
self.check_that_import_is_importable(
&**name_bindings,
directive.span,
target,
namespace);
let target = Some(Target::new(target_module.clone(),
name_bindings.clone(),
directive.shadowable));
import_resolution.set_target_and_id(namespace, target, directive.id);
import_resolution.is_public = directive.is_public;
*used_public = name_bindings.defined_in_public_namespace(namespace);
}
UnboundResult => { /* Continue. */ }
UnknownResult => {
panic!("{:?} result should be known at this point", namespace_name);
}
}
};
check_and_write_import(ValueNS, &value_result, &mut value_used_public);
check_and_write_import(TypeNS, &type_result, &mut type_used_public);
}
self.check_for_conflicts_between_imports_and_items(
module_,
import_resolution,
directive.span,
target);
if value_result.is_unbound() && type_result.is_unbound() {
let msg = format!("There is no `{}` in `{}`",
token::get_name(source),
module_to_string(&target_module));
return ResolveResult::Failed(Some((directive.span, msg)));
}
let value_used_public = value_used_reexport || value_used_public;
let type_used_public = type_used_reexport || type_used_public;
assert!(import_resolution.outstanding_references >= 1);
import_resolution.outstanding_references -= 1;
// Record what this import resolves to for later uses in documentation,
// this may resolve to either a value or a type, but for documentation
// purposes it's good enough to just favor one over the other.
let value_def_and_priv = import_resolution.value_target.as_ref().map(|target| {
let def = target.bindings.def_for_namespace(ValueNS).unwrap();
(def, if value_used_public { lp } else { DependsOn(def.def_id()) })
});
let type_def_and_priv = import_resolution.type_target.as_ref().map(|target| {
let def = target.bindings.def_for_namespace(TypeNS).unwrap();
(def, if type_used_public { lp } else { DependsOn(def.def_id()) })
});
let import_lp = LastImport {
value_priv: value_def_and_priv.map(|(_, p)| p),
value_used: Used,
type_priv: type_def_and_priv.map(|(_, p)| p),
type_used: Used
};
if let Some((def, _)) = value_def_and_priv {
self.resolver.def_map.borrow_mut().insert(directive.id, PathResolution {
base_def: def,
last_private: import_lp,
depth: 0
});
}
if let Some((def, _)) = type_def_and_priv {
self.resolver.def_map.borrow_mut().insert(directive.id, PathResolution {
base_def: def,
last_private: import_lp,
depth: 0
});
}
debug!("(resolving single import) successfully resolved import");
return ResolveResult::Success(());
}
// Resolves a glob import. Note that this function cannot fail; it either
// succeeds or bails out (as importing * from an empty module or a module
// that exports nothing is valid). target_module is the module we are
// actually importing, i.e., `foo` in `use foo::*`.
fn resolve_glob_import(&mut self,
module_: &Module,
target_module: Rc<Module>,
import_directive: &ImportDirective,
lp: LastPrivate)
-> ResolveResult<()> {
let id = import_directive.id;
let is_public = import_directive.is_public;
// This function works in a highly imperative manner; it eagerly adds
// everything it can to the list of import resolutions of the module
// node.
debug!("(resolving glob import) resolving glob import {}", id);
// We must bail out if the node has unresolved imports of any kind
// (including globs).
if !(*target_module).all_imports_resolved() {
debug!("(resolving glob import) target module has unresolved \
imports; bailing out");
return ResolveResult::Indeterminate;
}
assert_eq!(target_module.glob_count.get(), 0);
// Add all resolved imports from the containing module.
let import_resolutions = target_module.import_resolutions.borrow();
for (ident, target_import_resolution) in &*import_resolutions {
debug!("(resolving glob import) writing module resolution \
{} into `{}`",
token::get_name(*ident),
module_to_string(module_));
if !target_import_resolution.is_public {
debug!("(resolving glob import) nevermind, just kidding");
continue
}
// Here we merge two import resolutions.
let mut import_resolutions = module_.import_resolutions.borrow_mut();
match import_resolutions.get_mut(ident) {
Some(dest_import_resolution) => {
// Merge the two import resolutions at a finer-grained
// level.
match target_import_resolution.value_target {
None => {
// Continue.
}
Some(ref value_target) => {
self.check_for_conflicting_import(&dest_import_resolution.value_target,
import_directive.span,
*ident,
ValueNS);
dest_import_resolution.value_target = Some(value_target.clone());
}
}
match target_import_resolution.type_target {
None => {
// Continue.
}
Some(ref type_target) => {
self.check_for_conflicting_import(&dest_import_resolution.type_target,
import_directive.span,
*ident,
TypeNS);
dest_import_resolution.type_target = Some(type_target.clone());
}
}
dest_import_resolution.is_public = is_public;
continue;
}
None => {}
}
// Simple: just copy the old import resolution.
let mut new_import_resolution = ImportResolution::new(id, is_public);
new_import_resolution.value_target =
target_import_resolution.value_target.clone();
new_import_resolution.type_target =
target_import_resolution.type_target.clone();
import_resolutions.insert(*ident, new_import_resolution);
}
// Add all children from the containing module.
build_reduced_graph::populate_module_if_necessary(self.resolver, &target_module);
for (&name, name_bindings) in &*target_module.children.borrow() {
self.merge_import_resolution(module_,
target_module.clone(),
import_directive,
name,
name_bindings.clone());
}
// Add external module children from the containing module.
for (&name, module) in &*target_module.external_module_children.borrow() {
let name_bindings =
Rc::new(Resolver::create_name_bindings_from_module(module.clone()));
self.merge_import_resolution(module_,
target_module.clone(),
import_directive,
name,
name_bindings);
}
// Record the destination of this import
if let Some(did) = target_module.def_id.get() {
self.resolver.def_map.borrow_mut().insert(id, PathResolution {
base_def: DefMod(did),
last_private: lp,
depth: 0
});
}
debug!("(resolving glob import) successfully resolved import");
return ResolveResult::Success(());
}
fn merge_import_resolution(&mut self,
module_: &Module,
containing_module: Rc<Module>,
import_directive: &ImportDirective,
name: Name,
name_bindings: Rc<NameBindings>) {
let id = import_directive.id;
let is_public = import_directive.is_public;
let mut import_resolutions = module_.import_resolutions.borrow_mut();
let dest_import_resolution = import_resolutions.entry(name).get().unwrap_or_else(
|vacant_entry| {
// Create a new import resolution from this child.
vacant_entry.insert(ImportResolution::new(id, is_public))
});
debug!("(resolving glob import) writing resolution `{}` in `{}` \
to `{}`",
&token::get_name(name),
module_to_string(&*containing_module),
module_to_string(module_));
// Merge the child item into the import resolution.
{
let mut merge_child_item = |namespace| {
if name_bindings.defined_in_namespace_with(namespace, IMPORTABLE | PUBLIC) {
let namespace_name = match namespace {
TypeNS => "type",
ValueNS => "value",
};
debug!("(resolving glob import) ... for {} target", namespace_name);
if dest_import_resolution.shadowable(namespace) == Shadowable::Never {
let msg = format!("a {} named `{}` has already been imported \
in this module",
namespace_name,
&token::get_name(name));
span_err!(self.resolver.session, import_directive.span, E0251, "{}", msg);
} else {
let target = Target::new(containing_module.clone(),
name_bindings.clone(),
import_directive.shadowable);
dest_import_resolution.set_target_and_id(namespace,
Some(target),
id);
}
}
};
merge_child_item(ValueNS);
merge_child_item(TypeNS);
}
dest_import_resolution.is_public = is_public;
self.check_for_conflicts_between_imports_and_items(
module_,
dest_import_resolution,
import_directive.span,
name);
}
/// Checks that imported names and items don't have the same name.
fn check_for_conflicting_import(&mut self,
target: &Option<Target>,
import_span: Span,
name: Name,
namespace: Namespace) {
debug!("check_for_conflicting_import: {}; target exists: {}",
&token::get_name(name),
target.is_some());
match *target {
Some(ref target) if target.shadowable != Shadowable::Always => {
let msg = format!("a {} named `{}` has already been imported \
in this module",
match namespace {
TypeNS => "type",
ValueNS => "value",
},
&token::get_name(name));
span_err!(self.resolver.session, import_span, E0252, "{}", &msg[..]);
}
Some(_) | None => {}
}
}
/// Checks that an import is actually importable
fn check_that_import_is_importable(&mut self,
name_bindings: &NameBindings,
import_span: Span,
name: Name,
namespace: Namespace) {
if !name_bindings.defined_in_namespace_with(namespace, IMPORTABLE) {
let msg = format!("`{}` is not directly importable",
token::get_name(name));
span_err!(self.resolver.session, import_span, E0253, "{}", &msg[..]);
}
}
/// Checks that imported names and items don't have the same name.
fn check_for_conflicts_between_imports_and_items(&mut self,
module: &Module,
import_resolution:
&ImportResolution,
import_span: Span,
name: Name) {
// First, check for conflicts between imports and `extern crate`s.
if module.external_module_children
.borrow()
.contains_key(&name) {
match import_resolution.type_target {
Some(ref target) if target.shadowable != Shadowable::Always => {
let msg = format!("import `{0}` conflicts with imported \
crate in this module \
(maybe you meant `use {0}::*`?)",
&token::get_name(name));
span_err!(self.resolver.session, import_span, E0254, "{}", &msg[..]);
}
Some(_) | None => {}
}
}
// Check for item conflicts.
let children = module.children.borrow();
let name_bindings = match children.get(&name) {
None => {
// There can't be any conflicts.
return
}
Some(ref name_bindings) => (*name_bindings).clone(),
};
match import_resolution.value_target {
Some(ref target) if target.shadowable != Shadowable::Always => {
if let Some(ref value) = *name_bindings.value_def.borrow() {
span_err!(self.resolver.session, import_span, E0255,
"import `{}` conflicts with value in this module",
&token::get_name(name));
if let Some(span) = value.value_span {
self.resolver.session.span_note(span, "conflicting value here");
}
}
}
Some(_) | None => {}
}
match import_resolution.type_target {
Some(ref target) if target.shadowable != Shadowable::Always => {
if let Some(ref ty) = *name_bindings.type_def.borrow() {
let (what, note) = if ty.module_def.is_some() {
("existing submodule", "note conflicting module here")
} else {
("type in this module", "note conflicting type here")
};
span_err!(self.resolver.session, import_span, E0256,
"import `{}` conflicts with {}",
&token::get_name(name), what);
if let Some(span) = ty.type_span {
self.resolver.session.span_note(span, note);
}
}
}
Some(_) | None => {}
}
}
}
fn import_path_to_string(names: &[Name],
subclass: ImportDirectiveSubclass)
-> String {
if names.is_empty() {
import_directive_subclass_to_string(subclass)
} else {
(format!("{}::{}",
names_to_string(names),
import_directive_subclass_to_string(subclass))).to_string()
}
}
fn import_directive_subclass_to_string(subclass: ImportDirectiveSubclass) -> String {
match subclass {
SingleImport(_, source) => {
token::get_name(source).to_string()
}
GlobImport => "*".to_string()
}
}
pub fn resolve_imports(resolver: &mut Resolver) {
let mut import_resolver = ImportResolver {
resolver: resolver,
};
import_resolver.resolve_imports();
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册