提交 1d817762 编写于 作者: B bors

auto merge of #19113 : nikomatsakis/rust/unboxed-boxed-closure-unification, r=acrichto

Use the expected type to infer the argument/return types of unboxed closures. Also, in `||` expressions, use the expected type to decide if the result should be a boxed or unboxed closure (and if an unboxed closure, what kind).

This supercedes PR #19089, which was already reviewed by @pcwalton.
......@@ -288,9 +288,12 @@ pub fn closure_to_block(closure_id: ast::NodeId,
match tcx.map.get(closure_id) {
ast_map::NodeExpr(expr) => match expr.node {
ast::ExprProc(_, ref block) |
ast::ExprFnBlock(_, _, ref block) |
ast::ExprUnboxedFn(_, _, _, ref block) => { block.id }
_ => panic!("encountered non-closure id: {}", closure_id)
ast::ExprClosure(_, _, _, ref block) => {
block.id
}
_ => {
panic!("encountered non-closure id: {}", closure_id)
}
},
_ => panic!("encountered non-expr id: {}", closure_id)
}
......
......@@ -496,9 +496,8 @@ fn expr(&mut self, expr: &ast::Expr, pred: CFGIndex) -> CFGIndex {
}
ast::ExprMac(..) |
ast::ExprFnBlock(..) |
ast::ExprClosure(..) |
ast::ExprProc(..) |
ast::ExprUnboxedFn(..) |
ast::ExprLit(..) |
ast::ExprPath(..) => {
self.straightline(expr, pred, None::<ast::Expr>.iter())
......
......@@ -48,9 +48,8 @@ fn visit_expr(&mut self, e: &ast::Expr) {
self.visit_expr(&**e);
self.with_context(Loop, |v| v.visit_block(&**b));
}
ast::ExprFnBlock(_, _, ref b) |
ast::ExprProc(_, ref b) |
ast::ExprUnboxedFn(_, _, _, ref b) => {
ast::ExprClosure(_, _, _, ref b) |
ast::ExprProc(_, ref b) => {
self.with_context(Closure, |v| v.visit_block(&**b));
}
ast::ExprBreak(_) => self.require_loop("break", e.span),
......
......@@ -496,8 +496,7 @@ pub fn walk_expr(&mut self, expr: &ast::Expr) {
self.consume_expr(&**count);
}
ast::ExprFnBlock(..) |
ast::ExprUnboxedFn(..) |
ast::ExprClosure(..) |
ast::ExprProc(..) => {
self.walk_captures(expr)
}
......
......@@ -458,7 +458,7 @@ fn visit_expr(ir: &mut IrMaps, expr: &Expr) {
}
visit::walk_expr(ir, expr);
}
ast::ExprFnBlock(..) | ast::ExprProc(..) | ast::ExprUnboxedFn(..) => {
ast::ExprClosure(..) | ast::ExprProc(..) => {
// Interesting control flow (for loops can contain labeled
// breaks or continues)
ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
......@@ -975,10 +975,9 @@ fn propagate_through_expr(&mut self, expr: &Expr, succ: LiveNode)
self.propagate_through_expr(&**e, succ)
}
ast::ExprFnBlock(_, _, ref blk) |
ast::ExprProc(_, ref blk) |
ast::ExprUnboxedFn(_, _, _, ref blk) => {
debug!("{} is an ExprFnBlock, ExprProc, or ExprUnboxedFn",
ast::ExprClosure(_, _, _, ref blk) |
ast::ExprProc(_, ref blk) => {
debug!("{} is an ExprClosure or ExprProc",
expr_to_string(expr));
/*
......@@ -1495,7 +1494,7 @@ fn check_expr(this: &mut Liveness, expr: &Expr) {
ast::ExprBreak(..) | ast::ExprAgain(..) | ast::ExprLit(_) |
ast::ExprBlock(..) | ast::ExprMac(..) | ast::ExprAddrOf(..) |
ast::ExprStruct(..) | ast::ExprRepeat(..) | ast::ExprParen(..) |
ast::ExprFnBlock(..) | ast::ExprProc(..) | ast::ExprUnboxedFn(..) |
ast::ExprClosure(..) | ast::ExprProc(..) |
ast::ExprPath(..) | ast::ExprBox(..) | ast::ExprSlice(..) => {
visit::walk_expr(this, expr);
}
......
......@@ -520,8 +520,8 @@ pub fn cat_expr_unadjusted(&self, expr: &ast::Expr) -> McResult<cmt<'tcx>> {
ast::ExprAddrOf(..) | ast::ExprCall(..) |
ast::ExprAssign(..) | ast::ExprAssignOp(..) |
ast::ExprFnBlock(..) | ast::ExprProc(..) |
ast::ExprUnboxedFn(..) | ast::ExprRet(..) |
ast::ExprClosure(..) | ast::ExprProc(..) |
ast::ExprRet(..) |
ast::ExprUnary(..) | ast::ExprSlice(..) |
ast::ExprMethodCall(..) | ast::ExprCast(..) |
ast::ExprVec(..) | ast::ExprTup(..) | ast::ExprIf(..) |
......@@ -693,9 +693,8 @@ fn cat_upvar(&self,
};
match fn_expr.node {
ast::ExprFnBlock(_, _, ref body) |
ast::ExprProc(_, ref body) |
ast::ExprUnboxedFn(_, _, _, ref body) => body.id,
ast::ExprClosure(_, _, _, ref body) => body.id,
_ => unreachable!()
}
};
......
......@@ -50,8 +50,8 @@
use syntax::ast::{Arm, BindByRef, BindByValue, BindingMode, Block, Crate, CrateNum};
use syntax::ast::{DeclItem, DefId, Expr, ExprAgain, ExprBreak, ExprField};
use syntax::ast::{ExprFnBlock, ExprForLoop, ExprLoop, ExprWhile, ExprMethodCall};
use syntax::ast::{ExprPath, ExprProc, ExprStruct, ExprUnboxedFn, FnDecl};
use syntax::ast::{ExprClosure, ExprForLoop, ExprLoop, ExprWhile, ExprMethodCall};
use syntax::ast::{ExprPath, ExprProc, ExprStruct, FnDecl};
use syntax::ast::{ForeignItem, ForeignItemFn, ForeignItemStatic, Generics};
use syntax::ast::{Ident, ImplItem, Item, ItemEnum, ItemFn, ItemForeignMod};
use syntax::ast::{ItemImpl, ItemMac, ItemMod, ItemStatic, ItemStruct};
......@@ -5848,24 +5848,19 @@ fn resolve_expr(&mut self, expr: &Expr) {
visit::walk_expr(self, expr);
}
ExprFnBlock(capture_clause, ref fn_decl, ref block) => {
ExprClosure(capture_clause, _, ref fn_decl, ref block) => {
self.capture_mode_map.insert(expr.id, capture_clause);
self.resolve_function(ClosureRibKind(expr.id, ast::DUMMY_NODE_ID),
Some(&**fn_decl), NoTypeParameters,
&**block);
}
ExprProc(ref fn_decl, ref block) => {
self.capture_mode_map.insert(expr.id, ast::CaptureByValue);
self.resolve_function(ClosureRibKind(expr.id, block.id),
Some(&**fn_decl), NoTypeParameters,
&**block);
}
ExprUnboxedFn(capture_clause, _, ref fn_decl, ref block) => {
self.capture_mode_map.insert(expr.id, capture_clause);
self.resolve_function(ClosureRibKind(expr.id, block.id),
Some(&**fn_decl), NoTypeParameters,
&**block);
}
ExprStruct(ref path, _, _) => {
// Resolve the path to the structure it goes to. We don't
......
......@@ -109,6 +109,10 @@ pub fn select_where_possible<'a>(&mut self,
self.select(&mut selcx, false)
}
pub fn pending_trait_obligations(&self) -> &[Obligation<'tcx>] {
self.trait_obligations[]
}
fn select<'a>(&mut self,
selcx: &mut SelectionContext<'a, 'tcx>,
only_new_obligations: bool)
......
......@@ -3919,9 +3919,8 @@ pub fn expr_kind(tcx: &ctxt, expr: &ast::Expr) -> ExprKind {
ast::ExprTup(..) |
ast::ExprIf(..) |
ast::ExprMatch(..) |
ast::ExprFnBlock(..) |
ast::ExprClosure(..) |
ast::ExprProc(..) |
ast::ExprUnboxedFn(..) |
ast::ExprBlock(..) |
ast::ExprRepeat(..) |
ast::ExprVec(..) => {
......
......@@ -995,7 +995,7 @@ pub fn ast_ty_to_ty<'tcx, AC: AstConv<'tcx>, RS: RegionScope>(
}
ast::TyInfer => {
// TyInfer also appears as the type of arguments or return
// values in a ExprFnBlock, ExprProc, or ExprUnboxedFn, or as
// values in a ExprClosure or ExprProc, or as
// the type of local variables. Both of these cases are
// handled specially and will not descend into this routine.
this.ty_infer(ast_ty.span)
......
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* Code for type-checking closure expressions.
*/
use super::check_fn;
use super::{Expectation, ExpectCastableToType, ExpectHasType, NoExpectation};
use super::FnCtxt;
use middle::subst;
use middle::ty::{mod, Ty};
use middle::typeck::astconv;
use middle::typeck::infer;
use middle::typeck::rscope::RegionScope;
use syntax::abi;
use syntax::ast;
use syntax::ast_util;
use util::ppaux::Repr;
pub fn check_expr_closure<'a,'tcx>(fcx: &FnCtxt<'a,'tcx>,
expr: &ast::Expr,
opt_kind: Option<ast::UnboxedClosureKind>,
decl: &ast::FnDecl,
body: &ast::Block,
expected: Expectation<'tcx>) {
debug!("check_expr_closure(expr={},expected={})",
expr.repr(fcx.tcx()),
expected.repr(fcx.tcx()));
match opt_kind {
None => {
// If users didn't specify what sort of closure they want,
// examine the expected type. For now, if we see explicit
// evidence than an unboxed closure is desired, we'll use
// that, otherwise we'll fall back to boxed closures.
match deduce_unboxed_closure_expectations_from_expectation(fcx, expected) {
None => { // doesn't look like an unboxed closure
let region = astconv::opt_ast_region_to_region(fcx,
fcx.infcx(),
expr.span,
&None);
check_boxed_closure(fcx,
expr,
ty::RegionTraitStore(region, ast::MutMutable),
decl,
body,
expected);
}
Some((sig, kind)) => {
check_unboxed_closure(fcx, expr, kind, decl, body, Some(sig));
}
}
}
Some(kind) => {
let kind = match kind {
ast::FnUnboxedClosureKind => ty::FnUnboxedClosureKind,
ast::FnMutUnboxedClosureKind => ty::FnMutUnboxedClosureKind,
ast::FnOnceUnboxedClosureKind => ty::FnOnceUnboxedClosureKind,
};
let expected_sig =
deduce_unboxed_closure_expectations_from_expectation(fcx, expected)
.map(|t| t.0);
check_unboxed_closure(fcx, expr, kind, decl, body, expected_sig);
}
}
}
fn check_unboxed_closure<'a,'tcx>(fcx: &FnCtxt<'a,'tcx>,
expr: &ast::Expr,
kind: ty::UnboxedClosureKind,
decl: &ast::FnDecl,
body: &ast::Block,
expected_sig: Option<ty::FnSig<'tcx>>) {
let expr_def_id = ast_util::local_def(expr.id);
debug!("check_unboxed_closure kind={} expected_sig={}",
kind,
expected_sig.repr(fcx.tcx()));
let mut fn_ty = astconv::ty_of_closure(
fcx,
ast::NormalFn,
ast::Many,
// The `RegionTraitStore` and region_existential_bounds
// are lies, but we ignore them so it doesn't matter.
//
// FIXME(pcwalton): Refactor this API.
ty::region_existential_bound(ty::ReStatic),
ty::RegionTraitStore(ty::ReStatic, ast::MutImmutable),
decl,
abi::RustCall,
expected_sig);
let region = match fcx.infcx().anon_regions(expr.span, 1) {
Err(_) => {
fcx.ccx.tcx.sess.span_bug(expr.span,
"can't make anon regions here?!")
}
Ok(regions) => regions[0],
};
let closure_type = ty::mk_unboxed_closure(fcx.ccx.tcx,
expr_def_id,
region,
fcx.inh.param_env.free_substs.clone());
fcx.write_ty(expr.id, closure_type);
check_fn(fcx.ccx,
ast::NormalFn,
expr.id,
&fn_ty.sig,
decl,
expr.id,
&*body,
fcx.inh);
// Tuple up the arguments and insert the resulting function type into
// the `unboxed_closures` table.
fn_ty.sig.inputs = vec![ty::mk_tup(fcx.tcx(), fn_ty.sig.inputs)];
debug!("unboxed_closure for {} --> sig={} kind={}",
expr_def_id.repr(fcx.tcx()),
fn_ty.sig.repr(fcx.tcx()),
kind);
let unboxed_closure = ty::UnboxedClosure {
closure_type: fn_ty,
kind: kind,
};
fcx.inh
.unboxed_closures
.borrow_mut()
.insert(expr_def_id, unboxed_closure);
}
fn deduce_unboxed_closure_expectations_from_expectation<'a,'tcx>(
fcx: &FnCtxt<'a,'tcx>,
expected: Expectation<'tcx>)
-> Option<(ty::FnSig<'tcx>,ty::UnboxedClosureKind)>
{
match expected.resolve(fcx) {
NoExpectation => None,
ExpectCastableToType(t) | ExpectHasType(t) => {
deduce_unboxed_closure_expectations_from_expected_type(fcx, t)
}
}
}
fn deduce_unboxed_closure_expectations_from_expected_type<'a,'tcx>(
fcx: &FnCtxt<'a,'tcx>,
expected_ty: Ty<'tcx>)
-> Option<(ty::FnSig<'tcx>,ty::UnboxedClosureKind)>
{
match expected_ty.sty {
ty::ty_trait(ref object_type) => {
deduce_unboxed_closure_expectations_from_trait_ref(fcx, &object_type.principal)
}
ty::ty_infer(ty::TyVar(vid)) => {
deduce_unboxed_closure_expectations_from_obligations(fcx, vid)
}
_ => {
None
}
}
}
fn deduce_unboxed_closure_expectations_from_trait_ref<'a,'tcx>(
fcx: &FnCtxt<'a,'tcx>,
trait_ref: &ty::TraitRef<'tcx>)
-> Option<(ty::FnSig<'tcx>, ty::UnboxedClosureKind)>
{
let tcx = fcx.tcx();
debug!("deduce_unboxed_closure_expectations_from_object_type({})",
trait_ref.repr(tcx));
let def_id_kinds = [
(tcx.lang_items.fn_trait(), ty::FnUnboxedClosureKind),
(tcx.lang_items.fn_mut_trait(), ty::FnMutUnboxedClosureKind),
(tcx.lang_items.fn_once_trait(), ty::FnOnceUnboxedClosureKind),
];
for &(def_id, kind) in def_id_kinds.iter() {
if Some(trait_ref.def_id) == def_id {
debug!("found object type {}", kind);
let arg_param_ty = *trait_ref.substs.types.get(subst::TypeSpace, 0);
let arg_param_ty = fcx.infcx().resolve_type_vars_if_possible(arg_param_ty);
debug!("arg_param_ty {}", arg_param_ty.repr(tcx));
let input_tys = match arg_param_ty.sty {
ty::ty_tup(ref tys) => { (*tys).clone() }
_ => { continue; }
};
debug!("input_tys {}", input_tys.repr(tcx));
let ret_param_ty = *trait_ref.substs.types.get(subst::TypeSpace, 1);
let ret_param_ty = fcx.infcx().resolve_type_vars_if_possible(ret_param_ty);
debug!("ret_param_ty {}", ret_param_ty.repr(tcx));
let fn_sig = ty::FnSig {
inputs: input_tys,
output: ty::FnConverging(ret_param_ty),
variadic: false
};
debug!("fn_sig {}", fn_sig.repr(tcx));
return Some((fn_sig, kind));
}
}
None
}
fn deduce_unboxed_closure_expectations_from_obligations<'a,'tcx>(
fcx: &FnCtxt<'a,'tcx>,
expected_vid: ty::TyVid)
-> Option<(ty::FnSig<'tcx>, ty::UnboxedClosureKind)>
{
// Here `expected_ty` is known to be a type inference variable.
for obligation in fcx.inh.fulfillment_cx.borrow().pending_trait_obligations().iter() {
let obligation_self_ty = fcx.infcx().shallow_resolve(obligation.self_ty());
match obligation_self_ty.sty {
ty::ty_infer(ty::TyVar(v)) if expected_vid == v => { }
_ => { continue; }
}
match deduce_unboxed_closure_expectations_from_trait_ref(fcx, &*obligation.trait_ref) {
Some(e) => { return Some(e); }
None => { }
}
}
None
}
pub fn check_boxed_closure<'a,'tcx>(fcx: &FnCtxt<'a,'tcx>,
expr: &ast::Expr,
store: ty::TraitStore,
decl: &ast::FnDecl,
body: &ast::Block,
expected: Expectation<'tcx>) {
let tcx = fcx.ccx.tcx;
// Find the expected input/output types (if any). Substitute
// fresh bound regions for any bound regions we find in the
// expected types so as to avoid capture.
let expected_sty = expected.map_to_option(fcx, |x| Some((*x).clone()));
let (expected_sig,
expected_onceness,
expected_bounds) = {
match expected_sty {
Some(ty::ty_closure(ref cenv)) => {
let (sig, _) =
ty::replace_late_bound_regions(
tcx,
&cenv.sig,
|_, debruijn| fcx.inh.infcx.fresh_bound_region(debruijn));
let onceness = match (&store, &cenv.store) {
// As the closure type and onceness go, only three
// combinations are legit:
// once closure
// many closure
// once proc
// If the actual and expected closure type disagree with
// each other, set expected onceness to be always Once or
// Many according to the actual type. Otherwise, it will
// yield either an illegal "many proc" or a less known
// "once closure" in the error message.
(&ty::UniqTraitStore, &ty::UniqTraitStore) |
(&ty::RegionTraitStore(..), &ty::RegionTraitStore(..)) =>
cenv.onceness,
(&ty::UniqTraitStore, _) => ast::Once,
(&ty::RegionTraitStore(..), _) => ast::Many,
};
(Some(sig), onceness, cenv.bounds)
}
_ => {
// Not an error! Means we're inferring the closure type
let (bounds, onceness) = match expr.node {
ast::ExprProc(..) => {
let mut bounds = ty::region_existential_bound(ty::ReStatic);
bounds.builtin_bounds.insert(ty::BoundSend); // FIXME
(bounds, ast::Once)
}
_ => {
let region = fcx.infcx().next_region_var(
infer::AddrOfRegion(expr.span));
(ty::region_existential_bound(region), ast::Many)
}
};
(None, onceness, bounds)
}
}
};
// construct the function type
let fn_ty = astconv::ty_of_closure(fcx,
ast::NormalFn,
expected_onceness,
expected_bounds,
store,
decl,
abi::Rust,
expected_sig);
let fty_sig = fn_ty.sig.clone();
let fty = ty::mk_closure(tcx, fn_ty);
debug!("check_expr_fn fty={}", fcx.infcx().ty_to_string(fty));
fcx.write_ty(expr.id, fty);
// If the closure is a stack closure and hasn't had some non-standard
// style inferred for it, then check it under its parent's style.
// Otherwise, use its own
let (inherited_style, inherited_style_id) = match store {
ty::RegionTraitStore(..) => (fcx.ps.borrow().fn_style,
fcx.ps.borrow().def),
ty::UniqTraitStore => (ast::NormalFn, expr.id)
};
check_fn(fcx.ccx,
inherited_style,
inherited_style_id,
&fty_sig,
&*decl,
expr.id,
&*body,
fcx.inh);
}
......@@ -78,7 +78,7 @@
pub use self::LvaluePreference::*;
pub use self::DerefArgs::*;
use self::Expectation::*;
pub use self::Expectation::*;
use self::IsBinopAssignment::*;
use self::TupleArgumentsFlag::*;
......@@ -97,7 +97,7 @@
use middle::ty::{Polytype};
use middle::ty::{Disr, ParamTy, ParameterEnvironment};
use middle::ty::{mod, Ty};
use middle::ty::{replace_late_bound_regions, liberate_late_bound_regions};
use middle::ty::liberate_late_bound_regions;
use middle::ty_fold::TypeFolder;
use middle::typeck::astconv::AstConv;
use middle::typeck::astconv::{ast_region_to_region, ast_ty_to_ty};
......@@ -147,6 +147,7 @@
pub mod demand;
pub mod method;
pub mod wf;
mod closure;
/// Fields that are part of a `FnCtxt` which are inherited by
/// closures defined within the function. For example:
......@@ -2833,9 +2834,7 @@ fn check_argument_types<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
};
for (i, arg) in args.iter().take(t).enumerate() {
let is_block = match arg.node {
ast::ExprFnBlock(..) |
ast::ExprProc(..) |
ast::ExprUnboxedFn(..) => true,
ast::ExprClosure(..) | ast::ExprProc(..) => true,
_ => false
};
......@@ -3530,174 +3529,6 @@ fn check_user_unop<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
})
}
fn check_unboxed_closure(fcx: &FnCtxt,
expr: &ast::Expr,
kind: ast::UnboxedClosureKind,
decl: &ast::FnDecl,
body: &ast::Block) {
let mut fn_ty = astconv::ty_of_closure(
fcx,
ast::NormalFn,
ast::Many,
// The `RegionTraitStore` and region_existential_bounds
// are lies, but we ignore them so it doesn't matter.
//
// FIXME(pcwalton): Refactor this API.
ty::region_existential_bound(ty::ReStatic),
ty::RegionTraitStore(ty::ReStatic, ast::MutImmutable),
decl,
abi::RustCall,
None);
let region = match fcx.infcx().anon_regions(expr.span, 1) {
Err(_) => {
fcx.ccx.tcx.sess.span_bug(expr.span,
"can't make anon regions here?!")
}
Ok(regions) => regions[0],
};
let closure_type = ty::mk_unboxed_closure(fcx.ccx.tcx,
local_def(expr.id),
region,
fcx.inh.param_env.free_substs.clone());
fcx.write_ty(expr.id, closure_type);
check_fn(fcx.ccx,
ast::NormalFn,
expr.id,
&fn_ty.sig,
decl,
expr.id,
&*body,
fcx.inh);
// Tuple up the arguments and insert the resulting function type into
// the `unboxed_closures` table.
fn_ty.sig.inputs = vec![ty::mk_tup(fcx.tcx(), fn_ty.sig.inputs)];
let kind = match kind {
ast::FnUnboxedClosureKind => ty::FnUnboxedClosureKind,
ast::FnMutUnboxedClosureKind => ty::FnMutUnboxedClosureKind,
ast::FnOnceUnboxedClosureKind => ty::FnOnceUnboxedClosureKind,
};
debug!("unboxed_closure for {} --> sig={} kind={}",
local_def(expr.id).repr(fcx.tcx()),
fn_ty.sig.repr(fcx.tcx()),
kind);
let unboxed_closure = ty::UnboxedClosure {
closure_type: fn_ty,
kind: kind,
};
fcx.inh
.unboxed_closures
.borrow_mut()
.insert(local_def(expr.id), unboxed_closure);
}
fn check_expr_fn<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
expr: &ast::Expr,
store: ty::TraitStore,
decl: &ast::FnDecl,
body: &ast::Block,
expected: Expectation<'tcx>) {
let tcx = fcx.ccx.tcx;
debug!("check_expr_fn(expr={}, expected={})",
expr.repr(tcx),
expected.repr(tcx));
// Find the expected input/output types (if any). Substitute
// fresh bound regions for any bound regions we find in the
// expected types so as to avoid capture.
let expected_sty = expected.map_to_option(fcx, |x| Some((*x).clone()));
let (expected_sig,
expected_onceness,
expected_bounds) = {
match expected_sty {
Some(ty::ty_closure(ref cenv)) => {
let (sig, _) =
replace_late_bound_regions(
tcx,
&cenv.sig,
|_, debruijn| fcx.inh.infcx.fresh_bound_region(debruijn));
let onceness = match (&store, &cenv.store) {
// As the closure type and onceness go, only three
// combinations are legit:
// once closure
// many closure
// once proc
// If the actual and expected closure type disagree with
// each other, set expected onceness to be always Once or
// Many according to the actual type. Otherwise, it will
// yield either an illegal "many proc" or a less known
// "once closure" in the error message.
(&ty::UniqTraitStore, &ty::UniqTraitStore) |
(&ty::RegionTraitStore(..), &ty::RegionTraitStore(..)) =>
cenv.onceness,
(&ty::UniqTraitStore, _) => ast::Once,
(&ty::RegionTraitStore(..), _) => ast::Many,
};
(Some(sig), onceness, cenv.bounds)
}
_ => {
// Not an error! Means we're inferring the closure type
let (bounds, onceness) = match expr.node {
ast::ExprProc(..) => {
let mut bounds = ty::region_existential_bound(ty::ReStatic);
bounds.builtin_bounds.insert(ty::BoundSend); // FIXME
(bounds, ast::Once)
}
_ => {
let region = fcx.infcx().next_region_var(
infer::AddrOfRegion(expr.span));
(ty::region_existential_bound(region), ast::Many)
}
};
(None, onceness, bounds)
}
}
};
// construct the function type
let fn_ty = astconv::ty_of_closure(fcx,
ast::NormalFn,
expected_onceness,
expected_bounds,
store,
decl,
abi::Rust,
expected_sig);
let fty_sig = fn_ty.sig.clone();
let fty = ty::mk_closure(tcx, fn_ty);
debug!("check_expr_fn fty={}", fcx.infcx().ty_to_string(fty));
fcx.write_ty(expr.id, fty);
// If the closure is a stack closure and hasn't had some non-standard
// style inferred for it, then check it under its parent's style.
// Otherwise, use its own
let (inherited_style, inherited_style_id) = match store {
ty::RegionTraitStore(..) => (fcx.ps.borrow().fn_style,
fcx.ps.borrow().def),
ty::UniqTraitStore => (ast::NormalFn, expr.id)
};
check_fn(fcx.ccx,
inherited_style,
inherited_style_id,
&fty_sig,
&*decl,
expr.id,
&*body,
fcx.inh);
}
// Check field access expressions
fn check_field(fcx: &FnCtxt,
expr: &ast::Expr,
......@@ -4326,27 +4157,11 @@ fn check_struct_fields_on_error(fcx: &FnCtxt,
ast::ExprMatch(ref discrim, ref arms, _) => {
_match::check_match(fcx, expr, &**discrim, arms.as_slice());
}
ast::ExprFnBlock(_, ref decl, ref body) => {
let region = astconv::opt_ast_region_to_region(fcx,
fcx.infcx(),
expr.span,
&None);
check_expr_fn(fcx,
expr,
ty::RegionTraitStore(region, ast::MutMutable),
&**decl,
&**body,
expected);
}
ast::ExprUnboxedFn(_, kind, ref decl, ref body) => {
check_unboxed_closure(fcx,
expr,
kind,
&**decl,
&**body);
ast::ExprClosure(_, opt_kind, ref decl, ref body) => {
closure::check_expr_closure(fcx, expr, opt_kind, &**decl, &**body, expected);
}
ast::ExprProc(ref decl, ref body) => {
check_expr_fn(fcx,
closure::check_boxed_closure(fcx,
expr,
ty::UniqTraitStore,
&**decl,
......
......@@ -742,9 +742,8 @@ fn visit_expr(rcx: &mut Rcx, expr: &ast::Expr) {
visit::walk_expr(rcx, expr);
}
ast::ExprFnBlock(_, _, ref body) |
ast::ExprProc(_, ref body) |
ast::ExprUnboxedFn(_, _, _, ref body) => {
ast::ExprClosure(_, _, _, ref body) => {
check_expr_fn_block(rcx, expr, &**body);
}
......
......@@ -122,9 +122,8 @@ fn visit_expr(&mut self, e: &ast::Expr) {
MethodCall::expr(e.id));
match e.node {
ast::ExprFnBlock(_, ref decl, _) |
ast::ExprProc(ref decl, _) |
ast::ExprUnboxedFn(_, _, ref decl, _) => {
ast::ExprClosure(_, _, ref decl, _) |
ast::ExprProc(ref decl, _) => {
for input in decl.inputs.iter() {
let _ = self.visit_node_id(ResolvingExpr(e.span),
input.id);
......
......@@ -241,8 +241,7 @@ pub enum SawExprComponent<'a> {
SawExprIf,
SawExprWhile,
SawExprMatch,
SawExprFnBlock,
SawExprUnboxedFn,
SawExprClosure,
SawExprProc,
SawExprBlock,
SawExprAssign,
......@@ -274,8 +273,7 @@ fn saw_expr<'a>(node: &'a Expr_) -> SawExprComponent<'a> {
ExprWhile(..) => SawExprWhile,
ExprLoop(_, id) => SawExprLoop(id.map(content)),
ExprMatch(..) => SawExprMatch,
ExprFnBlock(..) => SawExprFnBlock,
ExprUnboxedFn(..) => SawExprUnboxedFn,
ExprClosure(..) => SawExprClosure,
ExprProc(..) => SawExprProc,
ExprBlock(..) => SawExprBlock,
ExprAssign(..) => SawExprAssign,
......
......@@ -1345,7 +1345,7 @@ fn visit_expr(&mut self, ex: &ast::Expr) {
"Expected struct type, but not ty_struct"),
}
},
ast::ExprFnBlock(_, ref decl, ref body) => {
ast::ExprClosure(_, _, ref decl, ref body) => {
if generated_code(body.span) {
return
}
......
......@@ -1385,9 +1385,8 @@ fn has_nested_returns(tcx: &ty::ctxt, id: ast::NodeId) -> bool {
}
Some(ast_map::NodeExpr(e)) => {
match e.node {
ast::ExprFnBlock(_, _, ref blk) |
ast::ExprProc(_, ref blk) |
ast::ExprUnboxedFn(_, _, _, ref blk) => {
ast::ExprClosure(_, _, _, ref blk) |
ast::ExprProc(_, ref blk) => {
let mut explicit = CheckForNestedReturnsVisitor::explicit();
let mut implicit = CheckForNestedReturnsVisitor::implicit();
visit::walk_expr(&mut explicit, e);
......
......@@ -1232,9 +1232,8 @@ pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
}
ast_map::NodeExpr(ref expr) => {
match expr.node {
ast::ExprFnBlock(_, ref fn_decl, ref top_level_block) |
ast::ExprProc(ref fn_decl, ref top_level_block) |
ast::ExprUnboxedFn(_, _, ref fn_decl, ref top_level_block) => {
ast::ExprClosure(_, _, ref fn_decl, ref top_level_block) => {
let name = format!("fn{}", token::gensym("fn"));
let name = token::str_to_ident(name.as_slice());
(name, &**fn_decl,
......@@ -1310,7 +1309,7 @@ pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
file_metadata,
&mut function_name);
// There is no ast_map::Path for ast::ExprFnBlock-type functions. For now,
// There is no ast_map::Path for ast::ExprClosure-type functions. For now,
// just don't put them into a namespace. In the future this could be improved
// somehow (storing a path in the ast_map, or construct a path using the
// enclosing function).
......@@ -3578,9 +3577,8 @@ fn walk_expr(cx: &CrateContext,
})
}
ast::ExprFnBlock(_, ref decl, ref block) |
ast::ExprProc(ref decl, ref block) |
ast::ExprUnboxedFn(_, _, ref decl, ref block) => {
ast::ExprClosure(_, _, ref decl, ref block) => {
with_new_scope(cx,
block.span,
scope_stack,
......
......@@ -77,6 +77,7 @@
use trans::type_::Type;
use syntax::ast;
use syntax::ast_util;
use syntax::codemap;
use syntax::print::pprust::{expr_to_string};
use syntax::ptr::P;
......@@ -1070,16 +1071,23 @@ fn trans_rvalue_dps_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
ast::ExprVec(..) | ast::ExprRepeat(..) => {
tvec::trans_fixed_vstore(bcx, expr, dest)
}
ast::ExprFnBlock(_, ref decl, ref body) |
ast::ExprClosure(_, _, ref decl, ref body) |
ast::ExprProc(ref decl, ref body) => {
// Check the side-table to see whether this is an unboxed
// closure or an older, legacy style closure. Store this
// into a variable to ensure the the RefCell-lock is
// released before we recurse.
let is_unboxed_closure =
bcx.tcx().unboxed_closures.borrow().contains_key(&ast_util::local_def(expr.id));
if is_unboxed_closure {
closure::trans_unboxed_closure(bcx, &**decl, &**body, expr.id, dest)
} else {
let expr_ty = expr_ty(bcx, expr);
let store = ty::ty_closure_store(expr_ty);
debug!("translating block function {} with type {}",
expr_to_string(expr), expr_ty.repr(tcx));
closure::trans_expr_fn(bcx, store, &**decl, &**body, expr.id, dest)
}
ast::ExprUnboxedFn(_, _, ref decl, ref body) => {
closure::trans_unboxed_closure(bcx, &**decl, &**body, expr.id, dest)
}
ast::ExprCall(ref f, ref args) => {
if bcx.tcx().is_method_call(expr.id) {
......
......@@ -667,9 +667,8 @@ pub enum Expr_ {
// FIXME #6993: change to Option<Name> ... or not, if these are hygienic.
ExprLoop(P<Block>, Option<Ident>),
ExprMatch(P<Expr>, Vec<Arm>, MatchSource),
ExprFnBlock(CaptureClause, P<FnDecl>, P<Block>),
ExprClosure(CaptureClause, Option<UnboxedClosureKind>, P<FnDecl>, P<Block>),
ExprProc(P<FnDecl>, P<Block>),
ExprUnboxedFn(CaptureClause, UnboxedClosureKind, P<FnDecl>, P<Block>),
ExprBlock(P<Block>),
ExprAssign(P<Expr>, P<Expr>),
......
......@@ -37,7 +37,7 @@
///
/// More specifically, it is one of either:
/// - A function item,
/// - A closure expr (i.e. an ExprFnBlock or ExprProc), or
/// - A closure expr (i.e. an ExprClosure or ExprProc), or
/// - The default implementation for a trait method.
///
/// To construct one, use the `Code::from_node` function.
......@@ -71,7 +71,7 @@ fn is_fn_like(&self) -> bool {
impl MaybeFnLike for ast::Expr {
fn is_fn_like(&self) -> bool {
match self.node {
ast::ExprFnBlock(..) | ast::ExprProc(..) => true,
ast::ExprClosure(..) | ast::ExprProc(..) => true,
_ => false,
}
}
......@@ -215,7 +215,7 @@ fn handle<A>(self,
}
}
ast_map::NodeExpr(e) => match e.node {
ast::ExprFnBlock(_, ref decl, ref block) =>
ast::ExprClosure(_, _, ref decl, ref block) =>
closure(ClosureParts::new(&**decl, &**block, e.id, e.span)),
ast::ExprProc(ref decl, ref block) =>
closure(ClosureParts::new(&**decl, &**block, e.id, e.span)),
......
......@@ -864,14 +864,14 @@ fn expr_loop(&self, span: Span, block: P<ast::Block>) -> P<ast::Expr> {
fn lambda_fn_decl(&self, span: Span,
fn_decl: P<ast::FnDecl>, blk: P<ast::Block>) -> P<ast::Expr> {
self.expr(span, ast::ExprFnBlock(ast::CaptureByRef, fn_decl, blk))
self.expr(span, ast::ExprClosure(ast::CaptureByRef, None, fn_decl, blk))
}
fn lambda(&self, span: Span, ids: Vec<ast::Ident>, blk: P<ast::Block>) -> P<ast::Expr> {
let fn_decl = self.fn_decl(
ids.iter().map(|id| self.arg(span, *id, self.ty_infer(span))).collect(),
self.ty_infer(span));
self.expr(span, ast::ExprFnBlock(ast::CaptureByRef, fn_decl, blk))
self.expr(span, ast::ExprClosure(ast::CaptureByRef, None, fn_decl, blk))
}
fn lambda0(&self, span: Span, blk: P<ast::Block>) -> P<ast::Expr> {
self.lambda(span, Vec::new(), blk)
......
......@@ -207,10 +207,11 @@ pub fn expand_expr(e: P<ast::Expr>, fld: &mut MacroExpander) -> P<ast::Expr> {
fld.cx.expr(span, ast::ExprForLoop(pat, head, body, opt_ident))
}
ast::ExprFnBlock(capture_clause, fn_decl, block) => {
ast::ExprClosure(capture_clause, opt_kind, fn_decl, block) => {
let (rewritten_fn_decl, rewritten_block)
= expand_and_rename_fn_decl_and_block(fn_decl, block, fld);
let new_node = ast::ExprFnBlock(capture_clause,
let new_node = ast::ExprClosure(capture_clause,
opt_kind,
rewritten_fn_decl,
rewritten_block);
P(ast::Expr{id:id, node: new_node, span: fld.new_span(span)})
......@@ -1555,7 +1556,7 @@ fn z() {match 8 {x => bad_macro!(x)}}",
0)
}
// closure arg hygiene (ExprFnBlock)
// closure arg hygiene (ExprClosure)
// expands to fn f(){(|x_1 : int| {(x_2 + x_1)})(3);}
#[test] fn closure_arg_hygiene(){
run_renaming_test(
......
......@@ -309,7 +309,7 @@ fn visit_ty(&mut self, t: &ast::Ty) {
fn visit_expr(&mut self, e: &ast::Expr) {
match e.node {
ast::ExprUnboxedFn(..) => {
ast::ExprClosure(_, Some(_), _, _) => {
self.gate_feature("unboxed_closures",
e.span,
"unboxed closures are a work-in-progress \
......
......@@ -1326,18 +1326,13 @@ pub fn noop_fold_expr<T: Folder>(Expr {id, node, span}: Expr, folder: &mut T) ->
arms.move_map(|x| folder.fold_arm(x)),
source)
}
ExprFnBlock(capture_clause, decl, body) => {
ExprFnBlock(capture_clause,
folder.fold_fn_decl(decl),
folder.fold_block(body))
}
ExprProc(decl, body) => {
ExprProc(folder.fold_fn_decl(decl),
folder.fold_block(body))
}
ExprUnboxedFn(capture_clause, kind, decl, body) => {
ExprUnboxedFn(capture_clause,
kind,
ExprClosure(capture_clause, opt_kind, decl, body) => {
ExprClosure(capture_clause,
opt_kind,
folder.fold_fn_decl(decl),
folder.fold_block(body))
}
......
......@@ -25,10 +25,10 @@
use ast::{Expr, Expr_, ExprAddrOf, ExprMatch, ExprAgain};
use ast::{ExprAssign, ExprAssignOp, ExprBinary, ExprBlock, ExprBox};
use ast::{ExprBreak, ExprCall, ExprCast};
use ast::{ExprField, ExprTupField, ExprFnBlock, ExprIf, ExprIfLet, ExprIndex, ExprSlice};
use ast::{ExprField, ExprTupField, ExprClosure, ExprIf, ExprIfLet, ExprIndex, ExprSlice};
use ast::{ExprLit, ExprLoop, ExprMac};
use ast::{ExprMethodCall, ExprParen, ExprPath, ExprProc};
use ast::{ExprRepeat, ExprRet, ExprStruct, ExprTup, ExprUnary, ExprUnboxedFn};
use ast::{ExprRepeat, ExprRet, ExprStruct, ExprTup, ExprUnary};
use ast::{ExprVec, ExprWhile, ExprWhileLet, ExprForLoop, Field, FnDecl};
use ast::{Once, Many};
use ast::{FnUnboxedClosureKind, FnMutUnboxedClosureKind};
......@@ -2999,7 +2999,8 @@ pub fn parse_if_let_expr(&mut self) -> P<Expr> {
// `|args| expr`
pub fn parse_lambda_expr(&mut self, capture_clause: CaptureClause)
-> P<Expr> {
-> P<Expr>
{
let lo = self.span.lo;
let (decl, optional_unboxed_closure_kind) =
self.parse_fn_block_decl();
......@@ -3013,21 +3014,10 @@ pub fn parse_lambda_expr(&mut self, capture_clause: CaptureClause)
rules: DefaultBlock,
});
match optional_unboxed_closure_kind {
Some(unboxed_closure_kind) => {
self.mk_expr(lo,
fakeblock.span.hi,
ExprUnboxedFn(capture_clause,
unboxed_closure_kind,
decl,
fakeblock))
}
None => {
self.mk_expr(lo,
self.mk_expr(
lo,
fakeblock.span.hi,
ExprFnBlock(capture_clause, decl, fakeblock))
}
}
ExprClosure(capture_clause, optional_unboxed_closure_kind, decl, fakeblock))
}
pub fn parse_else_expr(&mut self) -> P<Expr> {
......
......@@ -444,9 +444,8 @@ pub fn visibility_qualified(vis: ast::Visibility, s: &str) -> String {
fn needs_parentheses(expr: &ast::Expr) -> bool {
match expr.node {
ast::ExprAssign(..) | ast::ExprBinary(..) |
ast::ExprFnBlock(..) | ast::ExprProc(..) |
ast::ExprUnboxedFn(..) | ast::ExprAssignOp(..) |
ast::ExprCast(..) => true,
ast::ExprClosure(..) | ast::ExprProc(..) |
ast::ExprAssignOp(..) | ast::ExprCast(..) => true,
_ => false,
}
}
......@@ -1662,49 +1661,11 @@ pub fn print_expr(&mut self, expr: &ast::Expr) -> IoResult<()> {
}
try!(self.bclose_(expr.span, indent_unit));
}
ast::ExprFnBlock(capture_clause, ref decl, ref body) => {
ast::ExprClosure(capture_clause, opt_kind, ref decl, ref body) => {
try!(self.print_capture_clause(capture_clause));
// in do/for blocks we don't want to show an empty
// argument list, but at this point we don't know which
// we are inside.
//
// if !decl.inputs.is_empty() {
try!(self.print_fn_block_args(&**decl, None));
try!(self.print_fn_block_args(&**decl, opt_kind));
try!(space(&mut self.s));
// }
if !body.stmts.is_empty() || !body.expr.is_some() {
try!(self.print_block_unclosed(&**body));
} else {
// we extract the block, so as not to create another set of boxes
match body.expr.as_ref().unwrap().node {
ast::ExprBlock(ref blk) => {
try!(self.print_block_unclosed(&**blk));
}
_ => {
// this is a bare expression
try!(self.print_expr(&**body.expr.as_ref().unwrap()));
try!(self.end()); // need to close a box
}
}
}
// a box will be closed by print_expr, but we didn't want an overall
// wrapper so we closed the corresponding opening. so create an
// empty box to satisfy the close.
try!(self.ibox(0));
}
ast::ExprUnboxedFn(capture_clause, kind, ref decl, ref body) => {
try!(self.print_capture_clause(capture_clause));
// in do/for blocks we don't want to show an empty
// argument list, but at this point we don't know which
// we are inside.
//
// if !decl.inputs.is_empty() {
try!(self.print_fn_block_args(&**decl, Some(kind)));
try!(space(&mut self.s));
// }
if !body.stmts.is_empty() || !body.expr.is_some() {
try!(self.print_block_unclosed(&**body));
......
......@@ -815,14 +815,7 @@ pub fn walk_expr<'v, V: Visitor<'v>>(visitor: &mut V, expression: &'v Expr) {
visitor.visit_arm(arm)
}
}
ExprFnBlock(_, ref function_declaration, ref body) => {
visitor.visit_fn(FkFnBlock,
&**function_declaration,
&**body,
expression.span,
expression.id)
}
ExprUnboxedFn(_, _, ref function_declaration, ref body) => {
ExprClosure(_, _, ref function_declaration, ref body) => {
visitor.visit_fn(FkFnBlock,
&**function_declaration,
&**body,
......
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(unboxed_closures)]
fn with_int(f: &mut FnMut(&int)) {
}
fn main() {
let mut x: Option<&int> = None;
with_int(&mut |&mut: y| x = Some(y)); //~ ERROR cannot infer
}
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// That a closure whose expected argument types include two distinct
// bound regions.
#![feature(unboxed_closures)]
use std::cell::Cell;
fn doit<T,F>(val: T, f: &F)
where F : Fn(&Cell<&T>, &T)
{
let x = Cell::new(&val);
f.call((&x,&val))
}
pub fn main() {
doit(0i, &|&: x, y| {
x.set(y); //~ ERROR cannot infer
});
}
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Test that we are able to infer that the type of `x` is `int` based
// on the expected type from the object.
#![feature(unboxed_closures)]
fn doit<T,F>(val: T, f: &F)
where F : Fn(T)
{
f.call((val,))
}
pub fn main() {
doit(0i, &|&: x /*: int*/ | { x.to_int(); });
}
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Test that we are able to infer that the type of `x` is `int` based
// on the expected type from the object.
#![feature(unboxed_closures)]
fn doit<T>(val: T, f: &Fn(T)) { f.call((val,)) }
pub fn main() {
doit(0i, &|&: x /*: int*/ | { x.to_int(); });
}
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Test that we are able to infer that the type of `x` is `int` based
// on the expected type from the object.
#![feature(unboxed_closures)]
fn doit<T,F>(val: T, f: &F)
where F : Fn(&T)
{
f.call((&val,))
}
pub fn main() {
doit(0i, &|&: x /*: int*/ | { x.to_int(); });
}
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Test that we can infer the "kind" of an unboxed closure based on
// the expected type.
#![feature(unboxed_closures)]
// Test by-ref capture of environment in unboxed closure types
fn call_fn<F: Fn()>(f: F) {
f()
}
fn call_fn_mut<F: FnMut()>(mut f: F) {
f()
}
fn call_fn_once<F: FnOnce()>(f: F) {
f()
}
fn main() {
let mut x = 0u;
let y = 2u;
call_fn(|| assert_eq!(x, 0));
call_fn_mut(|| x += y);
call_fn_once(|| x += y);
assert_eq!(x, y * 2);
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册