Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
梦想橡皮擦
Python 爬虫120例
提交
5436a4e1
Python 爬虫120例
项目概览
梦想橡皮擦
/
Python 爬虫120例
通知
6424
Star
761
Fork
392
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
Python 爬虫120例
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
5436a4e1
编写于
4月 26, 2022
作者:
梦想橡皮擦
💬
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
当乐网
上级
9bc9b120
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
720 addition
and
4 deletion
+720
-4
加密JS/当乐网登录JS加密.js
加密JS/当乐网登录JS加密.js
+720
-4
未找到文件。
加密JS/当乐网登录JS加密.js
浏览文件 @
5436a4e1
/*
/*
* Copyright (c) 2015 Eric Wilde.
* Copyright (c) 2015 Eric Wilde.
* Copyright 1998-2015 David Shapiro.
* Copyright 1998-2015 David Shapiro.
*
*
...
@@ -596,12 +596,729 @@ function decryptedString(key, c)
...
@@ -596,12 +596,729 @@ function decryptedString(key, c)
*/
*/
return
(
result
);
return
(
result
);
}
}
// BigInt, a suite of routines for performing multiple-precision arithmetic in
// JavaScript.
//
// Copyright 1998-2005 David Shapiro.
//
// You may use, re-use, abuse,
// copy, and modify this code to your liking, but please keep this header.
// Thanks!
//
// Dave Shapiro
// dave@ohdave.com
// IMPORTANT THING: Be sure to set maxDigits according to your precision
// needs. Use the setMaxDigits() function to do this. See comments below.
//
// Tweaked by Ian Bunning
// Alterations:
// Fix bug in function biFromHex(s) to allow
// parsing of strings of length != 0 (mod 4)
// Changes made by Dave Shapiro as of 12/30/2004:
//
// The BigInt() constructor doesn't take a string anymore. If you want to
// create a BigInt from a string, use biFromDecimal() for base-10
// representations, biFromHex() for base-16 representations, or
// biFromString() for base-2-to-36 representations.
//
// biFromArray() has been removed. Use biCopy() instead, passing a BigInt
// instead of an array.
//
// The BigInt() constructor now only constructs a zeroed-out array.
// Alternatively, if you pass <true>, it won't construct any array. See the
// biCopy() method for an example of this.
//
// Be sure to set maxDigits depending on your precision needs. The default
// zeroed-out array ZERO_ARRAY is constructed inside the setMaxDigits()
// function. So use this function to set the variable. DON'T JUST SET THE
// VALUE. USE THE FUNCTION.
//
// ZERO_ARRAY exists to hopefully speed up construction of BigInts(). By
// precalculating the zero array, we can just use slice(0) to make copies of
// it. Presumably this calls faster native code, as opposed to setting the
// elements one at a time. I have not done any timing tests to verify this
// claim.
// Max number = 10^16 - 2 = 9999999999999998;
// 2^53 = 9007199254740992;
var
biRadixBase
=
2
;
var
biRadixBits
=
16
;
var
bitsPerDigit
=
biRadixBits
;
var
biRadix
=
1
<<
16
;
// = 2^16 = 65536
var
biHalfRadix
=
biRadix
>>>
1
;
var
biRadixSquared
=
biRadix
*
biRadix
;
var
maxDigitVal
=
biRadix
-
1
;
var
maxInteger
=
9999999999999998
;
// maxDigits:
// Change this to accommodate your largest number size. Use setMaxDigits()
// to change it!
//
// In general, if you're working with numbers of size N bits, you'll need 2*N
// bits of storage. Each digit holds 16 bits. So, a 1024-bit key will need
//
// 1024 * 2 / 16 = 128 digits of storage.
//
var
maxDigits
;
var
ZERO_ARRAY
;
var
bigZero
,
bigOne
;
function
setMaxDigits
(
value
)
{
maxDigits
=
value
;
ZERO_ARRAY
=
new
Array
(
maxDigits
);
for
(
var
iza
=
0
;
iza
<
ZERO_ARRAY
.
length
;
iza
++
)
ZERO_ARRAY
[
iza
]
=
0
;
bigZero
=
new
BigInt
();
bigOne
=
new
BigInt
();
bigOne
.
digits
[
0
]
=
1
;
}
setMaxDigits
(
20
);
// The maximum number of digits in base 10 you can convert to an
// integer without JavaScript throwing up on you.
var
dpl10
=
15
;
// lr10 = 10 ^ dpl10
var
lr10
=
biFromNumber
(
1000000000000000
);
function
BigInt
(
flag
)
{
if
(
typeof
flag
==
"
boolean
"
&&
flag
==
true
)
{
this
.
digits
=
null
;
}
else
{
this
.
digits
=
ZERO_ARRAY
.
slice
(
0
);
}
this
.
isNeg
=
false
;
}
function
biFromDecimal
(
s
)
{
var
isNeg
=
s
.
charAt
(
0
)
==
'
-
'
;
var
i
=
isNeg
?
1
:
0
;
var
result
;
// Skip leading zeros.
while
(
i
<
s
.
length
&&
s
.
charAt
(
i
)
==
'
0
'
)
++
i
;
if
(
i
==
s
.
length
)
{
result
=
new
BigInt
();
}
else
{
var
digitCount
=
s
.
length
-
i
;
var
fgl
=
digitCount
%
dpl10
;
if
(
fgl
==
0
)
fgl
=
dpl10
;
result
=
biFromNumber
(
Number
(
s
.
substr
(
i
,
fgl
)));
i
+=
fgl
;
while
(
i
<
s
.
length
)
{
result
=
biAdd
(
biMultiply
(
result
,
lr10
),
biFromNumber
(
Number
(
s
.
substr
(
i
,
dpl10
))));
i
+=
dpl10
;
}
result
.
isNeg
=
isNeg
;
}
return
result
;
}
function
biCopy
(
bi
)
{
var
result
=
new
BigInt
(
true
);
result
.
digits
=
bi
.
digits
.
slice
(
0
);
result
.
isNeg
=
bi
.
isNeg
;
return
result
;
}
function
biFromNumber
(
i
)
{
var
result
=
new
BigInt
();
result
.
isNeg
=
i
<
0
;
i
=
Math
.
abs
(
i
);
var
j
=
0
;
while
(
i
>
0
)
{
result
.
digits
[
j
++
]
=
i
&
maxDigitVal
;
i
>>=
biRadixBits
;
}
return
result
;
}
function
reverseStr
(
s
)
{
var
result
=
""
;
for
(
var
i
=
s
.
length
-
1
;
i
>
-
1
;
--
i
)
{
result
+=
s
.
charAt
(
i
);
}
return
result
;
}
var
hexatrigesimalToChar
=
new
Array
(
'
0
'
,
'
1
'
,
'
2
'
,
'
3
'
,
'
4
'
,
'
5
'
,
'
6
'
,
'
7
'
,
'
8
'
,
'
9
'
,
'
a
'
,
'
b
'
,
'
c
'
,
'
d
'
,
'
e
'
,
'
f
'
,
'
g
'
,
'
h
'
,
'
i
'
,
'
j
'
,
'
k
'
,
'
l
'
,
'
m
'
,
'
n
'
,
'
o
'
,
'
p
'
,
'
q
'
,
'
r
'
,
'
s
'
,
'
t
'
,
'
u
'
,
'
v
'
,
'
w
'
,
'
x
'
,
'
y
'
,
'
z
'
);
function
biToString
(
x
,
radix
)
// 2 <= radix <= 36
{
var
b
=
new
BigInt
();
b
.
digits
[
0
]
=
radix
;
var
qr
=
biDivideModulo
(
x
,
b
);
var
result
=
hexatrigesimalToChar
[
qr
[
1
].
digits
[
0
]];
while
(
biCompare
(
qr
[
0
],
bigZero
)
==
1
)
{
qr
=
biDivideModulo
(
qr
[
0
],
b
);
digit
=
qr
[
1
].
digits
[
0
];
result
+=
hexatrigesimalToChar
[
qr
[
1
].
digits
[
0
]];
}
return
(
x
.
isNeg
?
"
-
"
:
""
)
+
reverseStr
(
result
);
}
function
biToDecimal
(
x
)
{
var
b
=
new
BigInt
();
b
.
digits
[
0
]
=
10
;
var
qr
=
biDivideModulo
(
x
,
b
);
var
result
=
String
(
qr
[
1
].
digits
[
0
]);
while
(
biCompare
(
qr
[
0
],
bigZero
)
==
1
)
{
qr
=
biDivideModulo
(
qr
[
0
],
b
);
result
+=
String
(
qr
[
1
].
digits
[
0
]);
}
return
(
x
.
isNeg
?
"
-
"
:
""
)
+
reverseStr
(
result
);
}
var
hexToChar
=
new
Array
(
'
0
'
,
'
1
'
,
'
2
'
,
'
3
'
,
'
4
'
,
'
5
'
,
'
6
'
,
'
7
'
,
'
8
'
,
'
9
'
,
'
a
'
,
'
b
'
,
'
c
'
,
'
d
'
,
'
e
'
,
'
f
'
);
function
digitToHex
(
n
)
{
var
mask
=
0xf
;
var
result
=
""
;
for
(
i
=
0
;
i
<
4
;
++
i
)
{
result
+=
hexToChar
[
n
&
mask
];
n
>>>=
4
;
}
return
reverseStr
(
result
);
}
function
biToHex
(
x
)
{
var
result
=
""
;
var
n
=
biHighIndex
(
x
);
for
(
var
i
=
biHighIndex
(
x
);
i
>
-
1
;
--
i
)
{
result
+=
digitToHex
(
x
.
digits
[
i
]);
}
return
result
;
}
function
charToHex
(
c
)
{
var
ZERO
=
48
;
var
NINE
=
ZERO
+
9
;
var
littleA
=
97
;
var
littleZ
=
littleA
+
25
;
var
bigA
=
65
;
var
bigZ
=
65
+
25
;
var
result
;
if
(
c
>=
ZERO
&&
c
<=
NINE
)
{
result
=
c
-
ZERO
;
}
else
if
(
c
>=
bigA
&&
c
<=
bigZ
)
{
result
=
10
+
c
-
bigA
;
}
else
if
(
c
>=
littleA
&&
c
<=
littleZ
)
{
result
=
10
+
c
-
littleA
;
}
else
{
result
=
0
;
}
return
result
;
}
function
hexToDigit
(
s
)
{
var
result
=
0
;
var
sl
=
Math
.
min
(
s
.
length
,
4
);
for
(
var
i
=
0
;
i
<
sl
;
++
i
)
{
result
<<=
4
;
result
|=
charToHex
(
s
.
charCodeAt
(
i
))
}
return
result
;
}
function
biFromHex
(
s
)
{
var
result
=
new
BigInt
();
var
sl
=
s
.
length
;
for
(
var
i
=
sl
,
j
=
0
;
i
>
0
;
i
-=
4
,
++
j
)
{
result
.
digits
[
j
]
=
hexToDigit
(
s
.
substr
(
Math
.
max
(
i
-
4
,
0
),
Math
.
min
(
i
,
4
)));
}
return
result
;
}
function
biFromString
(
s
,
radix
)
{
var
isNeg
=
s
.
charAt
(
0
)
==
'
-
'
;
var
istop
=
isNeg
?
1
:
0
;
var
result
=
new
BigInt
();
var
place
=
new
BigInt
();
place
.
digits
[
0
]
=
1
;
// radix^0
for
(
var
i
=
s
.
length
-
1
;
i
>=
istop
;
i
--
)
{
var
c
=
s
.
charCodeAt
(
i
);
var
digit
=
charToHex
(
c
);
var
biDigit
=
biMultiplyDigit
(
place
,
digit
);
result
=
biAdd
(
result
,
biDigit
);
place
=
biMultiplyDigit
(
place
,
radix
);
}
result
.
isNeg
=
isNeg
;
return
result
;
}
function
biToBytes
(
x
)
// Returns a string containing raw bytes.
{
var
result
=
""
;
for
(
var
i
=
biHighIndex
(
x
);
i
>
-
1
;
--
i
)
{
result
+=
digitToBytes
(
x
.
digits
[
i
]);
}
return
result
;
}
function
digitToBytes
(
n
)
// Convert two-byte digit to string containing both bytes.
{
var
c1
=
String
.
fromCharCode
(
n
&
0xff
);
n
>>>=
8
;
var
c2
=
String
.
fromCharCode
(
n
&
0xff
);
return
c2
+
c1
;
}
function
biDump
(
b
)
{
return
(
b
.
isNeg
?
"
-
"
:
""
)
+
b
.
digits
.
join
(
"
"
);
}
function
biAdd
(
x
,
y
)
{
var
result
;
if
(
x
.
isNeg
!=
y
.
isNeg
)
{
y
.
isNeg
=
!
y
.
isNeg
;
result
=
biSubtract
(
x
,
y
);
y
.
isNeg
=
!
y
.
isNeg
;
}
else
{
result
=
new
BigInt
();
var
c
=
0
;
var
n
;
for
(
var
i
=
0
;
i
<
x
.
digits
.
length
;
++
i
)
{
n
=
x
.
digits
[
i
]
+
y
.
digits
[
i
]
+
c
;
result
.
digits
[
i
]
=
n
&
0xffff
;
c
=
Number
(
n
>=
biRadix
);
}
result
.
isNeg
=
x
.
isNeg
;
}
return
result
;
}
function
biSubtract
(
x
,
y
)
{
var
result
;
if
(
x
.
isNeg
!=
y
.
isNeg
)
{
y
.
isNeg
=
!
y
.
isNeg
;
result
=
biAdd
(
x
,
y
);
y
.
isNeg
=
!
y
.
isNeg
;
}
else
{
result
=
new
BigInt
();
var
n
,
c
;
c
=
0
;
for
(
var
i
=
0
;
i
<
x
.
digits
.
length
;
++
i
)
{
n
=
x
.
digits
[
i
]
-
y
.
digits
[
i
]
+
c
;
result
.
digits
[
i
]
=
n
&
0xffff
;
// Stupid non-conforming modulus operation.
if
(
result
.
digits
[
i
]
<
0
)
result
.
digits
[
i
]
+=
biRadix
;
c
=
0
-
Number
(
n
<
0
);
}
// Fix up the negative sign, if any.
if
(
c
==
-
1
)
{
c
=
0
;
for
(
var
i
=
0
;
i
<
x
.
digits
.
length
;
++
i
)
{
n
=
0
-
result
.
digits
[
i
]
+
c
;
result
.
digits
[
i
]
=
n
&
0xffff
;
// Stupid non-conforming modulus operation.
if
(
result
.
digits
[
i
]
<
0
)
result
.
digits
[
i
]
+=
biRadix
;
c
=
0
-
Number
(
n
<
0
);
}
// Result is opposite sign of arguments.
result
.
isNeg
=
!
x
.
isNeg
;
}
else
{
// Result is same sign.
result
.
isNeg
=
x
.
isNeg
;
}
}
return
result
;
}
function
biHighIndex
(
x
)
{
var
result
=
x
.
digits
.
length
-
1
;
while
(
result
>
0
&&
x
.
digits
[
result
]
==
0
)
--
result
;
return
result
;
}
function
biNumBits
(
x
)
{
var
n
=
biHighIndex
(
x
);
var
d
=
x
.
digits
[
n
];
var
m
=
(
n
+
1
)
*
bitsPerDigit
;
var
result
;
for
(
result
=
m
;
result
>
m
-
bitsPerDigit
;
--
result
)
{
if
((
d
&
0x8000
)
!=
0
)
break
;
d
<<=
1
;
}
return
result
;
}
function
biMultiply
(
x
,
y
)
{
var
result
=
new
BigInt
();
var
c
;
var
n
=
biHighIndex
(
x
);
var
t
=
biHighIndex
(
y
);
var
u
,
uv
,
k
;
for
(
var
i
=
0
;
i
<=
t
;
++
i
)
{
c
=
0
;
k
=
i
;
for
(
j
=
0
;
j
<=
n
;
++
j
,
++
k
)
{
uv
=
result
.
digits
[
k
]
+
x
.
digits
[
j
]
*
y
.
digits
[
i
]
+
c
;
result
.
digits
[
k
]
=
uv
&
maxDigitVal
;
c
=
uv
>>>
biRadixBits
;
}
result
.
digits
[
i
+
n
+
1
]
=
c
;
}
// Someone give me a logical xor, please.
result
.
isNeg
=
x
.
isNeg
!=
y
.
isNeg
;
return
result
;
}
function
biMultiplyDigit
(
x
,
y
)
{
var
n
,
c
,
uv
;
result
=
new
BigInt
();
n
=
biHighIndex
(
x
);
c
=
0
;
for
(
var
j
=
0
;
j
<=
n
;
++
j
)
{
uv
=
result
.
digits
[
j
]
+
x
.
digits
[
j
]
*
y
+
c
;
result
.
digits
[
j
]
=
uv
&
maxDigitVal
;
c
=
uv
>>>
biRadixBits
;
}
result
.
digits
[
1
+
n
]
=
c
;
return
result
;
}
function
arrayCopy
(
src
,
srcStart
,
dest
,
destStart
,
n
)
{
var
m
=
Math
.
min
(
srcStart
+
n
,
src
.
length
);
for
(
var
i
=
srcStart
,
j
=
destStart
;
i
<
m
;
++
i
,
++
j
)
{
dest
[
j
]
=
src
[
i
];
}
}
var
highBitMasks
=
new
Array
(
0x0000
,
0x8000
,
0xC000
,
0xE000
,
0xF000
,
0xF800
,
0xFC00
,
0xFE00
,
0xFF00
,
0xFF80
,
0xFFC0
,
0xFFE0
,
0xFFF0
,
0xFFF8
,
0xFFFC
,
0xFFFE
,
0xFFFF
);
function
biShiftLeft
(
x
,
n
)
{
var
digitCount
=
Math
.
floor
(
n
/
bitsPerDigit
);
var
result
=
new
BigInt
();
arrayCopy
(
x
.
digits
,
0
,
result
.
digits
,
digitCount
,
result
.
digits
.
length
-
digitCount
);
var
bits
=
n
%
bitsPerDigit
;
var
rightBits
=
bitsPerDigit
-
bits
;
for
(
var
i
=
result
.
digits
.
length
-
1
,
i1
=
i
-
1
;
i
>
0
;
--
i
,
--
i1
)
{
result
.
digits
[
i
]
=
((
result
.
digits
[
i
]
<<
bits
)
&
maxDigitVal
)
|
((
result
.
digits
[
i1
]
&
highBitMasks
[
bits
])
>>>
(
rightBits
));
}
result
.
digits
[
0
]
=
((
result
.
digits
[
i
]
<<
bits
)
&
maxDigitVal
);
result
.
isNeg
=
x
.
isNeg
;
return
result
;
}
var
lowBitMasks
=
new
Array
(
0x0000
,
0x0001
,
0x0003
,
0x0007
,
0x000F
,
0x001F
,
0x003F
,
0x007F
,
0x00FF
,
0x01FF
,
0x03FF
,
0x07FF
,
0x0FFF
,
0x1FFF
,
0x3FFF
,
0x7FFF
,
0xFFFF
);
function
biShiftRight
(
x
,
n
)
{
var
digitCount
=
Math
.
floor
(
n
/
bitsPerDigit
);
var
result
=
new
BigInt
();
arrayCopy
(
x
.
digits
,
digitCount
,
result
.
digits
,
0
,
x
.
digits
.
length
-
digitCount
);
var
bits
=
n
%
bitsPerDigit
;
var
leftBits
=
bitsPerDigit
-
bits
;
for
(
var
i
=
0
,
i1
=
i
+
1
;
i
<
result
.
digits
.
length
-
1
;
++
i
,
++
i1
)
{
result
.
digits
[
i
]
=
(
result
.
digits
[
i
]
>>>
bits
)
|
((
result
.
digits
[
i1
]
&
lowBitMasks
[
bits
])
<<
leftBits
);
}
result
.
digits
[
result
.
digits
.
length
-
1
]
>>>=
bits
;
result
.
isNeg
=
x
.
isNeg
;
return
result
;
}
function
biMultiplyByRadixPower
(
x
,
n
)
{
var
result
=
new
BigInt
();
arrayCopy
(
x
.
digits
,
0
,
result
.
digits
,
n
,
result
.
digits
.
length
-
n
);
return
result
;
}
function
biDivideByRadixPower
(
x
,
n
)
{
var
result
=
new
BigInt
();
arrayCopy
(
x
.
digits
,
n
,
result
.
digits
,
0
,
result
.
digits
.
length
-
n
);
return
result
;
}
function
biModuloByRadixPower
(
x
,
n
)
{
var
result
=
new
BigInt
();
arrayCopy
(
x
.
digits
,
0
,
result
.
digits
,
0
,
n
);
return
result
;
}
function
biCompare
(
x
,
y
)
{
if
(
x
.
isNeg
!=
y
.
isNeg
)
{
return
1
-
2
*
Number
(
x
.
isNeg
);
}
for
(
var
i
=
x
.
digits
.
length
-
1
;
i
>=
0
;
--
i
)
{
if
(
x
.
digits
[
i
]
!=
y
.
digits
[
i
])
{
if
(
x
.
isNeg
)
{
return
1
-
2
*
Number
(
x
.
digits
[
i
]
>
y
.
digits
[
i
]);
}
else
{
return
1
-
2
*
Number
(
x
.
digits
[
i
]
<
y
.
digits
[
i
]);
}
}
}
return
0
;
}
function
biDivideModulo
(
x
,
y
)
{
var
nb
=
biNumBits
(
x
);
var
tb
=
biNumBits
(
y
);
var
origYIsNeg
=
y
.
isNeg
;
var
q
,
r
;
if
(
nb
<
tb
)
{
// |x| < |y|
if
(
x
.
isNeg
)
{
q
=
biCopy
(
bigOne
);
q
.
isNeg
=
!
y
.
isNeg
;
x
.
isNeg
=
false
;
y
.
isNeg
=
false
;
r
=
biSubtract
(
y
,
x
);
// Restore signs, 'cause they're references.
x
.
isNeg
=
true
;
y
.
isNeg
=
origYIsNeg
;
}
else
{
q
=
new
BigInt
();
r
=
biCopy
(
x
);
}
return
new
Array
(
q
,
r
);
}
q
=
new
BigInt
();
r
=
x
;
// Normalize Y.
var
t
=
Math
.
ceil
(
tb
/
bitsPerDigit
)
-
1
;
var
lambda
=
0
;
while
(
y
.
digits
[
t
]
<
biHalfRadix
)
{
y
=
biShiftLeft
(
y
,
1
);
++
lambda
;
++
tb
;
t
=
Math
.
ceil
(
tb
/
bitsPerDigit
)
-
1
;
}
// Shift r over to keep the quotient constant. We'll shift the
// remainder back at the end.
r
=
biShiftLeft
(
r
,
lambda
);
nb
+=
lambda
;
// Update the bit count for x.
var
n
=
Math
.
ceil
(
nb
/
bitsPerDigit
)
-
1
;
var
b
=
biMultiplyByRadixPower
(
y
,
n
-
t
);
while
(
biCompare
(
r
,
b
)
!=
-
1
)
{
++
q
.
digits
[
n
-
t
];
r
=
biSubtract
(
r
,
b
);
}
for
(
var
i
=
n
;
i
>
t
;
--
i
)
{
var
ri
=
(
i
>=
r
.
digits
.
length
)
?
0
:
r
.
digits
[
i
];
var
ri1
=
(
i
-
1
>=
r
.
digits
.
length
)
?
0
:
r
.
digits
[
i
-
1
];
var
ri2
=
(
i
-
2
>=
r
.
digits
.
length
)
?
0
:
r
.
digits
[
i
-
2
];
var
yt
=
(
t
>=
y
.
digits
.
length
)
?
0
:
y
.
digits
[
t
];
var
yt1
=
(
t
-
1
>=
y
.
digits
.
length
)
?
0
:
y
.
digits
[
t
-
1
];
if
(
ri
==
yt
)
{
q
.
digits
[
i
-
t
-
1
]
=
maxDigitVal
;
}
else
{
q
.
digits
[
i
-
t
-
1
]
=
Math
.
floor
((
ri
*
biRadix
+
ri1
)
/
yt
);
}
var
c1
=
q
.
digits
[
i
-
t
-
1
]
*
((
yt
*
biRadix
)
+
yt1
);
var
c2
=
(
ri
*
biRadixSquared
)
+
((
ri1
*
biRadix
)
+
ri2
);
while
(
c1
>
c2
)
{
--
q
.
digits
[
i
-
t
-
1
];
c1
=
q
.
digits
[
i
-
t
-
1
]
*
((
yt
*
biRadix
)
|
yt1
);
c2
=
(
ri
*
biRadix
*
biRadix
)
+
((
ri1
*
biRadix
)
+
ri2
);
}
b
=
biMultiplyByRadixPower
(
y
,
i
-
t
-
1
);
r
=
biSubtract
(
r
,
biMultiplyDigit
(
b
,
q
.
digits
[
i
-
t
-
1
]));
if
(
r
.
isNeg
)
{
r
=
biAdd
(
r
,
b
);
--
q
.
digits
[
i
-
t
-
1
];
}
}
r
=
biShiftRight
(
r
,
lambda
);
// Fiddle with the signs and stuff to make sure that 0 <= r < y.
q
.
isNeg
=
x
.
isNeg
!=
origYIsNeg
;
if
(
x
.
isNeg
)
{
if
(
origYIsNeg
)
{
q
=
biAdd
(
q
,
bigOne
);
}
else
{
q
=
biSubtract
(
q
,
bigOne
);
}
y
=
biShiftRight
(
y
,
lambda
);
r
=
biSubtract
(
y
,
r
);
}
// Check for the unbelievably stupid degenerate case of r == -0.
if
(
r
.
digits
[
0
]
==
0
&&
biHighIndex
(
r
)
==
0
)
r
.
isNeg
=
false
;
return
new
Array
(
q
,
r
);
}
function
biDivide
(
x
,
y
)
{
return
biDivideModulo
(
x
,
y
)[
0
];
}
function
biModulo
(
x
,
y
)
{
return
biDivideModulo
(
x
,
y
)[
1
];
}
function
biMultiplyMod
(
x
,
y
,
m
)
{
return
biModulo
(
biMultiply
(
x
,
y
),
m
);
}
function
biPow
(
x
,
y
)
{
var
result
=
bigOne
;
var
a
=
x
;
while
(
true
)
{
if
((
y
&
1
)
!=
0
)
result
=
biMultiply
(
result
,
a
);
y
>>=
1
;
if
(
y
==
0
)
break
;
a
=
biMultiply
(
a
,
a
);
}
return
result
;
}
function
biPowMod
(
x
,
y
,
m
)
{
var
result
=
bigOne
;
var
a
=
x
;
var
k
=
y
;
while
(
true
)
{
if
((
k
.
digits
[
0
]
&
1
)
!=
0
)
result
=
biMultiplyMod
(
result
,
a
,
m
);
k
=
biShiftRight
(
k
,
1
);
if
(
k
.
digits
[
0
]
==
0
&&
biHighIndex
(
k
)
==
0
)
break
;
a
=
biMultiplyMod
(
a
,
a
,
m
);
}
return
result
;
}
// BarrettMu, a class for performing Barrett modular reduction computations in
// JavaScript.
//
// Requires BigInt.js.
//
// Copyright 2004-2005 David Shapiro.
//
// You may use, re-use, abuse, copy, and modify this code to your liking, but
// please keep this header.
//
// Thanks!
//
// Dave Shapiro
// dave@ohdave.com
function
BarrettMu
(
m
)
{
this
.
modulus
=
biCopy
(
m
);
this
.
k
=
biHighIndex
(
this
.
modulus
)
+
1
;
var
b2k
=
new
BigInt
();
b2k
.
digits
[
2
*
this
.
k
]
=
1
;
// b2k = b^(2k)
this
.
mu
=
biDivide
(
b2k
,
this
.
modulus
);
this
.
bkplus1
=
new
BigInt
();
this
.
bkplus1
.
digits
[
this
.
k
+
1
]
=
1
;
// bkplus1 = b^(k+1)
this
.
modulo
=
BarrettMu_modulo
;
this
.
multiplyMod
=
BarrettMu_multiplyMod
;
this
.
powMod
=
BarrettMu_powMod
;
}
function
BarrettMu_modulo
(
x
)
{
var
q1
=
biDivideByRadixPower
(
x
,
this
.
k
-
1
);
var
q2
=
biMultiply
(
q1
,
this
.
mu
);
var
q3
=
biDivideByRadixPower
(
q2
,
this
.
k
+
1
);
var
r1
=
biModuloByRadixPower
(
x
,
this
.
k
+
1
);
var
r2term
=
biMultiply
(
q3
,
this
.
modulus
);
var
r2
=
biModuloByRadixPower
(
r2term
,
this
.
k
+
1
);
var
r
=
biSubtract
(
r1
,
r2
);
if
(
r
.
isNeg
)
{
r
=
biAdd
(
r
,
this
.
bkplus1
);
}
var
rgtem
=
biCompare
(
r
,
this
.
modulus
)
>=
0
;
while
(
rgtem
)
{
r
=
biSubtract
(
r
,
this
.
modulus
);
rgtem
=
biCompare
(
r
,
this
.
modulus
)
>=
0
;
}
return
r
;
}
function
BarrettMu_multiplyMod
(
x
,
y
)
{
/*
x = this.modulo(x);
y = this.modulo(y);
*/
var
xy
=
biMultiply
(
x
,
y
);
return
this
.
modulo
(
xy
);
}
function
BarrettMu_powMod
(
x
,
y
)
{
var
result
=
new
BigInt
();
result
.
digits
[
0
]
=
1
;
var
a
=
x
;
var
k
=
y
;
while
(
true
)
{
if
((
k
.
digits
[
0
]
&
1
)
!=
0
)
result
=
this
.
multiplyMod
(
result
,
a
);
k
=
biShiftRight
(
k
,
1
);
if
(
k
.
digits
[
0
]
==
0
&&
biHighIndex
(
k
)
==
0
)
break
;
a
=
this
.
multiplyMod
(
a
,
a
);
}
return
result
;
}
//密码加密
//密码加密
var
rsa
=
function
(
arg
)
{
var
rsa
=
function
(
arg
)
{
setMaxDigits
(
130
);
setMaxDigits
(
130
);
var
PublicExponent
=
"
10001
"
;
var
PublicExponent
=
"
10001
"
;
var
modulus
=
"
be44aec4d73408f6b60e6fe9e3dc55d0e1dc53a1e171e071b547e2e8e0b7da01c56e8c9bcf0521568eb111adccef4e40124b76e33e7ad75607c227af8f8e0b759c30ef283be8ab17a84b19a051df5f94c07e6e7be5f77866376322aac944f45f3ab532bb6efc70c1efa524d821d16cafb580c5a901f0defddea3692a4e68e6cd
"
;
var
modulus
=
"
be44aec4d73408f6b60e6fe9e3dc55d0e1dc53a1e171e071b547e2e8e0b7da01c56e8c9bcf0521568eb111adccef4e40124b76e33e7ad75607c227af8f8e0b759c30ef283be8ab17a84b19a051df5f94c07e6e7be5f77866376322aac944f45f3ab532bb6efc70c1efa524d821d16cafb580c5a901f0defddea3692a4e68e6cd
"
;
var
key
=
new
RSAKeyPair
(
PublicExponent
,
""
,
modulus
);
var
key
=
new
RSAKeyPair
(
PublicExponent
,
""
,
modulus
);
return
encryptedString
(
key
,
arg
);
return
encryptedString
(
key
,
arg
);
};
};
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录