提交 96ffb2fe 编写于 作者: P Pieter Noordhuis

merged intset code into the split files

......@@ -15,7 +15,7 @@ endif
CCOPT= $(CFLAGS) $(CCLINK) $(ARCH) $(PROF)
DEBUG?= -g -rdynamic -ggdb
OBJ = adlist.o ae.o anet.o dict.o redis.o sds.o zmalloc.o lzf_c.o lzf_d.o pqsort.o zipmap.o sha1.o ziplist.o release.o networking.o util.o object.o db.o replication.o rdb.o t_string.o t_list.o t_set.o t_zset.o t_hash.o config.o aof.o vm.o pubsub.o multi.o debug.o sort.o
OBJ = adlist.o ae.o anet.o dict.o redis.o sds.o zmalloc.o lzf_c.o lzf_d.o pqsort.o zipmap.o sha1.o ziplist.o release.o networking.o util.o object.o db.o replication.o rdb.o t_string.o t_list.o t_set.o t_zset.o t_hash.o config.o aof.o vm.o pubsub.o multi.o debug.o sort.o intset.o
BENCHOBJ = ae.o anet.o redis-benchmark.o sds.o adlist.o zmalloc.o
CLIOBJ = anet.o sds.o adlist.o redis-cli.o zmalloc.o linenoise.o
CHECKDUMPOBJ = redis-check-dump.o lzf_c.o lzf_d.o
......@@ -54,6 +54,7 @@ sds.o: sds.c sds.h zmalloc.h
sha1.o: sha1.c sha1.h
ziplist.o: ziplist.c zmalloc.h ziplist.h
zipmap.o: zipmap.c zmalloc.h
intset.o: intset.c zmalloc.h
zmalloc.o: zmalloc.c config.h
redis-server: $(OBJ)
......
......@@ -199,6 +199,8 @@ void loadServerConfig(char *filename) {
server.list_max_ziplist_entries = memtoll(argv[1], NULL);
} else if (!strcasecmp(argv[0],"list-max-ziplist-value") && argc == 2){
server.list_max_ziplist_value = memtoll(argv[1], NULL);
} else if (!strcasecmp(argv[0],"set-max-intset-entries") && argc == 2){
server.set_max_intset_entries = memtoll(argv[1], NULL);
} else {
err = "Bad directive or wrong number of arguments"; goto loaderr;
}
......
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "intset.h"
#include "zmalloc.h"
/* Note that these encodings are ordered, so:
* INTSET_ENC_INT16 < INTSET_ENC_INT32 < INTSET_ENC_INT64. */
#define INTSET_ENC_INT16 (sizeof(int16_t))
#define INTSET_ENC_INT32 (sizeof(int32_t))
#define INTSET_ENC_INT64 (sizeof(int64_t))
/* Accessors for each type of encoding */
#define INTSET_VALUE_ENCODING(__val) (((__val) < INT32_MIN || (__val) > INT32_MAX) ? \
INTSET_ENC_INT64 : (((__val) < INT16_MIN || (__val) > INT16_MAX) ? \
INTSET_ENC_INT32 : INTSET_ENC_INT16))
#define INTSET_GET_ENCODED(__is,__pos,__enc) ((__enc == INTSET_ENC_INT64) ? \
((int64_t*)(__is)->contents)[__pos] : ((__enc == INTSET_ENC_INT32) ? \
((int32_t*)(__is)->contents)[__pos] : ((int16_t*)(__is)->contents)[__pos]))
#define INTSET_GET(__is,__pos) (INTSET_GET_ENCODED(__is,__pos,(__is)->encoding))
#define INTSET_SET(__is,__pos,__val) { \
if ((__is)->encoding == INTSET_ENC_INT64) \
((int64_t*)(__is)->contents)[__pos] = (__val); \
else if ((__is)->encoding == INTSET_ENC_INT32) \
((int32_t*)(__is)->contents)[__pos] = (__val); \
else \
((int16_t*)(__is)->contents)[__pos] = (__val); }
/* Create an empty intset. */
intset *intsetNew(void) {
intset *is = zmalloc(sizeof(intset));
is->encoding = INTSET_ENC_INT16;
is->length = 0;
return is;
}
/* Resize the intset */
static intset *intsetResize(intset *is, uint32_t len) {
uint32_t size = len*is->encoding;
is = zrealloc(is,sizeof(intset)+size);
return is;
}
static intset *intsetUpgrade(intset *is, uint8_t newenc, uint8_t extra, uint8_t offset) {
uint8_t curenc = is->encoding;
int length = is->length;
/* First set new encoding and resize */
is->encoding = newenc;
is = intsetResize(is,is->length+extra);
/* Upgrade back-to-front so we don't overwrite values */
while(length--)
INTSET_SET(is,length+offset,INTSET_GET_ENCODED(is,length,curenc));
return is;
}
/* Search for the position of "value". Return 1 when the value was found and
* sets "pos" to the position of the value within the intset. Return 0 when
* the value is not present in the intset and sets "pos" to the position
* where "value" can be inserted. */
static uint8_t intsetSearch(intset *is, int64_t value, uint32_t *pos) {
int min = 0, max = is->length-1, mid = -1;
int64_t cur = -1;
/* The value can never be found when the set is empty */
if (is->length == 0) {
if (pos) *pos = 0;
return 0;
} else {
/* Check for the case where we know we cannot find the value,
* but do know the insert position. */
if (value > INTSET_GET(is,is->length-1)) {
if (pos) *pos = is->length;
return 0;
} else if (value < INTSET_GET(is,0)) {
if (pos) *pos = 0;
return 0;
}
}
while(max >= min) {
mid = (min+max)/2;
cur = INTSET_GET(is,mid);
if (value > cur) {
min = mid+1;
} else if (value < cur) {
max = mid-1;
} else {
break;
}
}
if (value == cur) {
if (pos) *pos = mid;
return 1;
} else {
if (pos) *pos = min;
return 0;
}
}
static void intsetMoveTail(intset *is, uint32_t from, uint32_t to) {
void *src, *dst;
uint32_t bytes = is->length-from;
if (is->encoding == INTSET_ENC_INT64) {
src = (int64_t*)is->contents+from;
dst = (int64_t*)is->contents+to;
bytes *= sizeof(int64_t);
} else if (is->encoding == INTSET_ENC_INT32) {
src = (int32_t*)is->contents+from;
dst = (int32_t*)is->contents+to;
bytes *= sizeof(int32_t);
} else {
src = (int16_t*)is->contents+from;
dst = (int16_t*)is->contents+to;
bytes *= sizeof(int16_t);
}
memmove(dst,src,bytes);
}
/* Insert an integer in the intset */
intset *intsetAdd(intset *is, int64_t value, uint8_t *success) {
uint8_t valenc = INTSET_VALUE_ENCODING(value);
uint32_t pos, offset;
if (success) *success = 1;
/* Upgrade encoding if necessary. If we need to upgrade, we know that
* this value should be either appended (if > 0) or prepended (if < 0),
* because it lies outside the range of existing values. */
if (valenc > is->encoding) {
offset = value < 0 ? 1 : 0;
is = intsetUpgrade(is,valenc,1,offset);
pos = (value < 0) ? 0 : is->length;
} else {
/* Abort if the value is already present in the set.
* This call will populate "pos" with the right position to insert
* the value when it cannot be found. */
if (intsetSearch(is,value,&pos)) {
if (success) *success = 0;
return is;
}
is = intsetResize(is,is->length+1);
if (pos < is->length) intsetMoveTail(is,pos,pos+1);
}
INTSET_SET(is,pos,value);
is->length++;
return is;
}
/* Delete integer from intset */
intset *intsetRemove(intset *is, int64_t value, uint8_t *success) {
uint8_t valenc = INTSET_VALUE_ENCODING(value);
uint32_t pos;
if (success) *success = 0;
if (valenc <= is->encoding && intsetSearch(is,value,&pos)) {
/* We know we can delete */
if (success) *success = 1;
/* Overwrite value with tail and update length */
if (pos < (is->length-1)) intsetMoveTail(is,pos+1,pos);
is = intsetResize(is,is->length-1);
is->length--;
}
return is;
}
/* Determine whether a value belongs to this set */
uint8_t intsetFind(intset *is, int64_t value) {
uint8_t valenc = INTSET_VALUE_ENCODING(value);
return valenc <= is->encoding && intsetSearch(is,value,NULL);
}
/* Return random member */
int64_t intsetRandom(intset *is) {
return INTSET_GET(is,rand()%is->length);
}
/* Sets the value to the value at the given position. When this position is
* out of range the function returns 0, when in range it returns 1. */
uint8_t intsetGet(intset *is, uint32_t pos, int64_t *value) {
if (pos < is->length) {
*value = INTSET_GET(is,pos);
return 1;
}
return 0;
}
/* Return intset length */
uint32_t intsetLen(intset *is) {
return is->length;
}
#ifdef INTSET_TEST_MAIN
#include <sys/time.h>
void intsetRepr(intset *is) {
int i;
for (i = 0; i < is->length; i++) {
printf("%lld\n", (uint64_t)INTSET_GET(is,i));
}
printf("\n");
}
void error(char *err) {
printf("%s\n", err);
exit(1);
}
void ok(void) {
printf("OK\n");
}
long long usec(void) {
struct timeval tv;
gettimeofday(&tv,NULL);
return (((long long)tv.tv_sec)*1000000)+tv.tv_usec;
}
#define assert(_e) ((_e)?(void)0:(_assert(#_e,__FILE__,__LINE__),exit(1)))
void _assert(char *estr, char *file, int line) {
printf("\n\n=== ASSERTION FAILED ===\n");
printf("==> %s:%d '%s' is not true\n",file,line,estr);
}
intset *createSet(int bits, int size) {
uint64_t mask = (1<<bits)-1;
uint64_t i, value;
intset *is = intsetNew();
for (i = 0; i < size; i++) {
if (bits > 32) {
value = (rand()*rand()) & mask;
} else {
value = rand() & mask;
}
is = intsetAdd(is,value,NULL);
}
return is;
}
void checkConsistency(intset *is) {
int i;
for (i = 0; i < (is->length-1); i++) {
if (is->encoding == INTSET_ENC_INT16) {
int16_t *i16 = (int16_t*)is->contents;
assert(i16[i] < i16[i+1]);
} else if (is->encoding == INTSET_ENC_INT32) {
int32_t *i32 = (int32_t*)is->contents;
assert(i32[i] < i32[i+1]);
} else {
int64_t *i64 = (int64_t*)is->contents;
assert(i64[i] < i64[i+1]);
}
}
}
int main(int argc, char **argv) {
uint8_t success;
int i;
intset *is;
sranddev();
printf("Value encodings: "); {
assert(INTSET_VALUE_ENCODING(-32768) == INTSET_ENC_INT16);
assert(INTSET_VALUE_ENCODING(+32767) == INTSET_ENC_INT16);
assert(INTSET_VALUE_ENCODING(-32769) == INTSET_ENC_INT32);
assert(INTSET_VALUE_ENCODING(+32768) == INTSET_ENC_INT32);
assert(INTSET_VALUE_ENCODING(-2147483648) == INTSET_ENC_INT32);
assert(INTSET_VALUE_ENCODING(+2147483647) == INTSET_ENC_INT32);
assert(INTSET_VALUE_ENCODING(-2147483649) == INTSET_ENC_INT64);
assert(INTSET_VALUE_ENCODING(+2147483648) == INTSET_ENC_INT64);
assert(INTSET_VALUE_ENCODING(-9223372036854775808ull) == INTSET_ENC_INT64);
assert(INTSET_VALUE_ENCODING(+9223372036854775807ull) == INTSET_ENC_INT64);
ok();
}
printf("Basic adding: "); {
is = intsetNew();
is = intsetAdd(is,5,&success); assert(success);
is = intsetAdd(is,6,&success); assert(success);
is = intsetAdd(is,4,&success); assert(success);
is = intsetAdd(is,4,&success); assert(!success);
ok();
}
printf("Large number of random adds: "); {
int inserts = 0;
is = intsetNew();
for (i = 0; i < 1024; i++) {
is = intsetAdd(is,rand()%0x800,&success);
if (success) inserts++;
}
assert(is->length == inserts);
checkConsistency(is);
ok();
}
printf("Upgrade from int16 to int32: "); {
is = intsetNew();
is = intsetAdd(is,32,NULL);
assert(is->encoding == INTSET_ENC_INT16);
is = intsetAdd(is,65535,NULL);
assert(is->encoding == INTSET_ENC_INT32);
assert(intsetFind(is,32));
assert(intsetFind(is,65535));
checkConsistency(is);
is = intsetNew();
is = intsetAdd(is,32,NULL);
assert(is->encoding == INTSET_ENC_INT16);
is = intsetAdd(is,-65535,NULL);
assert(is->encoding == INTSET_ENC_INT32);
assert(intsetFind(is,32));
assert(intsetFind(is,-65535));
checkConsistency(is);
ok();
}
printf("Upgrade from int16 to int64: "); {
is = intsetNew();
is = intsetAdd(is,32,NULL);
assert(is->encoding == INTSET_ENC_INT16);
is = intsetAdd(is,4294967295,NULL);
assert(is->encoding == INTSET_ENC_INT64);
assert(intsetFind(is,32));
assert(intsetFind(is,4294967295));
checkConsistency(is);
is = intsetNew();
is = intsetAdd(is,32,NULL);
assert(is->encoding == INTSET_ENC_INT16);
is = intsetAdd(is,-4294967295,NULL);
assert(is->encoding == INTSET_ENC_INT64);
assert(intsetFind(is,32));
assert(intsetFind(is,-4294967295));
checkConsistency(is);
ok();
}
printf("Upgrade from int32 to int64: "); {
is = intsetNew();
is = intsetAdd(is,65535,NULL);
assert(is->encoding == INTSET_ENC_INT32);
is = intsetAdd(is,4294967295,NULL);
assert(is->encoding == INTSET_ENC_INT64);
assert(intsetFind(is,65535));
assert(intsetFind(is,4294967295));
checkConsistency(is);
is = intsetNew();
is = intsetAdd(is,65535,NULL);
assert(is->encoding == INTSET_ENC_INT32);
is = intsetAdd(is,-4294967295,NULL);
assert(is->encoding == INTSET_ENC_INT64);
assert(intsetFind(is,65535));
assert(intsetFind(is,-4294967295));
checkConsistency(is);
ok();
}
printf("Stress lookups: "); {
long num = 100000, size = 10000;
int i, bits = 20;
long long start;
is = createSet(bits,size);
checkConsistency(is);
start = usec();
for (i = 0; i < num; i++) intsetSearch(is,rand() % ((1<<bits)-1),NULL);
printf("%ld lookups, %ld element set, %lldusec\n",num,size,usec()-start);
}
printf("Stress add+delete: "); {
int i, v1, v2;
is = intsetNew();
for (i = 0; i < 0xffff; i++) {
v1 = rand() % 0xfff;
is = intsetAdd(is,v1,NULL);
assert(intsetFind(is,v1));
v2 = rand() % 0xfff;
is = intsetRemove(is,v2,NULL);
assert(!intsetFind(is,v2));
}
checkConsistency(is);
ok();
}
}
#endif
#ifndef __INTSET_H
#define __INTSET_H
#include <stdint.h>
typedef struct intset {
uint32_t encoding;
uint32_t length;
int8_t contents[];
} intset;
intset *intsetNew(void);
intset *intsetAdd(intset *is, int64_t value, uint8_t *success);
intset *intsetRemove(intset *is, int64_t value, uint8_t *success);
uint8_t intsetFind(intset *is, int64_t value);
int64_t intsetRandom(intset *is);
uint8_t intsetGet(intset *is, uint32_t pos, int64_t *value);
uint32_t intsetLen(intset *is);
#endif // __INTSET_H
......@@ -73,7 +73,16 @@ robj *createZiplistObject(void) {
robj *createSetObject(void) {
dict *d = dictCreate(&setDictType,NULL);
return createObject(REDIS_SET,d);
robj *o = createObject(REDIS_SET,d);
o->encoding = REDIS_ENCODING_HT;
return o;
}
robj *createIntsetObject(void) {
intset *is = intsetNew();
robj *o = createObject(REDIS_SET,is);
o->encoding = REDIS_ENCODING_INTSET;
return o;
}
robj *createHashObject(void) {
......@@ -114,7 +123,16 @@ void freeListObject(robj *o) {
}
void freeSetObject(robj *o) {
switch (o->encoding) {
case REDIS_ENCODING_HT:
dictRelease((dict*) o->ptr);
break;
case REDIS_ENCODING_INTSET:
zfree(o->ptr);
break;
default:
redisPanic("Unknown set encoding type");
}
}
void freeZsetObject(robj *o) {
......@@ -356,7 +374,7 @@ int getLongLongFromObject(robj *o, long long *target) {
}
}
*target = value;
if (target) *target = value;
return REDIS_OK;
}
......@@ -400,6 +418,7 @@ char *strEncoding(int encoding) {
case REDIS_ENCODING_ZIPMAP: return "zipmap";
case REDIS_ENCODING_LINKEDLIST: return "linkedlist";
case REDIS_ENCODING_ZIPLIST: return "ziplist";
case REDIS_ENCODING_INTSET: return "intset";
default: return "unknown";
}
}
......@@ -260,6 +260,7 @@ int rdbSaveObject(FILE *fp, robj *o) {
}
} else if (o->type == REDIS_SET) {
/* Save a set value */
if (o->encoding == REDIS_ENCODING_HT) {
dict *set = o->ptr;
dictIterator *di = dictGetIterator(set);
dictEntry *de;
......@@ -267,10 +268,21 @@ int rdbSaveObject(FILE *fp, robj *o) {
if (rdbSaveLen(fp,dictSize(set)) == -1) return -1;
while((de = dictNext(di)) != NULL) {
robj *eleobj = dictGetEntryKey(de);
if (rdbSaveStringObject(fp,eleobj) == -1) return -1;
}
dictReleaseIterator(di);
} else if (o->encoding == REDIS_ENCODING_INTSET) {
intset *is = o->ptr;
long long llval;
int i = 0;
if (rdbSaveLen(fp,intsetLen(is)) == -1) return -1;
while(intsetGet(is,i++,&llval)) {
if (rdbSaveLongLongAsStringObject(fp,llval) == -1) return -1;
}
} else {
redisPanic("Unknown set encoding");
}
} else if (o->type == REDIS_ZSET) {
/* Save a set value */
zset *zs = o->ptr;
......@@ -628,6 +640,7 @@ int rdbLoadDoubleValue(FILE *fp, double *val) {
robj *rdbLoadObject(int type, FILE *fp) {
robj *o, *ele, *dec;
size_t len;
unsigned int i;
redisLog(REDIS_DEBUG,"LOADING OBJECT %d (at %d)\n",type,ftell(fp));
if (type == REDIS_STRING) {
......@@ -669,17 +682,40 @@ robj *rdbLoadObject(int type, FILE *fp) {
} else if (type == REDIS_SET) {
/* Read list/set value */
if ((len = rdbLoadLen(fp,NULL)) == REDIS_RDB_LENERR) return NULL;
/* Use a regular set when there are too many entries. */
if (len > server.set_max_intset_entries) {
o = createSetObject();
/* It's faster to expand the dict to the right size asap in order
* to avoid rehashing */
if (len > DICT_HT_INITIAL_SIZE)
dictExpand(o->ptr,len);
} else {
o = createIntsetObject();
}
/* Load every single element of the list/set */
while(len--) {
for (i = 0; i < len; i++) {
long long llval;
if ((ele = rdbLoadEncodedStringObject(fp)) == NULL) return NULL;
ele = tryObjectEncoding(ele);
if (o->encoding == REDIS_ENCODING_INTSET) {
/* Fetch integer value from element */
if (getLongLongFromObject(ele,&llval) == REDIS_OK) {
o->ptr = intsetAdd(o->ptr,llval,NULL);
} else {
setTypeConvert(o,REDIS_ENCODING_HT);
dictExpand(o->ptr,len);
}
}
/* This will also be called when the set was just converted
* to regular hashtable encoded set */
if (o->encoding == REDIS_ENCODING_HT) {
dictAdd((dict*)o->ptr,ele,NULL);
}
}
} else if (type == REDIS_ZSET) {
/* Read list/set value */
size_t zsetlen;
......
......@@ -731,6 +731,7 @@ void initServerConfig() {
server.hash_max_zipmap_value = REDIS_HASH_MAX_ZIPMAP_VALUE;
server.list_max_ziplist_entries = REDIS_LIST_MAX_ZIPLIST_ENTRIES;
server.list_max_ziplist_value = REDIS_LIST_MAX_ZIPLIST_VALUE;
server.set_max_intset_entries = REDIS_SET_MAX_INTSET_ENTRIES;
server.shutdown_asap = 0;
resetServerSaveParams();
......
......@@ -25,6 +25,7 @@
#include "anet.h" /* Networking the easy way */
#include "zipmap.h" /* Compact string -> string data structure */
#include "ziplist.h" /* Compact list data structure */
#include "intset.h" /* Compact integer set structure */
#include "version.h"
/* Error codes */
......@@ -81,6 +82,7 @@
#define REDIS_ENCODING_ZIPMAP 3 /* Encoded as zipmap */
#define REDIS_ENCODING_LINKEDLIST 4 /* Encoded as regular linked list */
#define REDIS_ENCODING_ZIPLIST 5 /* Encoded as ziplist */
#define REDIS_ENCODING_INTSET 6 /* Encoded as intset */
/* Object types only used for dumping to disk */
#define REDIS_EXPIRETIME 253
......@@ -187,6 +189,7 @@
#define REDIS_HASH_MAX_ZIPMAP_VALUE 512
#define REDIS_LIST_MAX_ZIPLIST_ENTRIES 1024
#define REDIS_LIST_MAX_ZIPLIST_VALUE 32
#define REDIS_SET_MAX_INTSET_ENTRIES 4096
/* Sets operations codes */
#define REDIS_OP_UNION 0
......@@ -396,6 +399,7 @@ struct redisServer {
size_t hash_max_zipmap_value;
size_t list_max_ziplist_entries;
size_t list_max_ziplist_value;
size_t set_max_intset_entries;
/* Virtual memory state */
FILE *vm_fp;
int vm_fd;
......@@ -533,6 +537,14 @@ typedef struct {
listNode *ln; /* Entry in linked list */
} listTypeEntry;
/* Structure to hold set iteration abstraction. */
typedef struct {
robj *subject;
int encoding;
int ii; /* intset iterator */
dictIterator *di;
} setIterator;
/* Structure to hold hash iteration abstration. Note that iteration over
* hashes involves both fields and values. Because it is possible that
* not both are required, store pointers in the iterator to avoid
......@@ -631,6 +643,7 @@ robj *createStringObjectFromLongLong(long long value);
robj *createListObject(void);
robj *createZiplistObject(void);
robj *createSetObject(void);
robj *createIntsetObject(void);
robj *createHashObject(void);
robj *createZsetObject(void);
int getLongFromObjectOrReply(redisClient *c, robj *o, long *target, const char *msg);
......@@ -714,6 +727,18 @@ int dontWaitForSwappedKey(redisClient *c, robj *key);
void handleClientsBlockedOnSwappedKey(redisDb *db, robj *key);
vmpointer *vmSwapObjectBlocking(robj *val);
/* Set data type */
robj *setTypeCreate(robj *value);
int setTypeAdd(robj *subject, robj *value);
int setTypeRemove(robj *subject, robj *value);
int setTypeIsMember(robj *subject, robj *value);
setIterator *setTypeInitIterator(robj *subject);
void setTypeReleaseIterator(setIterator *si);
robj *setTypeNext(setIterator *si);
robj *setTypeRandomElement(robj *subject);
unsigned long setTypeSize(robj *subject);
void setTypeConvert(robj *subject, int enc);
/* Hash data type */
void convertToRealHash(robj *o);
void hashTypeTryConversion(robj *subject, robj **argv, int start, int end);
......
......@@ -4,12 +4,182 @@
* Set Commands
*----------------------------------------------------------------------------*/
/* Factory method to return a set that *can* hold "value". When the object has
* an integer-encodable value, an intset will be returned. Otherwise a regular
* hash table. */
robj *setTypeCreate(robj *value) {
if (getLongLongFromObject(value,NULL) == REDIS_OK)
return createIntsetObject();
return createSetObject();
}
int setTypeAdd(robj *subject, robj *value) {
long long llval;
if (subject->encoding == REDIS_ENCODING_HT) {
if (dictAdd(subject->ptr,value,NULL) == DICT_OK) {
incrRefCount(value);
return 1;
}
} else if (subject->encoding == REDIS_ENCODING_INTSET) {
if (getLongLongFromObject(value,&llval) == REDIS_OK) {
uint8_t success = 0;
subject->ptr = intsetAdd(subject->ptr,llval,&success);
if (success) {
/* Convert to regular set when the intset contains
* too many entries. */
if (intsetLen(subject->ptr) > server.set_max_intset_entries)
setTypeConvert(subject,REDIS_ENCODING_HT);
return 1;
}
} else {
/* Failed to get integer from object, convert to regular set. */
setTypeConvert(subject,REDIS_ENCODING_HT);
/* The set *was* an intset and this value is not integer
* encodable, so dictAdd should always work. */
redisAssert(dictAdd(subject->ptr,value,NULL) == DICT_OK);
incrRefCount(value);
return 1;
}
} else {
redisPanic("Unknown set encoding");
}
return 0;
}
int setTypeRemove(robj *subject, robj *value) {
long long llval;
if (subject->encoding == REDIS_ENCODING_HT) {
if (dictDelete(subject->ptr,value) == DICT_OK) {
if (htNeedsResize(subject->ptr)) dictResize(subject->ptr);
return 1;
}
} else if (subject->encoding == REDIS_ENCODING_INTSET) {
if (getLongLongFromObject(value,&llval) == REDIS_OK) {
uint8_t success;
subject->ptr = intsetRemove(subject->ptr,llval,&success);
if (success) return 1;
}
} else {
redisPanic("Unknown set encoding");
}
return 0;
}
int setTypeIsMember(robj *subject, robj *value) {
long long llval;
if (subject->encoding == REDIS_ENCODING_HT) {
return dictFind((dict*)subject->ptr,value) != NULL;
} else if (subject->encoding == REDIS_ENCODING_INTSET) {
if (getLongLongFromObject(value,&llval) == REDIS_OK) {
return intsetFind((intset*)subject->ptr,llval);
}
} else {
redisPanic("Unknown set encoding");
}
return 0;
}
setIterator *setTypeInitIterator(robj *subject) {
setIterator *si = zmalloc(sizeof(setIterator));
si->subject = subject;
si->encoding = subject->encoding;
if (si->encoding == REDIS_ENCODING_HT) {
si->di = dictGetIterator(subject->ptr);
} else if (si->encoding == REDIS_ENCODING_INTSET) {
si->ii = 0;
} else {
redisPanic("Unknown set encoding");
}
return si;
}
void setTypeReleaseIterator(setIterator *si) {
if (si->encoding == REDIS_ENCODING_HT)
dictReleaseIterator(si->di);
zfree(si);
}
/* Move to the next entry in the set. Returns the object at the current
* position, or NULL when the end is reached. This object will have its
* refcount incremented, so the caller needs to take care of this. */
robj *setTypeNext(setIterator *si) {
robj *ret = NULL;
if (si->encoding == REDIS_ENCODING_HT) {
dictEntry *de = dictNext(si->di);
if (de != NULL) {
ret = dictGetEntryKey(de);
incrRefCount(ret);
}
} else if (si->encoding == REDIS_ENCODING_INTSET) {
long long llval;
if (intsetGet(si->subject->ptr,si->ii++,&llval))
ret = createStringObjectFromLongLong(llval);
}
return ret;
}
/* Return random element from set. The returned object will always have
* an incremented refcount. */
robj *setTypeRandomElement(robj *subject) {
robj *ret = NULL;
if (subject->encoding == REDIS_ENCODING_HT) {
dictEntry *de = dictGetRandomKey(subject->ptr);
ret = dictGetEntryKey(de);
incrRefCount(ret);
} else if (subject->encoding == REDIS_ENCODING_INTSET) {
long long llval = intsetRandom(subject->ptr);
ret = createStringObjectFromLongLong(llval);
} else {
redisPanic("Unknown set encoding");
}
return ret;
}
unsigned long setTypeSize(robj *subject) {
if (subject->encoding == REDIS_ENCODING_HT) {
return dictSize((dict*)subject->ptr);
} else if (subject->encoding == REDIS_ENCODING_INTSET) {
return intsetLen((intset*)subject->ptr);
} else {
redisPanic("Unknown set encoding");
}
}
/* Convert the set to specified encoding. The resulting dict (when converting
* to a hashtable) is presized to hold the number of elements in the original
* set. */
void setTypeConvert(robj *subject, int enc) {
setIterator *si;
robj *element;
redisAssert(subject->type == REDIS_SET);
if (enc == REDIS_ENCODING_HT) {
dict *d = dictCreate(&setDictType,NULL);
/* Presize the dict to avoid rehashing */
dictExpand(d,intsetLen(subject->ptr));
/* setTypeGet returns a robj with incremented refcount */
si = setTypeInitIterator(subject);
while ((element = setTypeNext(si)) != NULL)
redisAssert(dictAdd(d,element,NULL) == DICT_OK);
setTypeReleaseIterator(si);
subject->encoding = REDIS_ENCODING_HT;
zfree(subject->ptr);
subject->ptr = d;
} else {
redisPanic("Unsupported set conversion");
}
}
void saddCommand(redisClient *c) {
robj *set;
set = lookupKeyWrite(c->db,c->argv[1]);
if (set == NULL) {
set = createSetObject();
set = setTypeCreate(c->argv[2]);
dbAdd(c->db,c->argv[1],set);
} else {
if (set->type != REDIS_SET) {
......@@ -17,8 +187,7 @@ void saddCommand(redisClient *c) {
return;
}
}
if (dictAdd(set->ptr,c->argv[2],NULL) == DICT_OK) {
incrRefCount(c->argv[2]);
if (setTypeAdd(set,c->argv[2])) {
server.dirty++;
addReply(c,shared.cone);
} else {
......@@ -32,10 +201,9 @@ void sremCommand(redisClient *c) {
if ((set = lookupKeyWriteOrReply(c,c->argv[1],shared.czero)) == NULL ||
checkType(c,set,REDIS_SET)) return;
if (dictDelete(set->ptr,c->argv[2]) == DICT_OK) {
if (setTypeRemove(set,c->argv[2])) {
if (setTypeSize(set) == 0) dbDelete(c->db,c->argv[1]);
server.dirty++;
if (htNeedsResize(set->ptr)) dictResize(set->ptr);
if (dictSize((dict*)set->ptr) == 0) dbDelete(c->db,c->argv[1]);
addReply(c,shared.cone);
} else {
addReply(c,shared.czero);
......@@ -43,38 +211,46 @@ void sremCommand(redisClient *c) {
}
void smoveCommand(redisClient *c) {
robj *srcset, *dstset;
robj *srcset, *dstset, *ele;
srcset = lookupKeyWrite(c->db,c->argv[1]);
dstset = lookupKeyWrite(c->db,c->argv[2]);
ele = c->argv[3];
/* If the source key does not exist return 0, if it's of the wrong type
* raise an error */
if (srcset == NULL || srcset->type != REDIS_SET) {
addReply(c, srcset ? shared.wrongtypeerr : shared.czero);
/* If the source key does not exist return 0 */
if (srcset == NULL) {
addReply(c,shared.czero);
return;
}
/* Error if the destination key is not a set as well */
if (dstset && dstset->type != REDIS_SET) {
addReply(c,shared.wrongtypeerr);
/* If the source key has the wrong type, or the destination key
* is set and has the wrong type, return with an error. */
if (checkType(c,srcset,REDIS_SET) ||
(dstset && checkType(c,dstset,REDIS_SET))) return;
/* If srcset and dstset are equal, SMOVE is a no-op */
if (srcset == dstset) {
addReply(c,shared.cone);
return;
}
/* Remove the element from the source set */
if (dictDelete(srcset->ptr,c->argv[3]) == DICT_ERR) {
/* Key not found in the src set! return zero */
/* If the element cannot be removed from the src set, return 0. */
if (!setTypeRemove(srcset,ele)) {
addReply(c,shared.czero);
return;
}
if (dictSize((dict*)srcset->ptr) == 0 && srcset != dstset)
dbDelete(c->db,c->argv[1]);
/* Remove the src set from the database when empty */
if (setTypeSize(srcset) == 0) dbDelete(c->db,c->argv[1]);
server.dirty++;
/* Add the element to the destination set */
/* Create the destination set when it doesn't exist */
if (!dstset) {
dstset = createSetObject();
dstset = setTypeCreate(ele);
dbAdd(c->db,c->argv[2],dstset);
}
if (dictAdd(dstset->ptr,c->argv[3],NULL) == DICT_OK)
incrRefCount(c->argv[3]);
/* An extra key has changed when ele was successfully added to dstset */
if (setTypeAdd(dstset,ele)) server.dirty++;
addReply(c,shared.cone);
}
......@@ -84,7 +260,7 @@ void sismemberCommand(redisClient *c) {
if ((set = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL ||
checkType(c,set,REDIS_SET)) return;
if (dictFind(set->ptr,c->argv[2]))
if (setTypeIsMember(set,c->argv[2]))
addReply(c,shared.cone);
else
addReply(c,shared.czero);
......@@ -92,74 +268,62 @@ void sismemberCommand(redisClient *c) {
void scardCommand(redisClient *c) {
robj *o;
dict *s;
if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL ||
checkType(c,o,REDIS_SET)) return;
s = o->ptr;
addReplyUlong(c,dictSize(s));
addReplyUlong(c,setTypeSize(o));
}
void spopCommand(redisClient *c) {
robj *set;
dictEntry *de;
robj *set, *ele;
if ((set = lookupKeyWriteOrReply(c,c->argv[1],shared.nullbulk)) == NULL ||
checkType(c,set,REDIS_SET)) return;
de = dictGetRandomKey(set->ptr);
if (de == NULL) {
ele = setTypeRandomElement(set);
if (ele == NULL) {
addReply(c,shared.nullbulk);
} else {
robj *ele = dictGetEntryKey(de);
setTypeRemove(set,ele);
addReplyBulk(c,ele);
dictDelete(set->ptr,ele);
if (htNeedsResize(set->ptr)) dictResize(set->ptr);
if (dictSize((dict*)set->ptr) == 0) dbDelete(c->db,c->argv[1]);
decrRefCount(ele);
if (setTypeSize(set) == 0) dbDelete(c->db,c->argv[1]);
server.dirty++;
}
}
void srandmemberCommand(redisClient *c) {
robj *set;
dictEntry *de;
robj *set, *ele;
if ((set = lookupKeyReadOrReply(c,c->argv[1],shared.nullbulk)) == NULL ||
checkType(c,set,REDIS_SET)) return;
de = dictGetRandomKey(set->ptr);
if (de == NULL) {
ele = setTypeRandomElement(set);
if (ele == NULL) {
addReply(c,shared.nullbulk);
} else {
robj *ele = dictGetEntryKey(de);
addReplyBulk(c,ele);
decrRefCount(ele);
}
}
int qsortCompareSetsByCardinality(const void *s1, const void *s2) {
dict **d1 = (void*) s1, **d2 = (void*) s2;
return dictSize(*d1)-dictSize(*d2);
return setTypeSize(*(robj**)s1)-setTypeSize(*(robj**)s2);
}
void sinterGenericCommand(redisClient *c, robj **setskeys, unsigned long setsnum, robj *dstkey) {
dict **dv = zmalloc(sizeof(dict*)*setsnum);
dictIterator *di;
dictEntry *de;
robj *lenobj = NULL, *dstset = NULL;
void sinterGenericCommand(redisClient *c, robj **setkeys, unsigned long setnum, robj *dstkey) {
robj **sets = zmalloc(sizeof(robj*)*setnum);
setIterator *si;
robj *ele, *lenobj = NULL, *dstset = NULL;
unsigned long j, cardinality = 0;
for (j = 0; j < setsnum; j++) {
robj *setobj;
setobj = dstkey ?
lookupKeyWrite(c->db,setskeys[j]) :
lookupKeyRead(c->db,setskeys[j]);
for (j = 0; j < setnum; j++) {
robj *setobj = dstkey ?
lookupKeyWrite(c->db,setkeys[j]) :
lookupKeyRead(c->db,setkeys[j]);
if (!setobj) {
zfree(dv);
zfree(sets);
if (dstkey) {
if (dbDelete(c->db,dstkey))
server.dirty++;
......@@ -169,16 +333,15 @@ void sinterGenericCommand(redisClient *c, robj **setskeys, unsigned long setsnum
}
return;
}
if (setobj->type != REDIS_SET) {
zfree(dv);
addReply(c,shared.wrongtypeerr);
if (checkType(c,setobj,REDIS_SET)) {
zfree(sets);
return;
}
dv[j] = setobj->ptr;
sets[j] = setobj;
}
/* Sort sets from the smallest to largest, this will improve our
* algorithm's performace */
qsort(dv,setsnum,sizeof(dict*),qsortCompareSetsByCardinality);
qsort(sets,setnum,sizeof(robj*),qsortCompareSetsByCardinality);
/* The first thing we should output is the total number of elements...
* since this is a multi-bulk write, but at this stage we don't know
......@@ -192,39 +355,37 @@ void sinterGenericCommand(redisClient *c, robj **setskeys, unsigned long setsnum
} else {
/* If we have a target key where to store the resulting set
* create this key with an empty set inside */
dstset = createSetObject();
dstset = createIntsetObject();
}
/* Iterate all the elements of the first (smallest) set, and test
* the element against all the other sets, if at least one set does
* not include the element it is discarded */
di = dictGetIterator(dv[0]);
si = setTypeInitIterator(sets[0]);
while((ele = setTypeNext(si)) != NULL) {
for (j = 1; j < setnum; j++)
if (!setTypeIsMember(sets[j],ele)) break;
while((de = dictNext(di)) != NULL) {
robj *ele;
for (j = 1; j < setsnum; j++)
if (dictFind(dv[j],dictGetEntryKey(de)) == NULL) break;
if (j != setsnum)
continue; /* at least one set does not contain the member */
ele = dictGetEntryKey(de);
/* Only take action when all sets contain the member */
if (j == setnum) {
if (!dstkey) {
addReplyBulk(c,ele);
cardinality++;
} else {
dictAdd(dstset->ptr,ele,NULL);
incrRefCount(ele);
setTypeAdd(dstset,ele);
}
}
decrRefCount(ele);
}
dictReleaseIterator(di);
setTypeReleaseIterator(si);
if (dstkey) {
/* Store the resulting set into the target, if the intersection
* is not an empty set. */
dbDelete(c->db,dstkey);
if (dictSize((dict*)dstset->ptr) > 0) {
if (setTypeSize(dstset) > 0) {
dbAdd(c->db,dstkey,dstset);
addReplyLongLong(c,dictSize((dict*)dstset->ptr));
addReplyLongLong(c,setTypeSize(dstset));
} else {
decrRefCount(dstset);
addReply(c,shared.czero);
......@@ -233,7 +394,7 @@ void sinterGenericCommand(redisClient *c, robj **setskeys, unsigned long setsnum
} else {
lenobj->ptr = sdscatprintf(sdsempty(),"*%lu\r\n",cardinality);
}
zfree(dv);
zfree(sets);
}
void sinterCommand(redisClient *c) {
......@@ -244,92 +405,85 @@ void sinterstoreCommand(redisClient *c) {
sinterGenericCommand(c,c->argv+2,c->argc-2,c->argv[1]);
}
void sunionDiffGenericCommand(redisClient *c, robj **setskeys, int setsnum, robj *dstkey, int op) {
dict **dv = zmalloc(sizeof(dict*)*setsnum);
dictIterator *di;
dictEntry *de;
robj *dstset = NULL;
int j, cardinality = 0;
#define REDIS_OP_UNION 0
#define REDIS_OP_DIFF 1
#define REDIS_OP_INTER 2
for (j = 0; j < setsnum; j++) {
robj *setobj;
void sunionDiffGenericCommand(redisClient *c, robj **setkeys, int setnum, robj *dstkey, int op) {
robj **sets = zmalloc(sizeof(robj*)*setnum);
setIterator *si;
robj *ele, *dstset = NULL;
int j, cardinality = 0;
setobj = dstkey ?
lookupKeyWrite(c->db,setskeys[j]) :
lookupKeyRead(c->db,setskeys[j]);
for (j = 0; j < setnum; j++) {
robj *setobj = dstkey ?
lookupKeyWrite(c->db,setkeys[j]) :
lookupKeyRead(c->db,setkeys[j]);
if (!setobj) {
dv[j] = NULL;
sets[j] = NULL;
continue;
}
if (setobj->type != REDIS_SET) {
zfree(dv);
addReply(c,shared.wrongtypeerr);
if (checkType(c,setobj,REDIS_SET)) {
zfree(sets);
return;
}
dv[j] = setobj->ptr;
sets[j] = setobj;
}
/* We need a temp set object to store our union. If the dstkey
* is not NULL (that is, we are inside an SUNIONSTORE operation) then
* this set object will be the resulting object to set into the target key*/
dstset = createSetObject();
dstset = createIntsetObject();
/* Iterate all the elements of all the sets, add every element a single
* time to the result set */
for (j = 0; j < setsnum; j++) {
if (op == REDIS_OP_DIFF && j == 0 && !dv[j]) break; /* result set is empty */
if (!dv[j]) continue; /* non existing keys are like empty sets */
di = dictGetIterator(dv[j]);
for (j = 0; j < setnum; j++) {
if (op == REDIS_OP_DIFF && j == 0 && !sets[j]) break; /* result set is empty */
if (!sets[j]) continue; /* non existing keys are like empty sets */
while((de = dictNext(di)) != NULL) {
robj *ele;
/* dictAdd will not add the same element multiple times */
ele = dictGetEntryKey(de);
si = setTypeInitIterator(sets[j]);
while((ele = setTypeNext(si)) != NULL) {
if (op == REDIS_OP_UNION || j == 0) {
if (dictAdd(dstset->ptr,ele,NULL) == DICT_OK) {
incrRefCount(ele);
if (setTypeAdd(dstset,ele)) {
cardinality++;
}
} else if (op == REDIS_OP_DIFF) {
if (dictDelete(dstset->ptr,ele) == DICT_OK) {
if (setTypeRemove(dstset,ele)) {
cardinality--;
}
}
decrRefCount(ele);
}
dictReleaseIterator(di);
setTypeReleaseIterator(si);
/* result set is empty? Exit asap. */
/* Exit when result set is empty. */
if (op == REDIS_OP_DIFF && cardinality == 0) break;
}
/* Output the content of the resulting set, if not in STORE mode */
if (!dstkey) {
addReplySds(c,sdscatprintf(sdsempty(),"*%d\r\n",cardinality));
di = dictGetIterator(dstset->ptr);
while((de = dictNext(di)) != NULL) {
robj *ele;
ele = dictGetEntryKey(de);
si = setTypeInitIterator(dstset);
while((ele = setTypeNext(si)) != NULL) {
addReplyBulk(c,ele);
decrRefCount(ele);
}
dictReleaseIterator(di);
setTypeReleaseIterator(si);
decrRefCount(dstset);
} else {
/* If we have a target key where to store the resulting set
* create this key with the result set inside */
dbDelete(c->db,dstkey);
if (dictSize((dict*)dstset->ptr) > 0) {
if (setTypeSize(dstset) > 0) {
dbAdd(c->db,dstkey,dstset);
addReplyLongLong(c,dictSize((dict*)dstset->ptr));
addReplyLongLong(c,setTypeSize(dstset));
} else {
decrRefCount(dstset);
addReply(c,shared.czero);
}
server.dirty++;
}
zfree(dv);
zfree(sets);
}
void sunionCommand(redisClient *c) {
......
start_server {tags {"set"}} {
test {SADD, SCARD, SISMEMBER, SMEMBERS basics} {
r sadd myset foo
r sadd myset bar
list [r scard myset] [r sismember myset foo] \
[r sismember myset bar] [r sismember myset bla] \
[lsort [r smembers myset]]
} {2 1 1 0 {bar foo}}
test {SADD adding the same element multiple times} {
r sadd myset foo
r sadd myset foo
r sadd myset foo
r scard myset
} {2}
start_server {
tags {"set"}
overrides {
"set-max-intset-entries" 512
}
} {
proc create_set {key entries} {
r del $key
foreach entry $entries { r sadd $key $entry }
}
test {SADD, SCARD, SISMEMBER, SMEMBERS basics - regular set} {
create_set myset {foo}
assert_encoding hashtable myset
assert_equal 1 [r sadd myset bar]
assert_equal 0 [r sadd myset bar]
assert_equal 2 [r scard myset]
assert_equal 1 [r sismember myset foo]
assert_equal 1 [r sismember myset bar]
assert_equal 0 [r sismember myset bla]
assert_equal {bar foo} [lsort [r smembers myset]]
}
test {SADD, SCARD, SISMEMBER, SMEMBERS basics - intset} {
create_set myset {17}
assert_encoding intset myset
assert_equal 1 [r sadd myset 16]
assert_equal 0 [r sadd myset 16]
assert_equal 2 [r scard myset]
assert_equal 1 [r sismember myset 16]
assert_equal 1 [r sismember myset 17]
assert_equal 0 [r sismember myset 18]
assert_equal {16 17} [lsort [r smembers myset]]
}
test {SADD against non set} {
r lpush mylist foo
catch {r sadd mylist bar} err
format $err
} {ERR*kind*}
test {SREM basics} {
r sadd myset ciao
r srem myset foo
lsort [r smembers myset]
} {bar ciao}
test {Mass SADD and SINTER with two sets} {
for {set i 0} {$i < 1000} {incr i} {
assert_error ERR*kind* {r sadd mylist bar}
}
test "SADD a non-integer against an intset" {
create_set myset {1 2 3}
assert_encoding intset myset
assert_equal 1 [r sadd myset a]
assert_encoding hashtable myset
}
test "SADD overflows the maximum allowed integers in an intset" {
r del myset
for {set i 0} {$i < 512} {incr i} { r sadd myset $i }
assert_encoding intset myset
assert_equal 1 [r sadd myset 512]
assert_encoding hashtable myset
}
test "Set encoding after DEBUG RELOAD" {
r del myintset myhashset mylargeintset
for {set i 0} {$i < 100} {incr i} { r sadd myintset $i }
for {set i 0} {$i < 1280} {incr i} { r sadd mylargeintset $i }
for {set i 0} {$i < 256} {incr i} { r sadd myhashset [format "i%03d" $i] }
assert_encoding intset myintset
assert_encoding hashtable mylargeintset
assert_encoding hashtable myhashset
r debug reload
assert_encoding intset myintset
assert_encoding hashtable mylargeintset
assert_encoding hashtable myhashset
}
test {SREM basics - regular set} {
create_set myset {foo bar ciao}
assert_encoding hashtable myset
assert_equal 0 [r srem myset qux]
assert_equal 1 [r srem myset foo]
assert_equal {bar ciao} [lsort [r smembers myset]]
}
test {SREM basics - intset} {
create_set myset {3 4 5}
assert_encoding intset myset
assert_equal 0 [r srem myset 6]
assert_equal 1 [r srem myset 4]
assert_equal {3 5} [lsort [r smembers myset]]
}
foreach {type} {hashtable intset} {
for {set i 1} {$i <= 5} {incr i} {
r del [format "set%d" $i]
}
for {set i 0} {$i < 200} {incr i} {
r sadd set1 $i
r sadd set2 [expr $i+995]
r sadd set2 [expr $i+195]
}
foreach i {199 195 1000 2000} {
r sadd set3 $i
}
for {set i 5} {$i < 200} {incr i} {
r sadd set4 $i
}
r sadd set5 0
# it is possible that a hashtable encoded only contains integers,
# because it is converted from an intset to a hashtable when a
# non-integer element is added and then removed.
if {$type eq "hashtable"} {
for {set i 1} {$i <= 5} {incr i} {
r sadd [format "set%d" $i] foo
r srem [format "set%d" $i] foo
}
}
test "Generated sets must be encoded as $type" {
for {set i 1} {$i <= 5} {incr i} {
assert_encoding $type [format "set%d" $i]
}
}
lsort [r sinter set1 set2]
} {995 996 997 998 999}
test {SUNION with two sets} {
lsort [r sunion set1 set2]
} [lsort -uniq "[r smembers set1] [r smembers set2]"]
test "SINTER with two sets - $type" {
assert_equal {195 196 197 198 199} [lsort [r sinter set1 set2]]
}
test {SINTERSTORE with two sets} {
test "SINTERSTORE with two sets - $type" {
r sinterstore setres set1 set2
lsort [r smembers setres]
} {995 996 997 998 999}
assert_encoding intset setres
assert_equal {195 196 197 198 199} [lsort [r smembers setres]]
}
test {SINTERSTORE with two sets, after a DEBUG RELOAD} {
test "SINTERSTORE with two sets, after a DEBUG RELOAD - $type" {
r debug reload
r sinterstore setres set1 set2
lsort [r smembers setres]
} {995 996 997 998 999}
assert_encoding intset setres
assert_equal {195 196 197 198 199} [lsort [r smembers setres]]
}
test "SUNION with two sets - $type" {
set expected [lsort -uniq "[r smembers set1] [r smembers set2]"]
assert_equal $expected [lsort [r sunion set1 set2]]
}
test {SUNIONSTORE with two sets} {
test "SUNIONSTORE with two sets - $type" {
r sunionstore setres set1 set2
lsort [r smembers setres]
} [lsort -uniq "[r smembers set1] [r smembers set2]"]
assert_encoding intset setres
set expected [lsort -uniq "[r smembers set1] [r smembers set2]"]
assert_equal $expected [lsort [r smembers setres]]
}
test {SUNIONSTORE against non existing keys} {
r set setres xxx
list [r sunionstore setres foo111 bar222] [r exists xxx]
} {0 0}
test {SINTER against three sets} {
r sadd set3 999
r sadd set3 995
r sadd set3 1000
r sadd set3 2000
lsort [r sinter set1 set2 set3]
} {995 999}
test {SINTERSTORE with three sets} {
test "SINTER against three sets - $type" {
assert_equal {195 199} [lsort [r sinter set1 set2 set3]]
}
test "SINTERSTORE with three sets - $type" {
r sinterstore setres set1 set2 set3
lsort [r smembers setres]
} {995 999}
assert_equal {195 199} [r smembers setres]
}
test {SUNION with non existing keys} {
lsort [r sunion nokey1 set1 set2 nokey2]
} [lsort -uniq "[r smembers set1] [r smembers set2]"]
test "SUNION with non existing keys - $type" {
set expected [lsort -uniq "[r smembers set1] [r smembers set2]"]
assert_equal $expected [lsort [r sunion nokey1 set1 set2 nokey2]]
}
test {SDIFF with two sets} {
for {set i 5} {$i < 1000} {incr i} {
r sadd set4 $i
test "SDIFF with two sets - $type" {
assert_equal {0 1 2 3 4} [lsort [r sdiff set1 set4]]
}
lsort [r sdiff set1 set4]
} {0 1 2 3 4}
test {SDIFF with three sets} {
r sadd set5 0
lsort [r sdiff set1 set4 set5]
} {1 2 3 4}
test "SDIFF with three sets - $type" {
assert_equal {1 2 3 4} [lsort [r sdiff set1 set4 set5]]
}
test {SDIFFSTORE with three sets} {
r sdiffstore sres set1 set4 set5
lsort [r smembers sres]
} {1 2 3 4}
test "SDIFFSTORE with three sets - $type" {
r sdiffstore setres set1 set4 set5
assert_encoding intset setres
assert_equal {1 2 3 4} [lsort [r smembers setres]]
}
}
test {SPOP basics} {
r del myset
r sadd myset 1
r sadd myset 2
r sadd myset 3
list [lsort [list [r spop myset] [r spop myset] [r spop myset]]] [r scard myset]
} {{1 2 3} 0}
test "SINTER against non-set should throw error" {
r set key1 x
assert_error "ERR*wrong kind*" {r sinter key1 noset}
}
test {SRANDMEMBER} {
r del myset
r sadd myset a
r sadd myset b
r sadd myset c
test "SUNION against non-set should throw error" {
r set key1 x
assert_error "ERR*wrong kind*" {r sunion key1 noset}
}
test "SINTERSTORE against non existing keys should delete dstkey" {
r set setres xxx
assert_equal 0 [r sinterstore setres foo111 bar222]
assert_equal 0 [r exists setres]
}
test "SUNIONSTORE against non existing keys should delete dstkey" {
r set setres xxx
assert_equal 0 [r sunionstore setres foo111 bar222]
assert_equal 0 [r exists setres]
}
foreach {type contents} {hashtable {a b c} intset {1 2 3}} {
test "SPOP basics - $type" {
create_set myset $contents
assert_encoding $type myset
assert_equal $contents [lsort [list [r spop myset] [r spop myset] [r spop myset]]]
assert_equal 0 [r scard myset]
}
test "SRANDMEMBER - $type" {
create_set myset $contents
unset -nocomplain myset
array set myset {}
for {set i 0} {$i < 100} {incr i} {
set myset([r srandmember myset]) 1
}
lsort [array names myset]
} {a b c}
test {SMOVE basics} {
r sadd myset1 a
r sadd myset1 b
r sadd myset1 c
r sadd myset2 x
r sadd myset2 y
r sadd myset2 z
r smove myset1 myset2 a
list [lsort [r smembers myset2]] [lsort [r smembers myset1]]
} {{a x y z} {b c}}
test {SMOVE non existing key} {
list [r smove myset1 myset2 foo] [lsort [r smembers myset2]] [lsort [r smembers myset1]]
} {0 {a x y z} {b c}}
test {SMOVE non existing src set} {
list [r smove noset myset2 foo] [lsort [r smembers myset2]]
} {0 {a x y z}}
test {SMOVE non existing dst set} {
list [r smove myset2 myset3 y] [lsort [r smembers myset2]] [lsort [r smembers myset3]]
} {1 {a x z} y}
test {SMOVE wrong src key type} {
assert_equal $contents [lsort [array names myset]]
}
}
proc setup_move {} {
r del myset3 myset4
create_set myset1 {1 a b}
create_set myset2 {2 3 4}
assert_encoding hashtable myset1
assert_encoding intset myset2
}
test "SMOVE basics - from regular set to intset" {
# move a non-integer element to an intset should convert encoding
setup_move
assert_equal 1 [r smove myset1 myset2 a]
assert_equal {1 b} [lsort [r smembers myset1]]
assert_equal {2 3 4 a} [lsort [r smembers myset2]]
assert_encoding hashtable myset2
# move an integer element should not convert the encoding
setup_move
assert_equal 1 [r smove myset1 myset2 1]
assert_equal {a b} [lsort [r smembers myset1]]
assert_equal {1 2 3 4} [lsort [r smembers myset2]]
assert_encoding intset myset2
}
test "SMOVE basics - from intset to regular set" {
setup_move
assert_equal 1 [r smove myset2 myset1 2]
assert_equal {1 2 a b} [lsort [r smembers myset1]]
assert_equal {3 4} [lsort [r smembers myset2]]
}
test "SMOVE non existing key" {
setup_move
assert_equal 0 [r smove myset1 myset2 foo]
assert_equal {1 a b} [lsort [r smembers myset1]]
assert_equal {2 3 4} [lsort [r smembers myset2]]
}
test "SMOVE non existing src set" {
setup_move
assert_equal 0 [r smove noset myset2 foo]
assert_equal {2 3 4} [lsort [r smembers myset2]]
}
test "SMOVE from regular set to non existing destination set" {
setup_move
assert_equal 1 [r smove myset1 myset3 a]
assert_equal {1 b} [lsort [r smembers myset1]]
assert_equal {a} [lsort [r smembers myset3]]
assert_encoding hashtable myset3
}
test "SMOVE from intset to non existing destination set" {
setup_move
assert_equal 1 [r smove myset2 myset3 2]
assert_equal {3 4} [lsort [r smembers myset2]]
assert_equal {2} [lsort [r smembers myset3]]
assert_encoding intset myset3
}
test "SMOVE wrong src key type" {
r set x 10
catch {r smove x myset2 foo} err
format $err
} {ERR*}
assert_error "ERR*wrong kind*" {r smove x myset2 foo}
}
test {SMOVE wrong dst key type} {
test "SMOVE wrong dst key type" {
r set x 10
catch {r smove myset2 x foo} err
format $err
} {ERR*}
assert_error "ERR*wrong kind*" {r smove myset2 x foo}
}
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册