diff --git a/arch/powerpc/platforms/powernv/idle.c b/arch/powerpc/platforms/powernv/idle.c index 0c21747ed7e071686321033c869484696e9c2e54..502f3275d8c266f4ba0c7f5fcff21230d4164beb 100644 --- a/arch/powerpc/platforms/powernv/idle.c +++ b/arch/powerpc/platforms/powernv/idle.c @@ -96,15 +96,24 @@ static void pnv_alloc_idle_core_states(void) u32 *core_idle_state; /* - * core_idle_state - First 8 bits track the idle state of each thread - * of the core. The 8th bit is the lock bit. Initially all thread bits - * are set. They are cleared when the thread enters deep idle state - * like sleep and winkle. Initially the lock bit is cleared. - * The lock bit has 2 purposes - * a. While the first thread is restoring core state, it prevents - * other threads in the core from switching to process context. - * b. While the last thread in the core is saving the core state, it - * prevents a different thread from waking up. + * core_idle_state - The lower 8 bits track the idle state of + * each thread of the core. + * + * The most significant bit is the lock bit. + * + * Initially all the bits corresponding to threads_per_core + * are set. They are cleared when the thread enters deep idle + * state like sleep and winkle/stop. + * + * Initially the lock bit is cleared. The lock bit has 2 + * purposes: + * a. While the first thread in the core waking up from + * idle is restoring core state, it prevents other + * threads in the core from switching to process + * context. + * b. While the last thread in the core is saving the + * core state, it prevents a different thread from + * waking up. */ for (i = 0; i < nr_cores; i++) { int first_cpu = i * threads_per_core; @@ -112,7 +121,7 @@ static void pnv_alloc_idle_core_states(void) size_t paca_ptr_array_size; core_idle_state = kmalloc_node(sizeof(u32), GFP_KERNEL, node); - *core_idle_state = PNV_CORE_IDLE_THREAD_BITS; + *core_idle_state = (1 << threads_per_core) - 1; paca_ptr_array_size = (threads_per_core * sizeof(struct paca_struct *));