workqueue.c 123.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/jhash.h>
45
#include <linux/hashtable.h>
46
#include <linux/rculist.h>
47
#include <linux/nodemask.h>
48

49
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
50

T
Tejun Heo 已提交
51
enum {
52 53
	/*
	 * worker_pool flags
54
	 *
55
	 * A bound pool is either associated or disassociated with its CPU.
56 57 58 59 60 61
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
62
	 * be executing on any CPU.  The pool behaves as an unbound one.
63
	 *
64 65
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
66
	 * create_worker() is in progress.
67
	 */
68
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
69
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
70
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
71

T
Tejun Heo 已提交
72 73 74 75
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80

81 82
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
83

84
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85

86
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99 100 101 102
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
103
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
104
};
L
Linus Torvalds 已提交
105 106

/*
T
Tejun Heo 已提交
107 108
 * Structure fields follow one of the following exclusion rules.
 *
109 110
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
111
 *
112 113 114
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
115
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
116
 *
117 118 119 120
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
121
 *
122 123 124
 * MG: pool->manager_mutex and pool->lock protected.  Writes require both
 *     locks.  Reads can happen under either lock.
 *
125
 * PL: wq_pool_mutex protected.
126
 *
127
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
128
 *
129 130
 * WQ: wq->mutex protected.
 *
131
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
132 133
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
134 135
 */

136
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
137

138
struct worker_pool {
139
	spinlock_t		lock;		/* the pool lock */
140
	int			cpu;		/* I: the associated cpu */
141
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
142
	int			id;		/* I: pool ID */
143
	unsigned int		flags;		/* X: flags */
144 145 146

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
147 148

	/* nr_idle includes the ones off idle_list for rebinding */
149 150 151 152 153 154
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

155
	/* a workers is either on busy_hash or idle_list, or the manager */
156 157 158
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

159
	/* see manage_workers() for details on the two manager mutexes */
160
	struct mutex		manager_arb;	/* manager arbitration */
161
	struct mutex		manager_mutex;	/* manager exclusion */
162
	struct idr		worker_idr;	/* MG: worker IDs and iteration */
163

T
Tejun Heo 已提交
164
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
165 166
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
167

168 169 170 171 172 173
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
174 175 176 177 178 179

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
180 181
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
182
/*
183 184 185 186
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
187
 */
188
struct pool_workqueue {
189
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
190
	struct workqueue_struct *wq;		/* I: the owning workqueue */
191 192
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
193
	int			refcnt;		/* L: reference count */
194 195
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
196
	int			nr_active;	/* L: nr of active works */
197
	int			max_active;	/* L: max active works */
198
	struct list_head	delayed_works;	/* L: delayed works */
199
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
200
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
201 202 203 204 205

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
206
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
207 208 209
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
210
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
211

212 213 214 215
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
216 217
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
218 219 220
	struct completion	done;		/* flush completion */
};

221 222
struct wq_device;

L
Linus Torvalds 已提交
223
/*
224 225
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
226 227
 */
struct workqueue_struct {
228
	unsigned int		flags;		/* WQ: WQ_* flags */
229
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
230
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
231
	struct list_head	list;		/* PL: list of all workqueues */
232

233 234 235
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
236
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
237 238 239
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
240

241
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
242 243
	struct worker		*rescuer;	/* I: rescue worker */

244
	int			nr_drainers;	/* WQ: drain in progress */
245
	int			saved_max_active; /* WQ: saved pwq max_active */
246 247 248 249

#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
250
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
251
	struct lockdep_map	lockdep_map;
252
#endif
253
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
254 255
};

256 257
static struct kmem_cache *pwq_cache;

258 259 260 261 262 263
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

264
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
265
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
266

267 268
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
269 270 271 272 273

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

274
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
275

276
/* PL: hash of all unbound pools keyed by pool->attrs */
277 278
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

279
/* I: attributes used when instantiating standard unbound pools on demand */
280 281
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

282 283
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
284
struct workqueue_struct *system_highpri_wq __read_mostly;
285
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
286
struct workqueue_struct *system_long_wq __read_mostly;
287
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
288
struct workqueue_struct *system_unbound_wq __read_mostly;
289
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
290
struct workqueue_struct *system_freezable_wq __read_mostly;
291
EXPORT_SYMBOL_GPL(system_freezable_wq);
292

293 294 295 296
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

297 298 299
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

300
#define assert_rcu_or_pool_mutex()					\
301
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
302 303
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
304

305
#define assert_rcu_or_wq_mutex(wq)					\
306
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
307
			   lockdep_is_held(&wq->mutex),			\
308
			   "sched RCU or wq->mutex should be held")
309

310 311
#ifdef CONFIG_LOCKDEP
#define assert_manager_or_pool_lock(pool)				\
312 313
	WARN_ONCE(debug_locks &&					\
		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
314 315 316 317 318 319
		  !lockdep_is_held(&(pool)->lock),			\
		  "pool->manager_mutex or ->lock should be held")
#else
#define assert_manager_or_pool_lock(pool)	do { } while (0)
#endif

320 321 322
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
323
	     (pool)++)
324

T
Tejun Heo 已提交
325 326 327
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
328
 * @pi: integer used for iteration
329
 *
330 331 332
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
333 334 335
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
336
 */
337 338
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
339
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
340
		else
T
Tejun Heo 已提交
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @wi: integer used for iteration
 * @pool: worker_pool to iterate workers of
 *
 * This must be called with either @pool->manager_mutex or ->lock held.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pool_worker(worker, wi, pool)				\
	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
		else

358 359 360 361
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
362
 *
363
 * This must be called either with wq->mutex held or sched RCU read locked.
364 365
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
366 367 368
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
369 370
 */
#define for_each_pwq(pwq, wq)						\
371
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
372
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
373
		else
374

375 376 377 378
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

379 380 381 382 383
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
419
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
455
	.debug_hint	= work_debug_hint,
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

T
Tejun Heo 已提交
491 492 493 494 495
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

496
	lockdep_assert_held(&wq_pool_mutex);
497

498 499 500 501 502
	do {
		if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
			return -ENOMEM;
		ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	} while (ret == -EAGAIN);
T
Tejun Heo 已提交
503

504
	return ret;
505 506
}

507 508 509 510
/**
 * first_pwq - return the first pool_workqueue of the specified workqueue
 * @wq: the target workqueue
 *
511
 * This must be called either with wq->mutex held or sched RCU read locked.
512 513
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
514
 */
515
static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
516
{
517
	assert_rcu_or_wq_mutex(wq);
518 519
	return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
				      pwqs_node);
520 521
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
537

538
/*
539 540
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
541
 * is cleared and the high bits contain OFFQ flags and pool ID.
542
 *
543 544
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
545 546
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
547
 *
548
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
549
 * corresponding to a work.  Pool is available once the work has been
550
 * queued anywhere after initialization until it is sync canceled.  pwq is
551
 * available only while the work item is queued.
552
 *
553 554 555 556
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
557
 */
558 559
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
560
{
561
	WARN_ON_ONCE(!work_pending(work));
562 563
	atomic_long_set(&work->data, data | flags | work_static(work));
}
564

565
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
566 567
			 unsigned long extra_flags)
{
568 569
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
570 571
}

572 573 574 575 576 577 578
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

579 580
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
581
{
582 583 584 585 586 587 588
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
589
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
590
}
591

592
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
593
{
594 595
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
596 597
}

598
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
599
{
600
	unsigned long data = atomic_long_read(&work->data);
601

602
	if (data & WORK_STRUCT_PWQ)
603 604 605
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
606 607
}

608 609 610 611 612
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
613
 *
614 615 616
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
617 618 619 620 621
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
622 623
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
624
{
625
	unsigned long data = atomic_long_read(&work->data);
626
	int pool_id;
627

628
	assert_rcu_or_pool_mutex();
629

630 631
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
632
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
633

634 635
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
636 637
		return NULL;

638
	return idr_find(&worker_pool_idr, pool_id);
639 640 641 642 643 644 645 646 647 648 649
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
650 651
	unsigned long data = atomic_long_read(&work->data);

652 653
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
654
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
655

656
	return data >> WORK_OFFQ_POOL_SHIFT;
657 658
}

659 660
static void mark_work_canceling(struct work_struct *work)
{
661
	unsigned long pool_id = get_work_pool_id(work);
662

663 664
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
665 666 667 668 669 670
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

671
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
672 673
}

674
/*
675 676
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
677
 * they're being called with pool->lock held.
678 679
 */

680
static bool __need_more_worker(struct worker_pool *pool)
681
{
682
	return !atomic_read(&pool->nr_running);
683 684
}

685
/*
686 687
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
688 689
 *
 * Note that, because unbound workers never contribute to nr_running, this
690
 * function will always return %true for unbound pools as long as the
691
 * worklist isn't empty.
692
 */
693
static bool need_more_worker(struct worker_pool *pool)
694
{
695
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
696
}
697

698
/* Can I start working?  Called from busy but !running workers. */
699
static bool may_start_working(struct worker_pool *pool)
700
{
701
	return pool->nr_idle;
702 703 704
}

/* Do I need to keep working?  Called from currently running workers. */
705
static bool keep_working(struct worker_pool *pool)
706
{
707 708
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
709 710 711
}

/* Do we need a new worker?  Called from manager. */
712
static bool need_to_create_worker(struct worker_pool *pool)
713
{
714
	return need_more_worker(pool) && !may_start_working(pool);
715
}
716

717
/* Do I need to be the manager? */
718
static bool need_to_manage_workers(struct worker_pool *pool)
719
{
720
	return need_to_create_worker(pool) ||
721
		(pool->flags & POOL_MANAGE_WORKERS);
722 723 724
}

/* Do we have too many workers and should some go away? */
725
static bool too_many_workers(struct worker_pool *pool)
726
{
727
	bool managing = mutex_is_locked(&pool->manager_arb);
728 729
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
730

731 732 733 734 735 736 737
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

738
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
739 740
}

741
/*
742 743 744
 * Wake up functions.
 */

745
/* Return the first worker.  Safe with preemption disabled */
746
static struct worker *first_worker(struct worker_pool *pool)
747
{
748
	if (unlikely(list_empty(&pool->idle_list)))
749 750
		return NULL;

751
	return list_first_entry(&pool->idle_list, struct worker, entry);
752 753 754 755
}

/**
 * wake_up_worker - wake up an idle worker
756
 * @pool: worker pool to wake worker from
757
 *
758
 * Wake up the first idle worker of @pool.
759 760
 *
 * CONTEXT:
761
 * spin_lock_irq(pool->lock).
762
 */
763
static void wake_up_worker(struct worker_pool *pool)
764
{
765
	struct worker *worker = first_worker(pool);
766 767 768 769 770

	if (likely(worker))
		wake_up_process(worker->task);
}

771
/**
772 773 774 775 776 777 778 779 780 781
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
782
void wq_worker_waking_up(struct task_struct *task, int cpu)
783 784 785
{
	struct worker *worker = kthread_data(task);

786
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
787
		WARN_ON_ONCE(worker->pool->cpu != cpu);
788
		atomic_inc(&worker->pool->nr_running);
789
	}
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
807
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
808 809
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
810
	struct worker_pool *pool;
811

812 813 814 815 816
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
817
	if (worker->flags & WORKER_NOT_RUNNING)
818 819
		return NULL;

820 821
	pool = worker->pool;

822
	/* this can only happen on the local cpu */
823 824
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
825 826 827 828 829 830

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
831 832 833
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
834
	 * manipulating idle_list, so dereferencing idle_list without pool
835
	 * lock is safe.
836
	 */
837 838
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
839
		to_wakeup = first_worker(pool);
840 841 842 843 844
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
845
 * @worker: self
846 847 848
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
849 850 851
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
852
 *
853
 * CONTEXT:
854
 * spin_lock_irq(pool->lock)
855 856 857 858
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
859
	struct worker_pool *pool = worker->pool;
860

861 862
	WARN_ON_ONCE(worker->task != current);

863 864 865 866 867 868 869 870
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
871
			if (atomic_dec_and_test(&pool->nr_running) &&
872
			    !list_empty(&pool->worklist))
873
				wake_up_worker(pool);
874
		} else
875
			atomic_dec(&pool->nr_running);
876 877
	}

878 879 880 881
	worker->flags |= flags;
}

/**
882
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
883
 * @worker: self
884 885
 * @flags: flags to clear
 *
886
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
887
 *
888
 * CONTEXT:
889
 * spin_lock_irq(pool->lock)
890 891 892
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
893
	struct worker_pool *pool = worker->pool;
894 895
	unsigned int oflags = worker->flags;

896 897
	WARN_ON_ONCE(worker->task != current);

898
	worker->flags &= ~flags;
899

900 901 902 903 904
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
905 906
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
907
			atomic_inc(&pool->nr_running);
908 909
}

910 911
/**
 * find_worker_executing_work - find worker which is executing a work
912
 * @pool: pool of interest
913 914
 * @work: work to find worker for
 *
915 916
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
917 918 919 920 921 922 923 924 925 926 927 928
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
929 930 931 932 933 934
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
935 936
 *
 * CONTEXT:
937
 * spin_lock_irq(pool->lock).
938 939 940 941
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
942
 */
943
static struct worker *find_worker_executing_work(struct worker_pool *pool,
944
						 struct work_struct *work)
945
{
946 947
	struct worker *worker;

948
	hash_for_each_possible(pool->busy_hash, worker, hentry,
949 950 951
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
952 953 954
			return worker;

	return NULL;
955 956
}

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
972
 * spin_lock_irq(pool->lock).
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1037
static void pwq_activate_delayed_work(struct work_struct *work)
1038
{
1039
	struct pool_workqueue *pwq = get_work_pwq(work);
1040 1041

	trace_workqueue_activate_work(work);
1042
	move_linked_works(work, &pwq->pool->worklist, NULL);
1043
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1044
	pwq->nr_active++;
1045 1046
}

1047
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1048
{
1049
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1050 1051
						    struct work_struct, entry);

1052
	pwq_activate_delayed_work(work);
1053 1054
}

1055
/**
1056 1057
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1058 1059 1060
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1061
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1062 1063
 *
 * CONTEXT:
1064
 * spin_lock_irq(pool->lock).
1065
 */
1066
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1067
{
T
Tejun Heo 已提交
1068
	/* uncolored work items don't participate in flushing or nr_active */
1069
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1070
		goto out_put;
1071

1072
	pwq->nr_in_flight[color]--;
1073

1074 1075
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1076
		/* one down, submit a delayed one */
1077 1078
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1079 1080 1081
	}

	/* is flush in progress and are we at the flushing tip? */
1082
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1083
		goto out_put;
1084 1085

	/* are there still in-flight works? */
1086
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1087
		goto out_put;
1088

1089 1090
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1091 1092

	/*
1093
	 * If this was the last pwq, wake up the first flusher.  It
1094 1095
	 * will handle the rest.
	 */
1096 1097
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1098 1099
out_put:
	put_pwq(pwq);
1100 1101
}

1102
/**
1103
 * try_to_grab_pending - steal work item from worklist and disable irq
1104 1105
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1106
 * @flags: place to store irq state
1107 1108 1109 1110 1111 1112 1113
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1114 1115
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1116
 *
1117
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1118 1119 1120
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1121 1122 1123 1124
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1125
 * This function is safe to call from any context including IRQ handler.
1126
 */
1127 1128
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1129
{
1130
	struct worker_pool *pool;
1131
	struct pool_workqueue *pwq;
1132

1133 1134
	local_irq_save(*flags);

1135 1136 1137 1138
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1139 1140 1141 1142 1143
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1144 1145 1146 1147 1148
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1149 1150 1151 1152 1153 1154 1155
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1156 1157
	pool = get_work_pool(work);
	if (!pool)
1158
		goto fail;
1159

1160
	spin_lock(&pool->lock);
1161
	/*
1162 1163 1164 1165 1166
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1167 1168
	 * item is currently queued on that pool.
	 */
1169 1170
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1171 1172 1173 1174 1175
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1176
		 * on the delayed_list, will confuse pwq->nr_active
1177 1178 1179 1180
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1181
			pwq_activate_delayed_work(work);
1182 1183

		list_del_init(&work->entry);
1184
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1185

1186
		/* work->data points to pwq iff queued, point to pool */
1187 1188 1189 1190
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1191
	}
1192
	spin_unlock(&pool->lock);
1193 1194 1195 1196 1197
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1198
	return -EAGAIN;
1199 1200
}

T
Tejun Heo 已提交
1201
/**
1202
 * insert_work - insert a work into a pool
1203
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1204 1205 1206 1207
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1208
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1209
 * work_struct flags.
T
Tejun Heo 已提交
1210 1211
 *
 * CONTEXT:
1212
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1213
 */
1214 1215
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1216
{
1217
	struct worker_pool *pool = pwq->pool;
1218

T
Tejun Heo 已提交
1219
	/* we own @work, set data and link */
1220
	set_work_pwq(work, pwq, extra_flags);
1221
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1222
	get_pwq(pwq);
1223 1224

	/*
1225 1226 1227
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1228 1229 1230
	 */
	smp_mb();

1231 1232
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1233 1234
}

1235 1236
/*
 * Test whether @work is being queued from another work executing on the
1237
 * same workqueue.
1238 1239 1240
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1241 1242 1243 1244 1245 1246 1247
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1248
	return worker && worker->current_pwq->wq == wq;
1249 1250
}

1251
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1252 1253
			 struct work_struct *work)
{
1254
	struct pool_workqueue *pwq;
1255
	struct worker_pool *last_pool;
1256
	struct list_head *worklist;
1257
	unsigned int work_flags;
1258
	unsigned int req_cpu = cpu;
1259 1260 1261 1262 1263 1264 1265 1266

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1267

1268
	debug_work_activate(work);
1269

1270
	/* if dying, only works from the same workqueue are allowed */
1271
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1272
	    WARN_ON_ONCE(!is_chained_work(wq)))
1273
		return;
1274
retry:
1275
	/* pwq which will be used unless @work is executing elsewhere */
1276
	if (!(wq->flags & WQ_UNBOUND)) {
1277
		if (cpu == WORK_CPU_UNBOUND)
1278
			cpu = raw_smp_processor_id();
1279
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1280 1281 1282
	} else {
		pwq = first_pwq(wq);
	}
1283

1284 1285 1286 1287 1288 1289 1290 1291
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1292

1293
		spin_lock(&last_pool->lock);
1294

1295
		worker = find_worker_executing_work(last_pool, work);
1296

1297 1298
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1299
		} else {
1300 1301
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1302
			spin_lock(&pwq->pool->lock);
1303
		}
1304
	} else {
1305
		spin_lock(&pwq->pool->lock);
1306 1307
	}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
	 * without another pwq replacing it as the first pwq or while a
	 * work item is executing on it, so the retying is guaranteed to
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1327 1328
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1329

1330
	if (WARN_ON(!list_empty(&work->entry))) {
1331
		spin_unlock(&pwq->pool->lock);
1332 1333
		return;
	}
1334

1335 1336
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1337

1338
	if (likely(pwq->nr_active < pwq->max_active)) {
1339
		trace_workqueue_activate_work(work);
1340 1341
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1342 1343
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1344
		worklist = &pwq->delayed_works;
1345
	}
1346

1347
	insert_work(pwq, work, worklist, work_flags);
1348

1349
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1350 1351
}

1352
/**
1353 1354
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1355 1356 1357
 * @wq: workqueue to use
 * @work: work to queue
 *
1358
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1359
 *
1360 1361
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1362
 */
1363 1364
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1365
{
1366
	bool ret = false;
1367
	unsigned long flags;
1368

1369
	local_irq_save(flags);
1370

1371
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1372
		__queue_work(cpu, wq, work);
1373
		ret = true;
1374
	}
1375

1376
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1377 1378
	return ret;
}
1379
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1380

1381
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1382
{
1383
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1384

1385
	/* should have been called from irqsafe timer with irq already off */
1386
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1387
}
1388
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1389

1390 1391
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1392
{
1393 1394 1395 1396 1397
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1398 1399
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1400

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1412
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1413

1414
	dwork->wq = wq;
1415
	dwork->cpu = cpu;
1416 1417 1418 1419 1420 1421
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1422 1423
}

1424 1425 1426 1427
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1428
 * @dwork: work to queue
1429 1430
 * @delay: number of jiffies to wait before queueing
 *
1431 1432 1433
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1434
 */
1435 1436
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1437
{
1438
	struct work_struct *work = &dwork->work;
1439
	bool ret = false;
1440
	unsigned long flags;
1441

1442 1443
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1444

1445
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1446
		__queue_delayed_work(cpu, wq, dwork, delay);
1447
		ret = true;
1448
	}
1449

1450
	local_irq_restore(flags);
1451 1452
	return ret;
}
1453
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1454

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1470
 * This function is safe to call from any context including IRQ handler.
1471 1472 1473 1474 1475 1476 1477
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1478

1479 1480 1481
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1482

1483 1484 1485
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1486
	}
1487 1488

	/* -ENOENT from try_to_grab_pending() becomes %true */
1489 1490
	return ret;
}
1491 1492
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1493 1494 1495 1496 1497 1498 1499 1500
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1501
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1502 1503
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1504
{
1505
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1506

1507 1508 1509 1510
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1511

1512 1513
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1514
	pool->nr_idle++;
1515
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1516 1517

	/* idle_list is LIFO */
1518
	list_add(&worker->entry, &pool->idle_list);
1519

1520 1521
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1522

1523
	/*
1524
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1525
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1526 1527
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1528
	 */
1529
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1530
		     pool->nr_workers == pool->nr_idle &&
1531
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1541
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1542 1543 1544
 */
static void worker_leave_idle(struct worker *worker)
{
1545
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1546

1547 1548
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1549
	worker_clr_flags(worker, WORKER_IDLE);
1550
	pool->nr_idle--;
T
Tejun Heo 已提交
1551 1552 1553
	list_del_init(&worker->entry);
}

1554
/**
1555 1556 1557 1558
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1559 1560 1561 1562 1563 1564
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1565
 * This function is to be used by unbound workers and rescuers to bind
1566 1567 1568
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1569
 * verbatim as it's best effort and blocking and pool may be
1570 1571
 * [dis]associated in the meantime.
 *
1572
 * This function tries set_cpus_allowed() and locks pool and verifies the
1573
 * binding against %POOL_DISASSOCIATED which is set during
1574 1575 1576
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1577 1578
 *
 * CONTEXT:
1579
 * Might sleep.  Called without any lock but returns with pool->lock
1580 1581 1582
 * held.
 *
 * RETURNS:
1583
 * %true if the associated pool is online (@worker is successfully
1584 1585
 * bound), %false if offline.
 */
1586
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1587
__acquires(&pool->lock)
1588 1589
{
	while (true) {
1590
		/*
1591 1592 1593
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1594
		 * against POOL_DISASSOCIATED.
1595
		 */
1596
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1597
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1598

1599
		spin_lock_irq(&pool->lock);
1600
		if (pool->flags & POOL_DISASSOCIATED)
1601
			return false;
1602
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1603
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1604
			return true;
1605
		spin_unlock_irq(&pool->lock);
1606

1607 1608 1609 1610 1611 1612
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1613
		cpu_relax();
1614
		cond_resched();
1615 1616 1617
	}
}

T
Tejun Heo 已提交
1618 1619 1620 1621 1622
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1623 1624
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1625
		INIT_LIST_HEAD(&worker->scheduled);
1626 1627
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1628
	}
T
Tejun Heo 已提交
1629 1630 1631 1632 1633
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1634
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1635
 *
1636
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1646
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1647 1648
{
	struct worker *worker = NULL;
1649
	int id = -1;
1650
	char id_buf[16];
T
Tejun Heo 已提交
1651

1652 1653
	lockdep_assert_held(&pool->manager_mutex);

1654 1655 1656 1657 1658
	/*
	 * ID is needed to determine kthread name.  Allocate ID first
	 * without installing the pointer.
	 */
	idr_preload(GFP_KERNEL);
1659
	spin_lock_irq(&pool->lock);
1660 1661 1662

	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);

1663
	spin_unlock_irq(&pool->lock);
1664 1665 1666
	idr_preload_end();
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1667 1668 1669 1670 1671

	worker = alloc_worker();
	if (!worker)
		goto fail;

1672
	worker->pool = pool;
T
Tejun Heo 已提交
1673 1674
	worker->id = id;

1675
	if (pool->cpu >= 0)
1676 1677
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1678
	else
1679 1680
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1681
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1682
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1683 1684 1685
	if (IS_ERR(worker->task))
		goto fail;

1686 1687 1688 1689
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1690 1691
	set_user_nice(worker->task, pool->attrs->nice);
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1692

1693 1694
	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;
T
Tejun Heo 已提交
1695 1696 1697 1698 1699 1700 1701

	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1702
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1703

1704 1705 1706 1707 1708
	/* successful, commit the pointer to idr */
	spin_lock_irq(&pool->lock);
	idr_replace(&pool->worker_idr, worker, worker->id);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1709
	return worker;
1710

T
Tejun Heo 已提交
1711 1712
fail:
	if (id >= 0) {
1713
		spin_lock_irq(&pool->lock);
1714
		idr_remove(&pool->worker_idr, id);
1715
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1725
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1726 1727
 *
 * CONTEXT:
1728
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1729 1730 1731
 */
static void start_worker(struct worker *worker)
{
1732
	worker->flags |= WORKER_STARTED;
1733
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1734
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1735 1736 1737
	wake_up_process(worker->task);
}

1738 1739 1740 1741
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1742
 * Grab the managership of @pool and create and start a new worker for it.
1743 1744 1745 1746 1747
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1748 1749
	mutex_lock(&pool->manager_mutex);

1750 1751 1752 1753 1754 1755 1756
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1757 1758
	mutex_unlock(&pool->manager_mutex);

1759 1760 1761
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1762 1763 1764 1765
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1766
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1767 1768
 *
 * CONTEXT:
1769
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1770 1771 1772
 */
static void destroy_worker(struct worker *worker)
{
1773
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1774

1775 1776 1777
	lockdep_assert_held(&pool->manager_mutex);
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1778
	/* sanity check frenzy */
1779 1780 1781
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1782

T
Tejun Heo 已提交
1783
	if (worker->flags & WORKER_STARTED)
1784
		pool->nr_workers--;
T
Tejun Heo 已提交
1785
	if (worker->flags & WORKER_IDLE)
1786
		pool->nr_idle--;
T
Tejun Heo 已提交
1787 1788

	list_del_init(&worker->entry);
1789
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1790

1791 1792
	idr_remove(&pool->worker_idr, worker->id);

1793
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1794

T
Tejun Heo 已提交
1795 1796 1797
	kthread_stop(worker->task);
	kfree(worker);

1798
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1799 1800
}

1801
static void idle_worker_timeout(unsigned long __pool)
1802
{
1803
	struct worker_pool *pool = (void *)__pool;
1804

1805
	spin_lock_irq(&pool->lock);
1806

1807
	if (too_many_workers(pool)) {
1808 1809 1810 1811
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1812
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1813 1814 1815
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1816
			mod_timer(&pool->idle_timer, expires);
1817 1818
		else {
			/* it's been idle for too long, wake up manager */
1819
			pool->flags |= POOL_MANAGE_WORKERS;
1820
			wake_up_worker(pool);
1821
		}
1822 1823
	}

1824
	spin_unlock_irq(&pool->lock);
1825
}
1826

1827
static void send_mayday(struct work_struct *work)
1828
{
1829 1830
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1831

1832
	lockdep_assert_held(&wq_mayday_lock);
1833

1834
	if (!wq->rescuer)
1835
		return;
1836 1837

	/* mayday mayday mayday */
1838 1839
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1840
		wake_up_process(wq->rescuer->task);
1841
	}
1842 1843
}

1844
static void pool_mayday_timeout(unsigned long __pool)
1845
{
1846
	struct worker_pool *pool = (void *)__pool;
1847 1848
	struct work_struct *work;

1849
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1850
	spin_lock(&pool->lock);
1851

1852
	if (need_to_create_worker(pool)) {
1853 1854 1855 1856 1857 1858
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1859
		list_for_each_entry(work, &pool->worklist, entry)
1860
			send_mayday(work);
L
Linus Torvalds 已提交
1861
	}
1862

1863
	spin_unlock(&pool->lock);
1864
	spin_unlock_irq(&wq_mayday_lock);
1865

1866
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1867 1868
}

1869 1870
/**
 * maybe_create_worker - create a new worker if necessary
1871
 * @pool: pool to create a new worker for
1872
 *
1873
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1874 1875
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1876
 * sent to all rescuers with works scheduled on @pool to resolve
1877 1878
 * possible allocation deadlock.
 *
1879 1880
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1881 1882
 *
 * LOCKING:
1883
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1884 1885 1886 1887
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1888
 * %false if no action was taken and pool->lock stayed locked, %true
1889 1890
 * otherwise.
 */
1891
static bool maybe_create_worker(struct worker_pool *pool)
1892 1893
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1894
{
1895
	if (!need_to_create_worker(pool))
1896 1897
		return false;
restart:
1898
	spin_unlock_irq(&pool->lock);
1899

1900
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1901
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1902 1903 1904 1905

	while (true) {
		struct worker *worker;

1906
		worker = create_worker(pool);
1907
		if (worker) {
1908
			del_timer_sync(&pool->mayday_timer);
1909
			spin_lock_irq(&pool->lock);
1910
			start_worker(worker);
1911 1912
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1913 1914 1915
			return true;
		}

1916
		if (!need_to_create_worker(pool))
1917
			break;
L
Linus Torvalds 已提交
1918

1919 1920
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1921

1922
		if (!need_to_create_worker(pool))
1923 1924 1925
			break;
	}

1926
	del_timer_sync(&pool->mayday_timer);
1927
	spin_lock_irq(&pool->lock);
1928
	if (need_to_create_worker(pool))
1929 1930 1931 1932 1933 1934
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1935
 * @pool: pool to destroy workers for
1936
 *
1937
 * Destroy @pool workers which have been idle for longer than
1938 1939 1940
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1941
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1942 1943 1944
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1945
 * %false if no action was taken and pool->lock stayed locked, %true
1946 1947
 * otherwise.
 */
1948
static bool maybe_destroy_workers(struct worker_pool *pool)
1949 1950
{
	bool ret = false;
L
Linus Torvalds 已提交
1951

1952
	while (too_many_workers(pool)) {
1953 1954
		struct worker *worker;
		unsigned long expires;
1955

1956
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1957
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1958

1959
		if (time_before(jiffies, expires)) {
1960
			mod_timer(&pool->idle_timer, expires);
1961
			break;
1962
		}
L
Linus Torvalds 已提交
1963

1964 1965
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
1966
	}
1967

1968
	return ret;
1969 1970
}

1971
/**
1972 1973
 * manage_workers - manage worker pool
 * @worker: self
1974
 *
1975
 * Assume the manager role and manage the worker pool @worker belongs
1976
 * to.  At any given time, there can be only zero or one manager per
1977
 * pool.  The exclusion is handled automatically by this function.
1978 1979 1980 1981
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1982 1983
 *
 * CONTEXT:
1984
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1985 1986 1987
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
1988 1989
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
1990
 */
1991
static bool manage_workers(struct worker *worker)
1992
{
1993
	struct worker_pool *pool = worker->pool;
1994
	bool ret = false;
1995

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2017
	if (!mutex_trylock(&pool->manager_arb))
2018
		return ret;
2019

2020
	/*
2021 2022
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2023
	 */
2024
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2025
		spin_unlock_irq(&pool->lock);
2026
		mutex_lock(&pool->manager_mutex);
2027 2028
		ret = true;
	}
2029

2030
	pool->flags &= ~POOL_MANAGE_WORKERS;
2031 2032

	/*
2033 2034
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2035
	 */
2036 2037
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2038

2039
	mutex_unlock(&pool->manager_mutex);
2040
	mutex_unlock(&pool->manager_arb);
2041
	return ret;
2042 2043
}

2044 2045
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2046
 * @worker: self
2047 2048 2049 2050 2051 2052 2053 2054 2055
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2056
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2057
 */
T
Tejun Heo 已提交
2058
static void process_one_work(struct worker *worker, struct work_struct *work)
2059 2060
__releases(&pool->lock)
__acquires(&pool->lock)
2061
{
2062
	struct pool_workqueue *pwq = get_work_pwq(work);
2063
	struct worker_pool *pool = worker->pool;
2064
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2065
	int work_color;
2066
	struct worker *collision;
2067 2068 2069 2070 2071 2072 2073 2074
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2075 2076 2077
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2078
#endif
2079 2080 2081
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2082
	 * unbound or a disassociated pool.
2083
	 */
2084
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2085
		     !(pool->flags & POOL_DISASSOCIATED) &&
2086
		     raw_smp_processor_id() != pool->cpu);
2087

2088 2089 2090 2091 2092 2093
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2094
	collision = find_worker_executing_work(pool, work);
2095 2096 2097 2098 2099
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2100
	/* claim and dequeue */
2101
	debug_work_deactivate(work);
2102
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2103
	worker->current_work = work;
2104
	worker->current_func = work->func;
2105
	worker->current_pwq = pwq;
2106
	work_color = get_work_color(work);
2107

2108 2109
	list_del_init(&work->entry);

2110 2111 2112 2113 2114 2115 2116
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2117
	/*
2118
	 * Unbound pool isn't concurrency managed and work items should be
2119 2120
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2121 2122
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2123

2124
	/*
2125
	 * Record the last pool and clear PENDING which should be the last
2126
	 * update to @work.  Also, do this inside @pool->lock so that
2127 2128
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2129
	 */
2130
	set_work_pool_and_clear_pending(work, pool->id);
2131

2132
	spin_unlock_irq(&pool->lock);
2133

2134
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2135
	lock_map_acquire(&lockdep_map);
2136
	trace_workqueue_execute_start(work);
2137
	worker->current_func(work);
2138 2139 2140 2141 2142
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2143
	lock_map_release(&lockdep_map);
2144
	lock_map_release(&pwq->wq->lockdep_map);
2145 2146

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2147 2148
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2149 2150
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2151 2152 2153 2154
		debug_show_held_locks(current);
		dump_stack();
	}

2155
	spin_lock_irq(&pool->lock);
2156

2157 2158 2159 2160
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2161
	/* we're done with it, release */
2162
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2163
	worker->current_work = NULL;
2164
	worker->current_func = NULL;
2165 2166
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2167 2168
}

2169 2170 2171 2172 2173 2174 2175 2176 2177
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2178
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2179 2180 2181
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2182
{
2183 2184
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2185
						struct work_struct, entry);
T
Tejun Heo 已提交
2186
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2187 2188 2189
	}
}

T
Tejun Heo 已提交
2190 2191
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2192
 * @__worker: self
T
Tejun Heo 已提交
2193
 *
2194 2195 2196 2197 2198
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
T
Tejun Heo 已提交
2199
 */
T
Tejun Heo 已提交
2200
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2201
{
T
Tejun Heo 已提交
2202
	struct worker *worker = __worker;
2203
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2204

2205 2206
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2207
woke_up:
2208
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2209

2210 2211
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2212
		spin_unlock_irq(&pool->lock);
2213 2214 2215
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
		return 0;
T
Tejun Heo 已提交
2216
	}
2217

T
Tejun Heo 已提交
2218
	worker_leave_idle(worker);
2219
recheck:
2220
	/* no more worker necessary? */
2221
	if (!need_more_worker(pool))
2222 2223 2224
		goto sleep;

	/* do we need to manage? */
2225
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2226 2227
		goto recheck;

T
Tejun Heo 已提交
2228 2229 2230 2231 2232
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2233
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2234

2235
	/*
2236 2237 2238 2239 2240
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2241
	 */
2242
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2243 2244

	do {
T
Tejun Heo 已提交
2245
		struct work_struct *work =
2246
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2247 2248 2249 2250 2251 2252
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2253
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2254 2255 2256
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2257
		}
2258
	} while (keep_working(pool));
2259 2260

	worker_set_flags(worker, WORKER_PREP, false);
2261
sleep:
2262
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2263
		goto recheck;
2264

T
Tejun Heo 已提交
2265
	/*
2266 2267 2268 2269 2270
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2271 2272 2273
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2274
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2275 2276
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2277 2278
}

2279 2280
/**
 * rescuer_thread - the rescuer thread function
2281
 * @__rescuer: self
2282 2283
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2284
 * workqueue which has WQ_MEM_RECLAIM set.
2285
 *
2286
 * Regular work processing on a pool may block trying to create a new
2287 2288 2289 2290 2291
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2292 2293
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2294 2295 2296 2297
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2298
static int rescuer_thread(void *__rescuer)
2299
{
2300 2301
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2302 2303 2304
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2305 2306 2307 2308 2309 2310

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2311 2312 2313
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2314 2315
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2316
		rescuer->task->flags &= ~PF_WQ_WORKER;
2317
		return 0;
2318
	}
2319

2320
	/* see whether any pwq is asking for help */
2321
	spin_lock_irq(&wq_mayday_lock);
2322 2323 2324 2325

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2326
		struct worker_pool *pool = pwq->pool;
2327 2328 2329
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2330 2331
		list_del_init(&pwq->mayday_node);

2332
		spin_unlock_irq(&wq_mayday_lock);
2333 2334

		/* migrate to the target cpu if possible */
2335
		worker_maybe_bind_and_lock(pool);
2336
		rescuer->pool = pool;
2337 2338 2339 2340 2341

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2342
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2343
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2344
			if (get_work_pwq(work) == pwq)
2345 2346 2347
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2348 2349

		/*
2350
		 * Leave this pool.  If keep_working() is %true, notify a
2351 2352 2353
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2354 2355
		if (keep_working(pool))
			wake_up_worker(pool);
2356

2357
		rescuer->pool = NULL;
2358
		spin_unlock(&pool->lock);
2359
		spin_lock(&wq_mayday_lock);
2360 2361
	}

2362
	spin_unlock_irq(&wq_mayday_lock);
2363

2364 2365
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2366 2367
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2368 2369
}

O
Oleg Nesterov 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2381 2382
/**
 * insert_wq_barrier - insert a barrier work
2383
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2384
 * @barr: wq_barrier to insert
2385 2386
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2387
 *
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2400
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2401 2402
 *
 * CONTEXT:
2403
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2404
 */
2405
static void insert_wq_barrier(struct pool_workqueue *pwq,
2406 2407
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2408
{
2409 2410 2411
	struct list_head *head;
	unsigned int linked = 0;

2412
	/*
2413
	 * debugobject calls are safe here even with pool->lock locked
2414 2415 2416 2417
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2418
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2419
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2420
	init_completion(&barr->done);
2421

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2437
	debug_work_activate(&barr->work);
2438
	insert_work(pwq, &barr->work, head,
2439
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2440 2441
}

2442
/**
2443
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2444 2445 2446 2447
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2448
 * Prepare pwqs for workqueue flushing.
2449
 *
2450 2451 2452 2453 2454
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2455 2456 2457 2458 2459 2460 2461
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2462
 * If @work_color is non-negative, all pwqs should have the same
2463 2464 2465 2466
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2467
 * mutex_lock(wq->mutex).
2468 2469 2470 2471 2472
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2473
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2474
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2475
{
2476
	bool wait = false;
2477
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2478

2479
	if (flush_color >= 0) {
2480
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2481
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2482
	}
2483

2484
	for_each_pwq(pwq, wq) {
2485
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2486

2487
		spin_lock_irq(&pool->lock);
2488

2489
		if (flush_color >= 0) {
2490
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2491

2492 2493 2494
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2495 2496 2497
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2498

2499
		if (work_color >= 0) {
2500
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2501
			pwq->work_color = work_color;
2502
		}
L
Linus Torvalds 已提交
2503

2504
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2505
	}
2506

2507
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2508
		complete(&wq->first_flusher->done);
2509

2510
	return wait;
L
Linus Torvalds 已提交
2511 2512
}

2513
/**
L
Linus Torvalds 已提交
2514
 * flush_workqueue - ensure that any scheduled work has run to completion.
2515
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2516
 *
2517 2518
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2519
 */
2520
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2521
{
2522 2523 2524 2525 2526 2527
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2528

2529 2530
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2531

2532
	mutex_lock(&wq->mutex);
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2545
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2546 2547 2548 2549 2550
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2551
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2552 2553 2554

			wq->first_flusher = &this_flusher;

2555
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2556 2557 2558 2559 2560 2561 2562 2563
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2564
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2565
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2566
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2577
	mutex_unlock(&wq->mutex);
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2590
	mutex_lock(&wq->mutex);
2591

2592 2593 2594 2595
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2596 2597
	wq->first_flusher = NULL;

2598 2599
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2612 2613
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2633
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2634 2635 2636
		}

		if (list_empty(&wq->flusher_queue)) {
2637
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2638 2639 2640 2641 2642
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2643
		 * the new first flusher and arm pwqs.
2644
		 */
2645 2646
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2647 2648 2649 2650

		list_del_init(&next->list);
		wq->first_flusher = next;

2651
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2662
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2663
}
2664
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2665

2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2680
	struct pool_workqueue *pwq;
2681 2682 2683 2684

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2685
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2686
	 */
2687
	mutex_lock(&wq->mutex);
2688
	if (!wq->nr_drainers++)
2689
		wq->flags |= __WQ_DRAINING;
2690
	mutex_unlock(&wq->mutex);
2691 2692 2693
reflush:
	flush_workqueue(wq);

2694
	mutex_lock(&wq->mutex);
2695

2696
	for_each_pwq(pwq, wq) {
2697
		bool drained;
2698

2699
		spin_lock_irq(&pwq->pool->lock);
2700
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2701
		spin_unlock_irq(&pwq->pool->lock);
2702 2703

		if (drained)
2704 2705 2706 2707
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2708
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2709
				wq->name, flush_cnt);
2710

2711
		mutex_unlock(&wq->mutex);
2712 2713 2714 2715
		goto reflush;
	}

	if (!--wq->nr_drainers)
2716
		wq->flags &= ~__WQ_DRAINING;
2717
	mutex_unlock(&wq->mutex);
2718 2719 2720
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2721
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2722
{
2723
	struct worker *worker = NULL;
2724
	struct worker_pool *pool;
2725
	struct pool_workqueue *pwq;
2726 2727

	might_sleep();
2728 2729

	local_irq_disable();
2730
	pool = get_work_pool(work);
2731 2732
	if (!pool) {
		local_irq_enable();
2733
		return false;
2734
	}
2735

2736
	spin_lock(&pool->lock);
2737
	/* see the comment in try_to_grab_pending() with the same code */
2738 2739 2740
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2741
			goto already_gone;
2742
	} else {
2743
		worker = find_worker_executing_work(pool, work);
2744
		if (!worker)
T
Tejun Heo 已提交
2745
			goto already_gone;
2746
		pwq = worker->current_pwq;
2747
	}
2748

2749
	insert_wq_barrier(pwq, barr, work, worker);
2750
	spin_unlock_irq(&pool->lock);
2751

2752 2753 2754 2755 2756 2757
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2758
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2759
		lock_map_acquire(&pwq->wq->lockdep_map);
2760
	else
2761 2762
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2763

2764
	return true;
T
Tejun Heo 已提交
2765
already_gone:
2766
	spin_unlock_irq(&pool->lock);
2767
	return false;
2768
}
2769 2770 2771 2772 2773

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2774 2775
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2776 2777 2778 2779 2780 2781 2782 2783 2784
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2785 2786 2787
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2788
	if (start_flush_work(work, &barr)) {
2789 2790 2791
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2792
	} else {
2793
		return false;
2794 2795
	}
}
2796
EXPORT_SYMBOL_GPL(flush_work);
2797

2798
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2799
{
2800
	unsigned long flags;
2801 2802 2803
	int ret;

	do {
2804 2805 2806 2807 2808 2809
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2810
			flush_work(work);
2811 2812
	} while (unlikely(ret < 0));

2813 2814 2815 2816
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2817
	flush_work(work);
2818
	clear_work_data(work);
2819 2820 2821
	return ret;
}

2822
/**
2823 2824
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2825
 *
2826 2827 2828 2829
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2830
 *
2831 2832
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2833
 *
2834
 * The caller must ensure that the workqueue on which @work was last
2835
 * queued can't be destroyed before this function returns.
2836 2837 2838
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2839
 */
2840
bool cancel_work_sync(struct work_struct *work)
2841
{
2842
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2843
}
2844
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2845

2846
/**
2847 2848
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2849
 *
2850 2851 2852
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2853
 *
2854 2855 2856
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2857
 */
2858 2859
bool flush_delayed_work(struct delayed_work *dwork)
{
2860
	local_irq_disable();
2861
	if (del_timer_sync(&dwork->timer))
2862
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2863
	local_irq_enable();
2864 2865 2866 2867
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2868
/**
2869 2870
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2871
 *
2872 2873 2874 2875 2876
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2877
 *
2878
 * This function is safe to call from any context including IRQ handler.
2879
 */
2880
bool cancel_delayed_work(struct delayed_work *dwork)
2881
{
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2892 2893
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2894
	local_irq_restore(flags);
2895
	return ret;
2896
}
2897
EXPORT_SYMBOL(cancel_delayed_work);
2898

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2909
{
2910
	return __cancel_work_timer(&dwork->work, true);
2911
}
2912
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2913

2914
/**
2915
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2916 2917
 * @func: the function to call
 *
2918 2919
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2920
 * schedule_on_each_cpu() is very slow.
2921 2922 2923
 *
 * RETURNS:
 * 0 on success, -errno on failure.
2924
 */
2925
int schedule_on_each_cpu(work_func_t func)
2926 2927
{
	int cpu;
2928
	struct work_struct __percpu *works;
2929

2930 2931
	works = alloc_percpu(struct work_struct);
	if (!works)
2932
		return -ENOMEM;
2933

2934 2935
	get_online_cpus();

2936
	for_each_online_cpu(cpu) {
2937 2938 2939
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2940
		schedule_work_on(cpu, work);
2941
	}
2942 2943 2944 2945

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2946
	put_online_cpus();
2947
	free_percpu(works);
2948 2949 2950
	return 0;
}

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
2975 2976
void flush_scheduled_work(void)
{
2977
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
2978
}
2979
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
2980

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
2993
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2994 2995
{
	if (!in_interrupt()) {
2996
		fn(&ew->work);
2997 2998 2999
		return 0;
	}

3000
	INIT_WORK(&ew->work, fn);
3001 3002 3003 3004 3005 3006
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t wq_per_cpu_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}

static ssize_t wq_max_active_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t wq_max_active_store(struct device *dev,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}

static struct device_attribute wq_sysfs_attrs[] = {
	__ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
	__ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
	__ATTR_NULL,
};

static ssize_t wq_pool_id_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct worker_pool *pool;
	int written;

	rcu_read_lock_sched();
	pool = first_pwq(wq)->pool;
	written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	rcu_read_lock_sched();
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    first_pwq(wq)->pool->attrs->nice);
	rcu_read_unlock_sched();

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

	rcu_read_lock_sched();
	copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
	rcu_read_unlock_sched();
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= -20 && attrs->nice <= 19)
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	rcu_read_lock_sched();
	written = cpumask_scnprintf(buf, PAGE_SIZE,
				    first_pwq(wq)->pool->attrs->cpumask);
	rcu_read_unlock_sched();

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(pool_id, 0444, wq_pool_id_show, NULL),
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_attrs			= wq_sysfs_attrs,
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Returns 0 on success, -errno on failure.
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.  Returns NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3313
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3314 3315 3316 3317 3318 3319
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3333 3334
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3349 3350 3351 3352 3353
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3354 3355 3356
 * Returns 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3357 3358
 */
static int init_worker_pool(struct worker_pool *pool)
3359 3360
{
	spin_lock_init(&pool->lock);
3361 3362
	pool->id = -1;
	pool->cpu = -1;
3363
	pool->node = NUMA_NO_NODE;
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3377
	mutex_init(&pool->manager_mutex);
3378
	idr_init(&pool->worker_idr);
T
Tejun Heo 已提交
3379

3380 3381 3382 3383
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3384 3385 3386 3387
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3388 3389
}

3390 3391 3392 3393
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3394
	idr_destroy(&pool->worker_idr);
3395 3396 3397 3398 3399 3400 3401 3402 3403
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3404 3405 3406
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3407 3408
 *
 * Should be called with wq_pool_mutex held.
3409 3410 3411 3412 3413
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

3414 3415 3416
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3417 3418 3419 3420
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3421
	    WARN_ON(!list_empty(&pool->worklist)))
3422 3423 3424 3425 3426 3427 3428
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3429 3430 3431 3432 3433
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3434
	mutex_lock(&pool->manager_arb);
3435
	mutex_lock(&pool->manager_mutex);
3436 3437 3438 3439 3440 3441 3442
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
3443
	mutex_unlock(&pool->manager_mutex);
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.  On failure, returns NULL.
3462 3463
 *
 * Should be called with wq_pool_mutex held.
3464 3465 3466 3467 3468
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3469
	int node;
3470

3471
	lockdep_assert_held(&wq_pool_mutex);
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3486 3487 3488
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3489
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3490 3491
	copy_workqueue_attrs(pool->attrs, attrs);

3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3503 3504 3505 3506
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3507
	if (create_and_start_worker(pool) < 0)
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3536
	bool is_last;
T
Tejun Heo 已提交
3537 3538 3539 3540

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3541
	/*
3542
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3543 3544 3545
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3546
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3547
	list_del_rcu(&pwq->pwqs_node);
3548
	is_last = list_empty(&wq->pwqs);
3549
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3550

3551
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3552
	put_unbound_pool(pool);
3553 3554
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3555 3556 3557 3558 3559 3560
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3561
	if (is_last)
T
Tejun Heo 已提交
3562 3563 3564
		kfree(wq);
}

3565
/**
3566
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3567 3568
 * @pwq: target pool_workqueue
 *
3569 3570 3571
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3572
 */
3573
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3574
{
3575 3576 3577 3578
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3579
	lockdep_assert_held(&wq->mutex);
3580 3581 3582 3583 3584

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3585
	spin_lock_irq(&pwq->pool->lock);
3586 3587 3588

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3589

3590 3591 3592
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3593 3594 3595 3596 3597 3598

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3599 3600 3601 3602
	} else {
		pwq->max_active = 0;
	}

3603
	spin_unlock_irq(&pwq->pool->lock);
3604 3605
}

3606 3607
static void init_and_link_pwq(struct pool_workqueue *pwq,
			      struct workqueue_struct *wq,
3608 3609
			      struct worker_pool *pool,
			      struct pool_workqueue **p_last_pwq)
3610 3611 3612 3613 3614 3615
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3616
	pwq->refcnt = 1;
3617 3618
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3619
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3620

3621
	mutex_lock(&wq->mutex);
3622

3623 3624
	/*
	 * Set the matching work_color.  This is synchronized with
3625
	 * wq->mutex to avoid confusing flush_workqueue().
3626
	 */
3627 3628
	if (p_last_pwq)
		*p_last_pwq = first_pwq(wq);
3629
	pwq->work_color = wq->work_color;
3630 3631 3632 3633 3634

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3635
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3636

3637
	mutex_unlock(&wq->mutex);
3638 3639
}

3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq.  If @attrs doesn't match the
 * current attributes, a new pwq is created and made the first pwq which
 * will serve all new work items.  Older pwqs are released as in-flight
 * work items finish.  Note that a work item which repeatedly requeues
 * itself back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.  Returns 0 on success and -errno on
 * failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3657 3658
	struct workqueue_attrs *new_attrs;
	struct pool_workqueue *pwq = NULL, *last_pwq;
3659
	struct worker_pool *pool;
3660
	int ret;
3661

3662
	/* only unbound workqueues can change attributes */
3663 3664 3665
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3666 3667 3668 3669
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3670 3671 3672 3673 3674 3675 3676 3677
	/* make a copy of @attrs and sanitize it */
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!new_attrs)
		goto enomem;

	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3678 3679
	mutex_lock(&wq_pool_mutex);

3680
	pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3681 3682
	if (!pwq) {
		mutex_unlock(&wq_pool_mutex);
3683
		goto enomem;
3684
	}
3685

3686
	pool = get_unbound_pool(new_attrs);
3687 3688
	if (!pool) {
		mutex_unlock(&wq_pool_mutex);
3689
		goto enomem;
3690 3691 3692
	}

	mutex_unlock(&wq_pool_mutex);
3693 3694 3695 3696 3697 3698 3699 3700

	init_and_link_pwq(pwq, wq, pool, &last_pwq);
	if (last_pwq) {
		spin_lock_irq(&last_pwq->pool->lock);
		put_pwq(last_pwq);
		spin_unlock_irq(&last_pwq->pool->lock);
	}

3701 3702 3703 3704 3705
	ret = 0;
	/* fall through */
out_free:
	free_workqueue_attrs(new_attrs);
	return ret;
3706 3707 3708

enomem:
	kmem_cache_free(pwq_cache, pwq);
3709 3710
	ret = -ENOMEM;
	goto out_free;
3711 3712
}

3713
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3714
{
3715
	bool highpri = wq->flags & WQ_HIGHPRI;
3716 3717 3718
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
3719 3720
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3721 3722 3723
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3724 3725
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3726
			struct worker_pool *cpu_pools =
3727
				per_cpu(cpu_worker_pools, cpu);
3728

3729
			init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
3730
		}
3731
		return 0;
3732
	} else {
3733
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3734
	}
T
Tejun Heo 已提交
3735 3736
}

3737 3738
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3739
{
3740 3741 3742
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3743 3744
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3745

3746
	return clamp_val(max_active, 1, lim);
3747 3748
}

3749
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3750 3751 3752
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3753
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3754
{
3755
	va_list args, args1;
L
Linus Torvalds 已提交
3756
	struct workqueue_struct *wq;
3757
	struct pool_workqueue *pwq;
3758 3759 3760 3761 3762 3763 3764 3765 3766
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
3767
		return NULL;
3768 3769 3770 3771

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3772

3773
	max_active = max_active ?: WQ_DFL_ACTIVE;
3774
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3775

3776
	/* init wq */
3777
	wq->flags = flags;
3778
	wq->saved_max_active = max_active;
3779
	mutex_init(&wq->mutex);
3780
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3781
	INIT_LIST_HEAD(&wq->pwqs);
3782 3783
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3784
	INIT_LIST_HEAD(&wq->maydays);
3785

3786
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3787
	INIT_LIST_HEAD(&wq->list);
3788

3789
	if (alloc_and_link_pwqs(wq) < 0)
3790
		goto err_free_wq;
T
Tejun Heo 已提交
3791

3792 3793 3794 3795 3796
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3797 3798
		struct worker *rescuer;

3799
		rescuer = alloc_worker();
3800
		if (!rescuer)
3801
			goto err_destroy;
3802

3803 3804
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3805
					       wq->name);
3806 3807 3808 3809
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
3810

3811
		wq->rescuer = rescuer;
3812
		rescuer->task->flags |= PF_NO_SETAFFINITY;
3813
		wake_up_process(rescuer->task);
3814 3815
	}

3816 3817 3818
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

3819
	/*
3820 3821 3822
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
3823
	 */
3824
	mutex_lock(&wq_pool_mutex);
3825

3826
	mutex_lock(&wq->mutex);
3827 3828
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3829
	mutex_unlock(&wq->mutex);
3830

T
Tejun Heo 已提交
3831
	list_add(&wq->list, &workqueues);
3832

3833
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
3834

3835
	return wq;
3836 3837 3838 3839 3840 3841

err_free_wq:
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
3842
	return NULL;
3843
}
3844
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3845

3846 3847 3848 3849 3850 3851 3852 3853
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3854
	struct pool_workqueue *pwq;
3855

3856 3857
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3858

3859
	/* sanity checks */
3860
	mutex_lock(&wq->mutex);
3861
	for_each_pwq(pwq, wq) {
3862 3863
		int i;

3864 3865
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
3866
				mutex_unlock(&wq->mutex);
3867
				return;
3868 3869 3870
			}
		}

T
Tejun Heo 已提交
3871 3872
		if (WARN_ON(pwq->refcnt > 1) ||
		    WARN_ON(pwq->nr_active) ||
3873
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
3874
			mutex_unlock(&wq->mutex);
3875
			return;
3876
		}
3877
	}
3878
	mutex_unlock(&wq->mutex);
3879

3880 3881 3882 3883
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3884
	mutex_lock(&wq_pool_mutex);
3885
	list_del_init(&wq->list);
3886
	mutex_unlock(&wq_pool_mutex);
3887

3888 3889
	workqueue_sysfs_unregister(wq);

3890
	if (wq->rescuer) {
3891
		kthread_stop(wq->rescuer->task);
3892
		kfree(wq->rescuer);
3893
		wq->rescuer = NULL;
3894 3895
	}

T
Tejun Heo 已提交
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
		 * access the first pwq and put the base ref.  As both pwqs
		 * and pools are sched-RCU protected, the lock operations
		 * are safe.  @wq will be freed when the last pwq is
		 * released.
		 */
3911 3912
		pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
				       pwqs_node);
T
Tejun Heo 已提交
3913 3914 3915
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
3916
	}
3917 3918 3919
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
3932
	struct pool_workqueue *pwq;
3933

3934 3935 3936 3937
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

3938
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3939

3940
	mutex_lock(&wq->mutex);
3941 3942 3943

	wq->saved_max_active = max_active;

3944 3945
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3946

3947
	mutex_unlock(&wq->mutex);
3948
}
3949
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3950

3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

3961
	return worker && worker->rescue_wq;
3962 3963
}

3964
/**
3965 3966 3967
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3968
 *
3969 3970 3971
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3972
 *
3973 3974
 * RETURNS:
 * %true if congested, %false otherwise.
3975
 */
3976
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3977
{
3978
	struct pool_workqueue *pwq;
3979 3980
	bool ret;

3981
	rcu_read_lock_sched();
3982 3983 3984 3985 3986

	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
		pwq = first_pwq(wq);
3987

3988
	ret = !list_empty(&pwq->delayed_works);
3989
	rcu_read_unlock_sched();
3990 3991

	return ret;
L
Linus Torvalds 已提交
3992
}
3993
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3994

3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4007
{
4008
	struct worker_pool *pool;
4009 4010
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4011

4012 4013
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4014

4015 4016
	local_irq_save(flags);
	pool = get_work_pool(work);
4017
	if (pool) {
4018
		spin_lock(&pool->lock);
4019 4020
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4021
		spin_unlock(&pool->lock);
4022
	}
4023
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4024

4025
	return ret;
L
Linus Torvalds 已提交
4026
}
4027
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4028

4029 4030 4031
/*
 * CPU hotplug.
 *
4032
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4033
 * are a lot of assumptions on strong associations among work, pwq and
4034
 * pool which make migrating pending and scheduled works very
4035
 * difficult to implement without impacting hot paths.  Secondly,
4036
 * worker pools serve mix of short, long and very long running works making
4037 4038
 * blocked draining impractical.
 *
4039
 * This is solved by allowing the pools to be disassociated from the CPU
4040 4041
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4042
 */
L
Linus Torvalds 已提交
4043

4044
static void wq_unbind_fn(struct work_struct *work)
4045
{
4046
	int cpu = smp_processor_id();
4047
	struct worker_pool *pool;
4048
	struct worker *worker;
4049
	int wi;
4050

4051
	for_each_cpu_worker_pool(pool, cpu) {
4052
		WARN_ON_ONCE(cpu != smp_processor_id());
4053

4054
		mutex_lock(&pool->manager_mutex);
4055
		spin_lock_irq(&pool->lock);
4056

4057
		/*
4058
		 * We've blocked all manager operations.  Make all workers
4059 4060 4061 4062 4063
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4064
		for_each_pool_worker(worker, wi, pool)
4065
			worker->flags |= WORKER_UNBOUND;
4066

4067
		pool->flags |= POOL_DISASSOCIATED;
4068

4069
		spin_unlock_irq(&pool->lock);
4070
		mutex_unlock(&pool->manager_mutex);
4071
	}
4072

4073
	/*
4074
	 * Call schedule() so that we cross rq->lock and thus can guarantee
4075 4076
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
4077 4078
	 */
	schedule();
4079

4080
	/*
4081 4082
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
4083 4084 4085
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
4086 4087 4088 4089
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
4090
	 */
4091
	for_each_cpu_worker_pool(pool, cpu)
4092
		atomic_set(&pool->nr_running, 0);
4093 4094
}

T
Tejun Heo 已提交
4095 4096 4097 4098
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4099
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4100 4101 4102
 */
static void rebind_workers(struct worker_pool *pool)
{
4103 4104
	struct worker *worker;
	int wi;
T
Tejun Heo 已提交
4105 4106 4107

	lockdep_assert_held(&pool->manager_mutex);

4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4118

4119
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4120

4121 4122
	for_each_pool_worker(worker, wi, pool) {
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4123 4124

		/*
4125 4126 4127 4128 4129 4130
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4131
		 */
4132 4133
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4134

4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4154
	}
4155 4156

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4157 4158
}

4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;
	int wi;

	lockdep_assert_held(&pool->manager_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4192 4193 4194 4195
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4196
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4197 4198
					       unsigned long action,
					       void *hcpu)
4199
{
4200
	int cpu = (unsigned long)hcpu;
4201
	struct worker_pool *pool;
4202
	int pi;
4203

T
Tejun Heo 已提交
4204
	switch (action & ~CPU_TASKS_FROZEN) {
4205
	case CPU_UP_PREPARE:
4206
		for_each_cpu_worker_pool(pool, cpu) {
4207 4208
			if (pool->nr_workers)
				continue;
4209
			if (create_and_start_worker(pool) < 0)
4210
				return NOTIFY_BAD;
4211
		}
T
Tejun Heo 已提交
4212
		break;
4213

4214 4215
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4216
		mutex_lock(&wq_pool_mutex);
4217 4218

		for_each_pool(pool, pi) {
4219
			mutex_lock(&pool->manager_mutex);
4220

4221 4222 4223 4224
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4225

4226 4227 4228 4229
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4230

4231
			mutex_unlock(&pool->manager_mutex);
4232
		}
4233

4234
		mutex_unlock(&wq_pool_mutex);
4235
		break;
4236
	}
4237 4238 4239 4240 4241 4242 4243
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4244
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4245 4246 4247
						 unsigned long action,
						 void *hcpu)
{
4248
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4249 4250
	struct work_struct unbind_work;

4251 4252
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
4253
		/* unbinding should happen on the local CPU */
4254
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4255
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
4256 4257
		flush_work(&unbind_work);
		break;
4258 4259 4260 4261
	}
	return NOTIFY_OK;
}

4262
#ifdef CONFIG_SMP
4263

4264
struct work_for_cpu {
4265
	struct work_struct work;
4266 4267 4268 4269 4270
	long (*fn)(void *);
	void *arg;
	long ret;
};

4271
static void work_for_cpu_fn(struct work_struct *work)
4272
{
4273 4274
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4275 4276 4277 4278 4279 4280 4281 4282 4283
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4284 4285
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
4286
 * The caller must not hold any locks which would prevent @fn from completing.
4287
 */
4288
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4289
{
4290
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4291

4292 4293 4294
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
4295 4296 4297 4298 4299
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4300 4301 4302 4303 4304
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4305
 * Start freezing workqueues.  After this function returns, all freezable
4306
 * workqueues will queue new works to their delayed_works list instead of
4307
 * pool->worklist.
4308 4309
 *
 * CONTEXT:
4310
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4311 4312 4313
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4314
	struct worker_pool *pool;
4315 4316
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4317
	int pi;
4318

4319
	mutex_lock(&wq_pool_mutex);
4320

4321
	WARN_ON_ONCE(workqueue_freezing);
4322 4323
	workqueue_freezing = true;

4324
	/* set FREEZING */
4325
	for_each_pool(pool, pi) {
4326
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4327 4328
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4329
		spin_unlock_irq(&pool->lock);
4330
	}
4331

4332
	list_for_each_entry(wq, &workqueues, list) {
4333
		mutex_lock(&wq->mutex);
4334 4335
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4336
		mutex_unlock(&wq->mutex);
4337
	}
4338

4339
	mutex_unlock(&wq_pool_mutex);
4340 4341 4342
}

/**
4343
 * freeze_workqueues_busy - are freezable workqueues still busy?
4344 4345 4346 4347 4348
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4349
 * Grabs and releases wq_pool_mutex.
4350 4351
 *
 * RETURNS:
4352 4353
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4354 4355 4356 4357
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4358 4359
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4360

4361
	mutex_lock(&wq_pool_mutex);
4362

4363
	WARN_ON_ONCE(!workqueue_freezing);
4364

4365 4366 4367
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4368 4369 4370 4371
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4372
		rcu_read_lock_sched();
4373
		for_each_pwq(pwq, wq) {
4374
			WARN_ON_ONCE(pwq->nr_active < 0);
4375
			if (pwq->nr_active) {
4376
				busy = true;
4377
				rcu_read_unlock_sched();
4378 4379 4380
				goto out_unlock;
			}
		}
4381
		rcu_read_unlock_sched();
4382 4383
	}
out_unlock:
4384
	mutex_unlock(&wq_pool_mutex);
4385 4386 4387 4388 4389 4390 4391
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4392
 * frozen works are transferred to their respective pool worklists.
4393 4394
 *
 * CONTEXT:
4395
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4396 4397 4398
 */
void thaw_workqueues(void)
{
4399 4400 4401
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4402
	int pi;
4403

4404
	mutex_lock(&wq_pool_mutex);
4405 4406 4407 4408

	if (!workqueue_freezing)
		goto out_unlock;

4409
	/* clear FREEZING */
4410
	for_each_pool(pool, pi) {
4411
		spin_lock_irq(&pool->lock);
4412 4413
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4414
		spin_unlock_irq(&pool->lock);
4415
	}
4416

4417 4418
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4419
		mutex_lock(&wq->mutex);
4420 4421
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4422
		mutex_unlock(&wq->mutex);
4423 4424 4425 4426
	}

	workqueue_freezing = false;
out_unlock:
4427
	mutex_unlock(&wq_pool_mutex);
4428 4429 4430
}
#endif /* CONFIG_FREEZER */

4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, node));

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

4468
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4469
{
T
Tejun Heo 已提交
4470 4471
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4472

4473 4474
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4475
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
4476

4477 4478 4479 4480
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4481
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4482
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4483

4484 4485
	wq_numa_init();

4486
	/* initialize CPU pools */
4487
	for_each_possible_cpu(cpu) {
4488
		struct worker_pool *pool;
4489

T
Tejun Heo 已提交
4490
		i = 0;
4491
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4492
			BUG_ON(init_worker_pool(pool));
4493
			pool->cpu = cpu;
4494
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4495
			pool->attrs->nice = std_nice[i++];
4496
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
4497

T
Tejun Heo 已提交
4498
			/* alloc pool ID */
4499
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
4500
			BUG_ON(worker_pool_assign_id(pool));
4501
			mutex_unlock(&wq_pool_mutex);
4502
		}
4503 4504
	}

4505
	/* create the initial worker */
4506
	for_each_online_cpu(cpu) {
4507
		struct worker_pool *pool;
4508

4509
		for_each_cpu_worker_pool(pool, cpu) {
4510
			pool->flags &= ~POOL_DISASSOCIATED;
4511
			BUG_ON(create_and_start_worker(pool) < 0);
4512
		}
4513 4514
	}

4515 4516 4517 4518 4519 4520 4521 4522 4523
	/* create default unbound wq attrs */
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
	}

4524
	system_wq = alloc_workqueue("events", 0, 0);
4525
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4526
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4527 4528
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4529 4530
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4531
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4532
	       !system_unbound_wq || !system_freezable_wq);
4533
	return 0;
L
Linus Torvalds 已提交
4534
}
4535
early_initcall(init_workqueues);