switch.c 43.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
 * Thunderbolt driver - switch/port utility functions
4 5
 *
 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6
 * Copyright (C) 2018, Intel Corporation
7 8 9
 */

#include <linux/delay.h>
10 11
#include <linux/idr.h>
#include <linux/nvmem-provider.h>
12
#include <linux/pm_runtime.h>
13
#include <linux/sched/signal.h>
14
#include <linux/sizes.h>
15
#include <linux/slab.h>
16
#include <linux/vmalloc.h>
17 18 19

#include "tb.h"

20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* Switch NVM support */

#define NVM_DEVID		0x05
#define NVM_VERSION		0x08
#define NVM_CSS			0x10
#define NVM_FLASH_SIZE		0x45

#define NVM_MIN_SIZE		SZ_32K
#define NVM_MAX_SIZE		SZ_512K

static DEFINE_IDA(nvm_ida);

struct nvm_auth_status {
	struct list_head list;
34
	uuid_t uuid;
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
	u32 status;
};

/*
 * Hold NVM authentication failure status per switch This information
 * needs to stay around even when the switch gets power cycled so we
 * keep it separately.
 */
static LIST_HEAD(nvm_auth_status_cache);
static DEFINE_MUTEX(nvm_auth_status_lock);

static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
{
	struct nvm_auth_status *st;

	list_for_each_entry(st, &nvm_auth_status_cache, list) {
51
		if (uuid_equal(&st->uuid, sw->uuid))
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
			return st;
	}

	return NULL;
}

static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
{
	struct nvm_auth_status *st;

	mutex_lock(&nvm_auth_status_lock);
	st = __nvm_get_auth_status(sw);
	mutex_unlock(&nvm_auth_status_lock);

	*status = st ? st->status : 0;
}

static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
{
	struct nvm_auth_status *st;

	if (WARN_ON(!sw->uuid))
		return;

	mutex_lock(&nvm_auth_status_lock);
	st = __nvm_get_auth_status(sw);

	if (!st) {
		st = kzalloc(sizeof(*st), GFP_KERNEL);
		if (!st)
			goto unlock;

		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
		INIT_LIST_HEAD(&st->list);
		list_add_tail(&st->list, &nvm_auth_status_cache);
	}

	st->status = status;
unlock:
	mutex_unlock(&nvm_auth_status_lock);
}

static void nvm_clear_auth_status(const struct tb_switch *sw)
{
	struct nvm_auth_status *st;

	mutex_lock(&nvm_auth_status_lock);
	st = __nvm_get_auth_status(sw);
	if (st) {
		list_del(&st->list);
		kfree(st);
	}
	mutex_unlock(&nvm_auth_status_lock);
}

static int nvm_validate_and_write(struct tb_switch *sw)
{
	unsigned int image_size, hdr_size;
	const u8 *buf = sw->nvm->buf;
	u16 ds_size;
	int ret;

	if (!buf)
		return -EINVAL;

	image_size = sw->nvm->buf_data_size;
	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
		return -EINVAL;

	/*
	 * FARB pointer must point inside the image and must at least
	 * contain parts of the digital section we will be reading here.
	 */
	hdr_size = (*(u32 *)buf) & 0xffffff;
	if (hdr_size + NVM_DEVID + 2 >= image_size)
		return -EINVAL;

	/* Digital section start should be aligned to 4k page */
	if (!IS_ALIGNED(hdr_size, SZ_4K))
		return -EINVAL;

	/*
	 * Read digital section size and check that it also fits inside
	 * the image.
	 */
	ds_size = *(u16 *)(buf + hdr_size);
	if (ds_size >= image_size)
		return -EINVAL;

	if (!sw->safe_mode) {
		u16 device_id;

		/*
		 * Make sure the device ID in the image matches the one
		 * we read from the switch config space.
		 */
		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
		if (device_id != sw->config.device_id)
			return -EINVAL;

		if (sw->generation < 3) {
			/* Write CSS headers first */
			ret = dma_port_flash_write(sw->dma_port,
				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
				DMA_PORT_CSS_MAX_SIZE);
			if (ret)
				return ret;
		}

		/* Skip headers in the image */
		buf += hdr_size;
		image_size -= hdr_size;
	}

	return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
}

static int nvm_authenticate_host(struct tb_switch *sw)
{
	int ret;

	/*
	 * Root switch NVM upgrade requires that we disconnect the
175
	 * existing paths first (in case it is not in safe mode
176 177 178
	 * already).
	 */
	if (!sw->safe_mode) {
179
		ret = tb_domain_disconnect_all_paths(sw->tb);
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
		if (ret)
			return ret;
		/*
		 * The host controller goes away pretty soon after this if
		 * everything goes well so getting timeout is expected.
		 */
		ret = dma_port_flash_update_auth(sw->dma_port);
		return ret == -ETIMEDOUT ? 0 : ret;
	}

	/*
	 * From safe mode we can get out by just power cycling the
	 * switch.
	 */
	dma_port_power_cycle(sw->dma_port);
	return 0;
}

static int nvm_authenticate_device(struct tb_switch *sw)
{
	int ret, retries = 10;

	ret = dma_port_flash_update_auth(sw->dma_port);
	if (ret && ret != -ETIMEDOUT)
		return ret;

	/*
	 * Poll here for the authentication status. It takes some time
	 * for the device to respond (we get timeout for a while). Once
	 * we get response the device needs to be power cycled in order
	 * to the new NVM to be taken into use.
	 */
	do {
		u32 status;

		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
		if (ret < 0 && ret != -ETIMEDOUT)
			return ret;
		if (ret > 0) {
			if (status) {
				tb_sw_warn(sw, "failed to authenticate NVM\n");
				nvm_set_auth_status(sw, status);
			}

			tb_sw_info(sw, "power cycling the switch now\n");
			dma_port_power_cycle(sw->dma_port);
			return 0;
		}

		msleep(500);
	} while (--retries);

	return -ETIMEDOUT;
}

static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
			      size_t bytes)
{
	struct tb_switch *sw = priv;
239 240 241 242 243 244
	int ret;

	pm_runtime_get_sync(&sw->dev);
	ret = dma_port_flash_read(sw->dma_port, offset, val, bytes);
	pm_runtime_mark_last_busy(&sw->dev);
	pm_runtime_put_autosuspend(&sw->dev);
245

246
	return ret;
247 248 249 250 251 252 253 254
}

static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
			       size_t bytes)
{
	struct tb_switch *sw = priv;
	int ret = 0;

255 256
	if (!mutex_trylock(&sw->tb->lock))
		return restart_syscall();
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

	/*
	 * Since writing the NVM image might require some special steps,
	 * for example when CSS headers are written, we cache the image
	 * locally here and handle the special cases when the user asks
	 * us to authenticate the image.
	 */
	if (!sw->nvm->buf) {
		sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
		if (!sw->nvm->buf) {
			ret = -ENOMEM;
			goto unlock;
		}
	}

	sw->nvm->buf_data_size = offset + bytes;
	memcpy(sw->nvm->buf + offset, val, bytes);

unlock:
276
	mutex_unlock(&sw->tb->lock);
277 278 279 280 281 282 283 284 285 286 287 288 289 290

	return ret;
}

static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
					   size_t size, bool active)
{
	struct nvmem_config config;

	memset(&config, 0, sizeof(config));

	if (active) {
		config.name = "nvm_active";
		config.reg_read = tb_switch_nvm_read;
291
		config.read_only = true;
292 293 294
	} else {
		config.name = "nvm_non_active";
		config.reg_write = tb_switch_nvm_write;
295
		config.root_only = true;
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
	}

	config.id = id;
	config.stride = 4;
	config.word_size = 4;
	config.size = size;
	config.dev = &sw->dev;
	config.owner = THIS_MODULE;
	config.priv = sw;

	return nvmem_register(&config);
}

static int tb_switch_nvm_add(struct tb_switch *sw)
{
	struct nvmem_device *nvm_dev;
	struct tb_switch_nvm *nvm;
	u32 val;
	int ret;

	if (!sw->dma_port)
		return 0;

	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
	if (!nvm)
		return -ENOMEM;

	nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);

	/*
	 * If the switch is in safe-mode the only accessible portion of
	 * the NVM is the non-active one where userspace is expected to
	 * write new functional NVM.
	 */
	if (!sw->safe_mode) {
		u32 nvm_size, hdr_size;

		ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
					  sizeof(val));
		if (ret)
			goto err_ida;

		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
		nvm_size = (SZ_1M << (val & 7)) / 8;
		nvm_size = (nvm_size - hdr_size) / 2;

		ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
					  sizeof(val));
		if (ret)
			goto err_ida;

		nvm->major = val >> 16;
		nvm->minor = val >> 8;

		nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
		if (IS_ERR(nvm_dev)) {
			ret = PTR_ERR(nvm_dev);
			goto err_ida;
		}
		nvm->active = nvm_dev;
	}

	nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
	if (IS_ERR(nvm_dev)) {
		ret = PTR_ERR(nvm_dev);
		goto err_nvm_active;
	}
	nvm->non_active = nvm_dev;

	sw->nvm = nvm;
	return 0;

err_nvm_active:
	if (nvm->active)
		nvmem_unregister(nvm->active);
err_ida:
	ida_simple_remove(&nvm_ida, nvm->id);
	kfree(nvm);

	return ret;
}

static void tb_switch_nvm_remove(struct tb_switch *sw)
{
	struct tb_switch_nvm *nvm;

	nvm = sw->nvm;
	sw->nvm = NULL;

	if (!nvm)
		return;

	/* Remove authentication status in case the switch is unplugged */
	if (!nvm->authenticating)
		nvm_clear_auth_status(sw);

	nvmem_unregister(nvm->non_active);
	if (nvm->active)
		nvmem_unregister(nvm->active);
	ida_simple_remove(&nvm_ida, nvm->id);
	vfree(nvm->buf);
	kfree(nvm);
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
/* port utility functions */

static const char *tb_port_type(struct tb_regs_port_header *port)
{
	switch (port->type >> 16) {
	case 0:
		switch ((u8) port->type) {
		case 0:
			return "Inactive";
		case 1:
			return "Port";
		case 2:
			return "NHI";
		default:
			return "unknown";
		}
	case 0x2:
		return "Ethernet";
	case 0x8:
		return "SATA";
	case 0xe:
		return "DP/HDMI";
	case 0x10:
		return "PCIe";
	case 0x20:
		return "USB";
	default:
		return "unknown";
	}
}

static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
{
433 434 435 436 437 438 439 440 441
	tb_dbg(tb,
	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
	       port->port_number, port->vendor_id, port->device_id,
	       port->revision, port->thunderbolt_version, tb_port_type(port),
	       port->type);
	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
	       port->max_in_hop_id, port->max_out_hop_id);
	tb_dbg(tb, "  Max counters: %d\n", port->max_counters);
	tb_dbg(tb, "  NFC Credits: %#x\n", port->nfc_credits);
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
/**
 * tb_port_state() - get connectedness state of a port
 *
 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
 *
 * Return: Returns an enum tb_port_state on success or an error code on failure.
 */
static int tb_port_state(struct tb_port *port)
{
	struct tb_cap_phy phy;
	int res;
	if (port->cap_phy == 0) {
		tb_port_WARN(port, "does not have a PHY\n");
		return -EINVAL;
	}
	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
	if (res)
		return res;
	return phy.state;
}

/**
 * tb_wait_for_port() - wait for a port to become ready
 *
 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
 * wait_if_unplugged is set then we also wait if the port is in state
 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
 * switch resume). Otherwise we only wait if a device is registered but the link
 * has not yet been established.
 *
 * Return: Returns an error code on failure. Returns 0 if the port is not
 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
 * if the port is connected and in state TB_PORT_UP.
 */
int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
{
	int retries = 10;
	int state;
	if (!port->cap_phy) {
		tb_port_WARN(port, "does not have PHY\n");
		return -EINVAL;
	}
	if (tb_is_upstream_port(port)) {
		tb_port_WARN(port, "is the upstream port\n");
		return -EINVAL;
	}

	while (retries--) {
		state = tb_port_state(port);
		if (state < 0)
			return state;
		if (state == TB_PORT_DISABLED) {
			tb_port_info(port, "is disabled (state: 0)\n");
			return 0;
		}
		if (state == TB_PORT_UNPLUGGED) {
			if (wait_if_unplugged) {
				/* used during resume */
				tb_port_info(port,
					     "is unplugged (state: 7), retrying...\n");
				msleep(100);
				continue;
			}
			tb_port_info(port, "is unplugged (state: 7)\n");
			return 0;
		}
		if (state == TB_PORT_UP) {
			tb_port_info(port,
				     "is connected, link is up (state: 2)\n");
			return 1;
		}

		/*
		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
		 * time.
		 */
		tb_port_info(port,
			     "is connected, link is not up (state: %d), retrying...\n",
			     state);
		msleep(100);
	}
	tb_port_warn(port,
		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
	return 0;
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
/**
 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
 *
 * Change the number of NFC credits allocated to @port by @credits. To remove
 * NFC credits pass a negative amount of credits.
 *
 * Return: Returns 0 on success or an error code on failure.
 */
int tb_port_add_nfc_credits(struct tb_port *port, int credits)
{
	if (credits == 0)
		return 0;
	tb_port_info(port,
		     "adding %#x NFC credits (%#x -> %#x)",
		     credits,
		     port->config.nfc_credits,
		     port->config.nfc_credits + credits);
	port->config.nfc_credits += credits;
	return tb_port_write(port, &port->config.nfc_credits,
			     TB_CFG_PORT, 4, 1);
}

/**
 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
 *
 * Return: Returns 0 on success or an error code on failure.
 */
int tb_port_clear_counter(struct tb_port *port, int counter)
{
	u32 zero[3] = { 0, 0, 0 };
	tb_port_info(port, "clearing counter %d\n", counter);
	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
}

564 565 566 567 568 569 570 571
/**
 * tb_init_port() - initialize a port
 *
 * This is a helper method for tb_switch_alloc. Does not check or initialize
 * any downstream switches.
 *
 * Return: Returns 0 on success or an error code on failure.
 */
572
static int tb_init_port(struct tb_port *port)
573 574
{
	int res;
575
	int cap;
576

577 578 579 580
	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
	if (res)
		return res;

581
	/* Port 0 is the switch itself and has no PHY. */
582
	if (port->config.type == TB_TYPE_PORT && port->port != 0) {
583
		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
584 585 586 587 588

		if (cap > 0)
			port->cap_phy = cap;
		else
			tb_port_WARN(port, "non switch port without a PHY\n");
589 590 591 592
	} else if (port->port != 0) {
		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
		if (cap > 0)
			port->cap_adap = cap;
593 594
	}

595
	tb_dump_port(port->sw->tb, &port->config);
596

597 598 599 600 601 602
	/* Control port does not need HopID allocation */
	if (port->port) {
		ida_init(&port->in_hopids);
		ida_init(&port->out_hopids);
	}

603 604 605 606
	return 0;

}

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
			       int max_hopid)
{
	int port_max_hopid;
	struct ida *ida;

	if (in) {
		port_max_hopid = port->config.max_in_hop_id;
		ida = &port->in_hopids;
	} else {
		port_max_hopid = port->config.max_out_hop_id;
		ida = &port->out_hopids;
	}

	/* HopIDs 0-7 are reserved */
	if (min_hopid < TB_PATH_MIN_HOPID)
		min_hopid = TB_PATH_MIN_HOPID;

	if (max_hopid < 0 || max_hopid > port_max_hopid)
		max_hopid = port_max_hopid;

	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
}

/**
 * tb_port_alloc_in_hopid() - Allocate input HopID from port
 * @port: Port to allocate HopID for
 * @min_hopid: Minimum acceptable input HopID
 * @max_hopid: Maximum acceptable input HopID
 *
 * Return: HopID between @min_hopid and @max_hopid or negative errno in
 * case of error.
 */
int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
{
	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
}

/**
 * tb_port_alloc_out_hopid() - Allocate output HopID from port
 * @port: Port to allocate HopID for
 * @min_hopid: Minimum acceptable output HopID
 * @max_hopid: Maximum acceptable output HopID
 *
 * Return: HopID between @min_hopid and @max_hopid or negative errno in
 * case of error.
 */
int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
{
	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
}

/**
 * tb_port_release_in_hopid() - Release allocated input HopID from port
 * @port: Port whose HopID to release
 * @hopid: HopID to release
 */
void tb_port_release_in_hopid(struct tb_port *port, int hopid)
{
	ida_simple_remove(&port->in_hopids, hopid);
}

/**
 * tb_port_release_out_hopid() - Release allocated output HopID from port
 * @port: Port whose HopID to release
 * @hopid: HopID to release
 */
void tb_port_release_out_hopid(struct tb_port *port, int hopid)
{
	ida_simple_remove(&port->out_hopids, hopid);
}

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
/**
 * tb_next_port_on_path() - Return next port for given port on a path
 * @start: Start port of the walk
 * @end: End port of the walk
 * @prev: Previous port (%NULL if this is the first)
 *
 * This function can be used to walk from one port to another if they
 * are connected through zero or more switches. If the @prev is dual
 * link port, the function follows that link and returns another end on
 * that same link.
 *
 * If the @end port has been reached, return %NULL.
 *
 * Domain tb->lock must be held when this function is called.
 */
struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
				     struct tb_port *prev)
{
	struct tb_port *next;

	if (!prev)
		return start;

	if (prev->sw == end->sw) {
		if (prev == end)
			return NULL;
		return end;
	}

	if (start->sw->config.depth < end->sw->config.depth) {
		if (prev->remote &&
		    prev->remote->sw->config.depth > prev->sw->config.depth)
			next = prev->remote;
		else
			next = tb_port_at(tb_route(end->sw), prev->sw);
	} else {
		if (tb_is_upstream_port(prev)) {
			next = prev->remote;
		} else {
			next = tb_upstream_port(prev->sw);
			/*
			 * Keep the same link if prev and next are both
			 * dual link ports.
			 */
			if (next->dual_link_port &&
			    next->link_nr != prev->link_nr) {
				next = next->dual_link_port;
			}
		}
	}

	return next;
}

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
/**
 * tb_port_is_enabled() - Is the adapter port enabled
 * @port: Port to check
 */
bool tb_port_is_enabled(struct tb_port *port)
{
	switch (port->config.type) {
	case TB_TYPE_PCIE_UP:
	case TB_TYPE_PCIE_DOWN:
		return tb_pci_port_is_enabled(port);

	default:
		return false;
	}
}

749 750 751 752 753 754 755 756 757 758 759 760 761 762
/**
 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
 * @port: PCIe port to check
 */
bool tb_pci_port_is_enabled(struct tb_port *port)
{
	u32 data;

	if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1))
		return false;

	return !!(data & TB_PCI_EN);
}

763 764 765 766 767 768 769 770 771 772 773 774 775
/**
 * tb_pci_port_enable() - Enable PCIe adapter port
 * @port: PCIe port to enable
 * @enable: Enable/disable the PCIe adapter
 */
int tb_pci_port_enable(struct tb_port *port, bool enable)
{
	u32 word = enable ? TB_PCI_EN : 0x0;
	if (!port->cap_adap)
		return -ENXIO;
	return tb_port_write(port, &word, TB_CFG_PORT, port->cap_adap, 1);
}

776 777 778 779
/* switch utility functions */

static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
{
780 781 782 783 784 785
	tb_dbg(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n",
	       sw->vendor_id, sw->device_id, sw->revision,
	       sw->thunderbolt_version);
	tb_dbg(tb, "  Max Port Number: %d\n", sw->max_port_number);
	tb_dbg(tb, "  Config:\n");
	tb_dbg(tb,
786
		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
787 788 789 790 791
	       sw->upstream_port_number, sw->depth,
	       (((u64) sw->route_hi) << 32) | sw->route_lo,
	       sw->enabled, sw->plug_events_delay);
	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
	       sw->__unknown1, sw->__unknown4);
792 793
}

794 795 796 797 798 799 800 801 802 803 804 805 806
/**
 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
 *
 * Return: Returns 0 on success or an error code on failure.
 */
int tb_switch_reset(struct tb *tb, u64 route)
{
	struct tb_cfg_result res;
	struct tb_regs_switch_header header = {
		header.route_hi = route >> 32,
		header.route_lo = route,
		header.enabled = true,
	};
807
	tb_dbg(tb, "resetting switch at %llx\n", route);
808 809 810 811 812 813 814 815 816 817
	res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
			0, 2, 2, 2);
	if (res.err)
		return res.err;
	res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
	if (res.err > 0)
		return -EIO;
	return res.err;
}

A
Andreas Noever 已提交
818 819 820 821 822 823 824 825 826 827 828 829
/**
 * tb_plug_events_active() - enable/disable plug events on a switch
 *
 * Also configures a sane plug_events_delay of 255ms.
 *
 * Return: Returns 0 on success or an error code on failure.
 */
static int tb_plug_events_active(struct tb_switch *sw, bool active)
{
	u32 data;
	int res;

830 831 832
	if (!sw->config.enabled)
		return 0;

A
Andreas Noever 已提交
833 834 835 836 837 838 839 840 841 842 843 844
	sw->config.plug_events_delay = 0xff;
	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
	if (res)
		return res;

	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
	if (res)
		return res;

	if (active) {
		data = data & 0xFFFFFF83;
		switch (sw->config.device_id) {
845 846 847
		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
A
Andreas Noever 已提交
848 849 850 851 852 853 854 855 856 857 858
			break;
		default:
			data |= 4;
		}
	} else {
		data = data | 0x7c;
	}
	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
			   sw->cap_plug_events + 1, 1);
}

859 860 861 862 863 864 865 866 867 868 869 870 871
static ssize_t authorized_show(struct device *dev,
			       struct device_attribute *attr,
			       char *buf)
{
	struct tb_switch *sw = tb_to_switch(dev);

	return sprintf(buf, "%u\n", sw->authorized);
}

static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
{
	int ret = -EINVAL;

872 873
	if (!mutex_trylock(&sw->tb->lock))
		return restart_syscall();
874 875 876 877

	if (sw->authorized)
		goto unlock;

878 879 880 881 882 883
	/*
	 * Make sure there is no PCIe rescan ongoing when a new PCIe
	 * tunnel is created. Otherwise the PCIe rescan code might find
	 * the new tunnel too early.
	 */
	pci_lock_rescan_remove();
884
	pm_runtime_get_sync(&sw->dev);
885

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
	switch (val) {
	/* Approve switch */
	case 1:
		if (sw->key)
			ret = tb_domain_approve_switch_key(sw->tb, sw);
		else
			ret = tb_domain_approve_switch(sw->tb, sw);
		break;

	/* Challenge switch */
	case 2:
		if (sw->key)
			ret = tb_domain_challenge_switch_key(sw->tb, sw);
		break;

	default:
		break;
	}

905 906
	pm_runtime_mark_last_busy(&sw->dev);
	pm_runtime_put_autosuspend(&sw->dev);
907 908
	pci_unlock_rescan_remove();

909 910 911 912 913 914 915
	if (!ret) {
		sw->authorized = val;
		/* Notify status change to the userspace */
		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
	}

unlock:
916
	mutex_unlock(&sw->tb->lock);
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	return ret;
}

static ssize_t authorized_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct tb_switch *sw = tb_to_switch(dev);
	unsigned int val;
	ssize_t ret;

	ret = kstrtouint(buf, 0, &val);
	if (ret)
		return ret;
	if (val > 2)
		return -EINVAL;

	ret = tb_switch_set_authorized(sw, val);

	return ret ? ret : count;
}
static DEVICE_ATTR_RW(authorized);

940 941 942 943 944 945 946 947 948
static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
{
	struct tb_switch *sw = tb_to_switch(dev);

	return sprintf(buf, "%u\n", sw->boot);
}
static DEVICE_ATTR_RO(boot);

949 950 951 952
static ssize_t device_show(struct device *dev, struct device_attribute *attr,
			   char *buf)
{
	struct tb_switch *sw = tb_to_switch(dev);
A
Andreas Noever 已提交
953

954 955 956 957
	return sprintf(buf, "%#x\n", sw->device);
}
static DEVICE_ATTR_RO(device);

958 959 960 961 962 963 964 965 966
static ssize_t
device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct tb_switch *sw = tb_to_switch(dev);

	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
}
static DEVICE_ATTR_RO(device_name);

967 968 969 970 971 972
static ssize_t key_show(struct device *dev, struct device_attribute *attr,
			char *buf)
{
	struct tb_switch *sw = tb_to_switch(dev);
	ssize_t ret;

973 974
	if (!mutex_trylock(&sw->tb->lock))
		return restart_syscall();
975 976 977 978 979 980

	if (sw->key)
		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
	else
		ret = sprintf(buf, "\n");

981
	mutex_unlock(&sw->tb->lock);
982 983 984 985 986 987 988 989 990
	return ret;
}

static ssize_t key_store(struct device *dev, struct device_attribute *attr,
			 const char *buf, size_t count)
{
	struct tb_switch *sw = tb_to_switch(dev);
	u8 key[TB_SWITCH_KEY_SIZE];
	ssize_t ret = count;
991
	bool clear = false;
992

993 994 995
	if (!strcmp(buf, "\n"))
		clear = true;
	else if (hex2bin(key, buf, sizeof(key)))
996 997
		return -EINVAL;

998 999
	if (!mutex_trylock(&sw->tb->lock))
		return restart_syscall();
1000 1001 1002 1003 1004

	if (sw->authorized) {
		ret = -EBUSY;
	} else {
		kfree(sw->key);
1005 1006 1007 1008 1009 1010 1011
		if (clear) {
			sw->key = NULL;
		} else {
			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
			if (!sw->key)
				ret = -ENOMEM;
		}
1012 1013
	}

1014
	mutex_unlock(&sw->tb->lock);
1015 1016
	return ret;
}
1017
static DEVICE_ATTR(key, 0600, key_show, key_store);
1018

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
static void nvm_authenticate_start(struct tb_switch *sw)
{
	struct pci_dev *root_port;

	/*
	 * During host router NVM upgrade we should not allow root port to
	 * go into D3cold because some root ports cannot trigger PME
	 * itself. To be on the safe side keep the root port in D0 during
	 * the whole upgrade process.
	 */
	root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
	if (root_port)
		pm_runtime_get_noresume(&root_port->dev);
}

static void nvm_authenticate_complete(struct tb_switch *sw)
{
	struct pci_dev *root_port;

	root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
	if (root_port)
		pm_runtime_put(&root_port->dev);
}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
static ssize_t nvm_authenticate_show(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct tb_switch *sw = tb_to_switch(dev);
	u32 status;

	nvm_get_auth_status(sw, &status);
	return sprintf(buf, "%#x\n", status);
}

static ssize_t nvm_authenticate_store(struct device *dev,
	struct device_attribute *attr, const char *buf, size_t count)
{
	struct tb_switch *sw = tb_to_switch(dev);
	bool val;
	int ret;

1060 1061
	if (!mutex_trylock(&sw->tb->lock))
		return restart_syscall();
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

	/* If NVMem devices are not yet added */
	if (!sw->nvm) {
		ret = -EAGAIN;
		goto exit_unlock;
	}

	ret = kstrtobool(buf, &val);
	if (ret)
		goto exit_unlock;

	/* Always clear the authentication status */
	nvm_clear_auth_status(sw);

	if (val) {
1077 1078 1079 1080 1081 1082
		if (!sw->nvm->buf) {
			ret = -EINVAL;
			goto exit_unlock;
		}

		pm_runtime_get_sync(&sw->dev);
1083
		ret = nvm_validate_and_write(sw);
1084 1085 1086
		if (ret) {
			pm_runtime_mark_last_busy(&sw->dev);
			pm_runtime_put_autosuspend(&sw->dev);
1087
			goto exit_unlock;
1088
		}
1089 1090 1091

		sw->nvm->authenticating = true;

1092 1093 1094 1095 1096 1097
		if (!tb_route(sw)) {
			/*
			 * Keep root port from suspending as long as the
			 * NVM upgrade process is running.
			 */
			nvm_authenticate_start(sw);
1098
			ret = nvm_authenticate_host(sw);
1099 1100 1101
			if (ret)
				nvm_authenticate_complete(sw);
		} else {
1102
			ret = nvm_authenticate_device(sw);
1103
		}
1104 1105
		pm_runtime_mark_last_busy(&sw->dev);
		pm_runtime_put_autosuspend(&sw->dev);
1106 1107 1108
	}

exit_unlock:
1109
	mutex_unlock(&sw->tb->lock);
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

	if (ret)
		return ret;
	return count;
}
static DEVICE_ATTR_RW(nvm_authenticate);

static ssize_t nvm_version_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct tb_switch *sw = tb_to_switch(dev);
	int ret;

1123 1124
	if (!mutex_trylock(&sw->tb->lock))
		return restart_syscall();
1125 1126 1127 1128 1129 1130 1131 1132

	if (sw->safe_mode)
		ret = -ENODATA;
	else if (!sw->nvm)
		ret = -EAGAIN;
	else
		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);

1133
	mutex_unlock(&sw->tb->lock);
1134 1135 1136 1137 1138

	return ret;
}
static DEVICE_ATTR_RO(nvm_version);

1139 1140
static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
			   char *buf)
1141
{
1142
	struct tb_switch *sw = tb_to_switch(dev);
1143

1144 1145 1146 1147
	return sprintf(buf, "%#x\n", sw->vendor);
}
static DEVICE_ATTR_RO(vendor);

1148 1149 1150 1151 1152 1153 1154 1155 1156
static ssize_t
vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct tb_switch *sw = tb_to_switch(dev);

	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
}
static DEVICE_ATTR_RO(vendor_name);

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
{
	struct tb_switch *sw = tb_to_switch(dev);

	return sprintf(buf, "%pUb\n", sw->uuid);
}
static DEVICE_ATTR_RO(unique_id);

static struct attribute *switch_attrs[] = {
1167
	&dev_attr_authorized.attr,
1168
	&dev_attr_boot.attr,
1169
	&dev_attr_device.attr,
1170
	&dev_attr_device_name.attr,
1171
	&dev_attr_key.attr,
1172 1173
	&dev_attr_nvm_authenticate.attr,
	&dev_attr_nvm_version.attr,
1174
	&dev_attr_vendor.attr,
1175
	&dev_attr_vendor_name.attr,
1176 1177 1178 1179
	&dev_attr_unique_id.attr,
	NULL,
};

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
static umode_t switch_attr_is_visible(struct kobject *kobj,
				      struct attribute *attr, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
	struct tb_switch *sw = tb_to_switch(dev);

	if (attr == &dev_attr_key.attr) {
		if (tb_route(sw) &&
		    sw->tb->security_level == TB_SECURITY_SECURE &&
		    sw->security_level == TB_SECURITY_SECURE)
			return attr->mode;
		return 0;
1192 1193 1194 1195 1196
	} else if (attr == &dev_attr_nvm_authenticate.attr ||
		   attr == &dev_attr_nvm_version.attr) {
		if (sw->dma_port)
			return attr->mode;
		return 0;
1197 1198 1199 1200
	} else if (attr == &dev_attr_boot.attr) {
		if (tb_route(sw))
			return attr->mode;
		return 0;
1201 1202
	}

1203
	return sw->safe_mode ? 0 : attr->mode;
1204 1205
}

1206
static struct attribute_group switch_group = {
1207
	.is_visible = switch_attr_is_visible,
1208 1209
	.attrs = switch_attrs,
};
A
Andreas Noever 已提交
1210

1211 1212 1213 1214 1215 1216 1217 1218
static const struct attribute_group *switch_groups[] = {
	&switch_group,
	NULL,
};

static void tb_switch_release(struct device *dev)
{
	struct tb_switch *sw = tb_to_switch(dev);
1219
	int i;
1220

1221 1222
	dma_port_free(sw->dma_port);

1223 1224 1225 1226 1227 1228 1229
	for (i = 1; i <= sw->config.max_port_number; i++) {
		if (!sw->ports[i].disabled) {
			ida_destroy(&sw->ports[i].in_hopids);
			ida_destroy(&sw->ports[i].out_hopids);
		}
	}

1230
	kfree(sw->uuid);
1231 1232
	kfree(sw->device_name);
	kfree(sw->vendor_name);
1233
	kfree(sw->ports);
1234
	kfree(sw->drom);
1235
	kfree(sw->key);
1236 1237 1238
	kfree(sw);
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
/*
 * Currently only need to provide the callbacks. Everything else is handled
 * in the connection manager.
 */
static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
{
	return 0;
}

static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
{
	return 0;
}

static const struct dev_pm_ops tb_switch_pm_ops = {
	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
			   NULL)
};

1258 1259 1260
struct device_type tb_switch_type = {
	.name = "thunderbolt_device",
	.release = tb_switch_release,
1261
	.pm = &tb_switch_pm_ops,
1262 1263
};

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
static int tb_switch_get_generation(struct tb_switch *sw)
{
	switch (sw->config.device_id) {
	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
		return 1;

	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
		return 2;

	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1287 1288 1289
	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
		return 3;

	default:
		/*
		 * For unknown switches assume generation to be 1 to be
		 * on the safe side.
		 */
		tb_sw_warn(sw, "unsupported switch device id %#x\n",
			   sw->config.device_id);
		return 1;
	}
}

1303
/**
1304 1305 1306 1307
 * tb_switch_alloc() - allocate a switch
 * @tb: Pointer to the owning domain
 * @parent: Parent device for this switch
 * @route: Route string for this switch
1308
 *
1309 1310 1311 1312 1313 1314
 * Allocates and initializes a switch. Will not upload configuration to
 * the switch. For that you need to call tb_switch_configure()
 * separately. The returned switch should be released by calling
 * tb_switch_put().
 *
 * Return: Pointer to the allocated switch or %NULL in case of failure
1315
 */
1316 1317
struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
				  u64 route)
1318 1319
{
	struct tb_switch *sw;
1320 1321 1322 1323 1324 1325 1326 1327 1328
	int upstream_port;
	int i, cap, depth;

	/* Make sure we do not exceed maximum topology limit */
	depth = tb_route_length(route);
	if (depth > TB_SWITCH_MAX_DEPTH)
		return NULL;

	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1329 1330 1331 1332 1333 1334 1335 1336
	if (upstream_port < 0)
		return NULL;

	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
	if (!sw)
		return NULL;

	sw->tb = tb;
1337
	if (tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5))
1338 1339
		goto err_free_sw_ports;

1340
	tb_dbg(tb, "current switch config:\n");
1341 1342 1343 1344
	tb_dump_switch(tb, &sw->config);

	/* configure switch */
	sw->config.upstream_port_number = upstream_port;
1345 1346 1347
	sw->config.depth = depth;
	sw->config.route_hi = upper_32_bits(route);
	sw->config.route_lo = lower_32_bits(route);
1348
	sw->config.enabled = 0;
1349 1350 1351

	/* initialize ports */
	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1352
				GFP_KERNEL);
1353
	if (!sw->ports)
1354
		goto err_free_sw_ports;
1355 1356

	for (i = 0; i <= sw->config.max_port_number; i++) {
1357 1358 1359
		/* minimum setup for tb_find_cap and tb_drom_read to work */
		sw->ports[i].sw = sw;
		sw->ports[i].port = i;
1360 1361
	}

1362 1363
	sw->generation = tb_switch_get_generation(sw);

1364
	cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
A
Andreas Noever 已提交
1365
	if (cap < 0) {
1366
		tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
1367
		goto err_free_sw_ports;
A
Andreas Noever 已提交
1368 1369 1370
	}
	sw->cap_plug_events = cap;

1371 1372 1373 1374
	cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
	if (cap > 0)
		sw->cap_lc = cap;

1375 1376 1377 1378
	/* Root switch is always authorized */
	if (!route)
		sw->authorized = true;

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	device_initialize(&sw->dev);
	sw->dev.parent = parent;
	sw->dev.bus = &tb_bus_type;
	sw->dev.type = &tb_switch_type;
	sw->dev.groups = switch_groups;
	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));

	return sw;

err_free_sw_ports:
	kfree(sw->ports);
	kfree(sw);

	return NULL;
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
/**
 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
 * @tb: Pointer to the owning domain
 * @parent: Parent device for this switch
 * @route: Route string for this switch
 *
 * This creates a switch in safe mode. This means the switch pretty much
 * lacks all capabilities except DMA configuration port before it is
 * flashed with a valid NVM firmware.
 *
 * The returned switch must be released by calling tb_switch_put().
 *
 * Return: Pointer to the allocated switch or %NULL in case of failure
 */
struct tb_switch *
tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
{
	struct tb_switch *sw;

	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
	if (!sw)
		return NULL;

	sw->tb = tb;
	sw->config.depth = tb_route_length(route);
	sw->config.route_hi = upper_32_bits(route);
	sw->config.route_lo = lower_32_bits(route);
	sw->safe_mode = true;

	device_initialize(&sw->dev);
	sw->dev.parent = parent;
	sw->dev.bus = &tb_bus_type;
	sw->dev.type = &tb_switch_type;
	sw->dev.groups = switch_groups;
	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));

	return sw;
}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
/**
 * tb_switch_configure() - Uploads configuration to the switch
 * @sw: Switch to configure
 *
 * Call this function before the switch is added to the system. It will
 * upload configuration to the switch and makes it available for the
 * connection manager to use.
 *
 * Return: %0 in case of success and negative errno in case of failure
 */
int tb_switch_configure(struct tb_switch *sw)
{
	struct tb *tb = sw->tb;
	u64 route;
	int ret;

	route = tb_route(sw);
1451 1452
	tb_dbg(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n",
	       route, tb_route_length(route), sw->config.upstream_port_number);
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
		tb_sw_warn(sw, "unknown switch vendor id %#x\n",
			   sw->config.vendor_id);

	sw->config.enabled = 1;

	/* upload configuration */
	ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
	if (ret)
		return ret;

1465 1466 1467 1468
	ret = tb_lc_configure_link(sw);
	if (ret)
		return ret;

1469 1470 1471
	return tb_plug_events_active(sw, true);
}

1472
static int tb_switch_set_uuid(struct tb_switch *sw)
1473 1474
{
	u32 uuid[4];
1475
	int ret;
1476 1477

	if (sw->uuid)
1478
		return 0;
1479 1480 1481 1482 1483

	/*
	 * The newer controllers include fused UUID as part of link
	 * controller specific registers
	 */
1484 1485
	ret = tb_lc_read_uuid(sw, uuid);
	if (ret) {
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
		/*
		 * ICM generates UUID based on UID and fills the upper
		 * two words with ones. This is not strictly following
		 * UUID format but we want to be compatible with it so
		 * we do the same here.
		 */
		uuid[0] = sw->uid & 0xffffffff;
		uuid[1] = (sw->uid >> 32) & 0xffffffff;
		uuid[2] = 0xffffffff;
		uuid[3] = 0xffffffff;
	}

	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1499
	if (!sw->uuid)
1500 1501
		return -ENOMEM;
	return 0;
1502 1503
}

1504
static int tb_switch_add_dma_port(struct tb_switch *sw)
1505
{
1506 1507 1508
	u32 status;
	int ret;

1509 1510 1511 1512 1513 1514 1515
	switch (sw->generation) {
	case 3:
		break;

	case 2:
		/* Only root switch can be upgraded */
		if (tb_route(sw))
1516
			return 0;
1517 1518 1519
		break;

	default:
1520 1521 1522 1523 1524 1525 1526
		/*
		 * DMA port is the only thing available when the switch
		 * is in safe mode.
		 */
		if (!sw->safe_mode)
			return 0;
		break;
1527 1528
	}

1529 1530 1531
	if (sw->no_nvm_upgrade)
		return 0;

1532
	sw->dma_port = dma_port_alloc(sw);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	if (!sw->dma_port)
		return 0;

	/*
	 * Check status of the previous flash authentication. If there
	 * is one we need to power cycle the switch in any case to make
	 * it functional again.
	 */
	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
	if (ret <= 0)
		return ret;

1545 1546 1547 1548
	/* Now we can allow root port to suspend again */
	if (!tb_route(sw))
		nvm_authenticate_complete(sw);

1549 1550
	if (status) {
		tb_sw_info(sw, "switch flash authentication failed\n");
1551 1552 1553
		ret = tb_switch_set_uuid(sw);
		if (ret)
			return ret;
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
		nvm_set_auth_status(sw, status);
	}

	tb_sw_info(sw, "power cycling the switch now\n");
	dma_port_power_cycle(sw->dma_port);

	/*
	 * We return error here which causes the switch adding failure.
	 * It should appear back after power cycle is complete.
	 */
	return -ESHUTDOWN;
1565 1566
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
/**
 * tb_switch_add() - Add a switch to the domain
 * @sw: Switch to add
 *
 * This is the last step in adding switch to the domain. It will read
 * identification information from DROM and initializes ports so that
 * they can be used to connect other switches. The switch will be
 * exposed to the userspace when this function successfully returns. To
 * remove and release the switch, call tb_switch_remove().
 *
 * Return: %0 in case of success and negative errno in case of failure
 */
int tb_switch_add(struct tb_switch *sw)
{
	int i, ret;

1583 1584 1585 1586 1587 1588 1589
	/*
	 * Initialize DMA control port now before we read DROM. Recent
	 * host controllers have more complete DROM on NVM that includes
	 * vendor and model identification strings which we then expose
	 * to the userspace. NVM can be accessed through DMA
	 * configuration based mailbox.
	 */
1590 1591
	ret = tb_switch_add_dma_port(sw);
	if (ret)
1592
		return ret;
1593

1594 1595 1596 1597 1598 1599 1600
	if (!sw->safe_mode) {
		/* read drom */
		ret = tb_drom_read(sw);
		if (ret) {
			tb_sw_warn(sw, "tb_eeprom_read_rom failed\n");
			return ret;
		}
1601
		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
1602

1603 1604 1605
		ret = tb_switch_set_uuid(sw);
		if (ret)
			return ret;
1606 1607 1608

		for (i = 0; i <= sw->config.max_port_number; i++) {
			if (sw->ports[i].disabled) {
1609
				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
1610 1611 1612 1613 1614
				continue;
			}
			ret = tb_init_port(&sw->ports[i]);
			if (ret)
				return ret;
1615 1616 1617
		}
	}

1618 1619 1620 1621
	ret = device_add(&sw->dev);
	if (ret)
		return ret;

1622 1623 1624 1625 1626 1627 1628 1629
	if (tb_route(sw)) {
		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
			 sw->vendor, sw->device);
		if (sw->vendor_name && sw->device_name)
			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
				 sw->device_name);
	}

1630
	ret = tb_switch_nvm_add(sw);
1631
	if (ret) {
1632
		device_del(&sw->dev);
1633 1634
		return ret;
	}
1635

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	pm_runtime_set_active(&sw->dev);
	if (sw->rpm) {
		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
		pm_runtime_use_autosuspend(&sw->dev);
		pm_runtime_mark_last_busy(&sw->dev);
		pm_runtime_enable(&sw->dev);
		pm_request_autosuspend(&sw->dev);
	}

	return 0;
1646
}
1647

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
/**
 * tb_switch_remove() - Remove and release a switch
 * @sw: Switch to remove
 *
 * This will remove the switch from the domain and release it after last
 * reference count drops to zero. If there are switches connected below
 * this switch, they will be removed as well.
 */
void tb_switch_remove(struct tb_switch *sw)
{
	int i;
A
Andreas Noever 已提交
1659

1660 1661 1662 1663 1664
	if (sw->rpm) {
		pm_runtime_get_sync(&sw->dev);
		pm_runtime_disable(&sw->dev);
	}

1665 1666
	/* port 0 is the switch itself and never has a remote */
	for (i = 1; i <= sw->config.max_port_number; i++) {
1667
		if (tb_port_has_remote(&sw->ports[i])) {
1668
			tb_switch_remove(sw->ports[i].remote->sw);
1669 1670
			sw->ports[i].remote = NULL;
		} else if (sw->ports[i].xdomain) {
1671
			tb_xdomain_remove(sw->ports[i].xdomain);
1672 1673
			sw->ports[i].xdomain = NULL;
		}
1674 1675 1676 1677
	}

	if (!sw->is_unplugged)
		tb_plug_events_active(sw, false);
1678
	tb_lc_unconfigure_link(sw);
1679

1680
	tb_switch_nvm_remove(sw);
1681 1682 1683

	if (tb_route(sw))
		dev_info(&sw->dev, "device disconnected\n");
1684
	device_unregister(&sw->dev);
1685 1686
}

1687
/**
1688
 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
1689
 */
1690
void tb_sw_set_unplugged(struct tb_switch *sw)
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
{
	int i;
	if (sw == sw->tb->root_switch) {
		tb_sw_WARN(sw, "cannot unplug root switch\n");
		return;
	}
	if (sw->is_unplugged) {
		tb_sw_WARN(sw, "is_unplugged already set\n");
		return;
	}
	sw->is_unplugged = true;
	for (i = 0; i <= sw->config.max_port_number; i++) {
1703
		if (tb_port_has_remote(&sw->ports[i]))
1704
			tb_sw_set_unplugged(sw->ports[i].remote->sw);
1705 1706 1707
	}
}

1708 1709 1710
int tb_switch_resume(struct tb_switch *sw)
{
	int i, err;
1711
	tb_sw_dbg(sw, "resuming switch\n");
1712

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	/*
	 * Check for UID of the connected switches except for root
	 * switch which we assume cannot be removed.
	 */
	if (tb_route(sw)) {
		u64 uid;

		err = tb_drom_read_uid_only(sw, &uid);
		if (err) {
			tb_sw_warn(sw, "uid read failed\n");
			return err;
		}
		if (sw->uid != uid) {
			tb_sw_info(sw,
				"changed while suspended (uid %#llx -> %#llx)\n",
				sw->uid, uid);
			return -ENODEV;
		}
1731 1732 1733 1734 1735 1736 1737
	}

	/* upload configuration */
	err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
	if (err)
		return err;

1738 1739 1740 1741
	err = tb_lc_configure_link(sw);
	if (err)
		return err;

1742 1743 1744 1745 1746 1747 1748
	err = tb_plug_events_active(sw, true);
	if (err)
		return err;

	/* check for surviving downstream switches */
	for (i = 1; i <= sw->config.max_port_number; i++) {
		struct tb_port *port = &sw->ports[i];
1749 1750

		if (!tb_port_has_remote(port))
1751
			continue;
1752

1753 1754 1755 1756
		if (tb_wait_for_port(port, true) <= 0
			|| tb_switch_resume(port->remote->sw)) {
			tb_port_warn(port,
				     "lost during suspend, disconnecting\n");
1757
			tb_sw_set_unplugged(port->remote->sw);
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
		}
	}
	return 0;
}

void tb_switch_suspend(struct tb_switch *sw)
{
	int i, err;
	err = tb_plug_events_active(sw, false);
	if (err)
		return;

	for (i = 1; i <= sw->config.max_port_number; i++) {
1771
		if (tb_port_has_remote(&sw->ports[i]))
1772 1773
			tb_switch_suspend(sw->ports[i].remote->sw);
	}
1774 1775

	tb_lc_set_sleep(sw);
1776
}
1777 1778 1779 1780 1781

struct tb_sw_lookup {
	struct tb *tb;
	u8 link;
	u8 depth;
1782
	const uuid_t *uuid;
1783
	u64 route;
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
};

static int tb_switch_match(struct device *dev, void *data)
{
	struct tb_switch *sw = tb_to_switch(dev);
	struct tb_sw_lookup *lookup = data;

	if (!sw)
		return 0;
	if (sw->tb != lookup->tb)
		return 0;

	if (lookup->uuid)
		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));

1799 1800 1801 1802 1803
	if (lookup->route) {
		return sw->config.route_lo == lower_32_bits(lookup->route) &&
		       sw->config.route_hi == upper_32_bits(lookup->route);
	}

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
	/* Root switch is matched only by depth */
	if (!lookup->depth)
		return !sw->depth;

	return sw->link == lookup->link && sw->depth == lookup->depth;
}

/**
 * tb_switch_find_by_link_depth() - Find switch by link and depth
 * @tb: Domain the switch belongs
 * @link: Link number the switch is connected
 * @depth: Depth of the switch in link
 *
 * Returned switch has reference count increased so the caller needs to
 * call tb_switch_put() when done with the switch.
 */
struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
{
	struct tb_sw_lookup lookup;
	struct device *dev;

	memset(&lookup, 0, sizeof(lookup));
	lookup.tb = tb;
	lookup.link = link;
	lookup.depth = depth;

	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
	if (dev)
		return tb_to_switch(dev);

	return NULL;
}

/**
1838
 * tb_switch_find_by_uuid() - Find switch by UUID
1839 1840 1841 1842 1843 1844
 * @tb: Domain the switch belongs
 * @uuid: UUID to look for
 *
 * Returned switch has reference count increased so the caller needs to
 * call tb_switch_put() when done with the switch.
 */
1845
struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
{
	struct tb_sw_lookup lookup;
	struct device *dev;

	memset(&lookup, 0, sizeof(lookup));
	lookup.tb = tb;
	lookup.uuid = uuid;

	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
	if (dev)
		return tb_to_switch(dev);

	return NULL;
}
1860

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
/**
 * tb_switch_find_by_route() - Find switch by route string
 * @tb: Domain the switch belongs
 * @route: Route string to look for
 *
 * Returned switch has reference count increased so the caller needs to
 * call tb_switch_put() when done with the switch.
 */
struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
{
	struct tb_sw_lookup lookup;
	struct device *dev;

	if (!route)
		return tb_switch_get(tb->root_switch);

	memset(&lookup, 0, sizeof(lookup));
	lookup.tb = tb;
	lookup.route = route;

	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
	if (dev)
		return tb_to_switch(dev);

	return NULL;
}

1888 1889 1890 1891
void tb_switch_exit(void)
{
	ida_destroy(&nvm_ida);
}