blk-throttle.c 68.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
13
#include <linux/blk-cgroup.h>
14
#include "blk.h"
15 16 17 18 19 20 21

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

22 23 24
/* Throttling is performed over a slice and after that slice is renewed */
#define DFL_THROTL_SLICE_HD (HZ / 10)
#define DFL_THROTL_SLICE_SSD (HZ / 50)
25
#define MAX_THROTL_SLICE (HZ)
26
#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 28
#define MIN_THROTL_BPS (320 * 1024)
#define MIN_THROTL_IOPS (10)
29 30
#define DFL_LATENCY_TARGET (-1L)
#define DFL_IDLE_THRESHOLD (0)
31 32 33 34 35 36 37
#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
#define LATENCY_FILTERED_SSD (0)
/*
 * For HD, very small latency comes from sequential IO. Such IO is helpless to
 * help determine if its IO is impacted by others, hence we ignore the IO
 */
#define LATENCY_FILTERED_HD (1000L) /* 1ms */
38

T
Tejun Heo 已提交
39
static struct blkcg_policy blkcg_policy_throtl;
40

41 42 43
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

73
struct throtl_service_queue {
74 75
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

76 77 78 79
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
80
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
81 82 83 84 85 86
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
87 88 89 90
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
91
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
92 93
};

94 95
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
96
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
97 98
};

99 100
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

101
enum {
S
Shaohua Li 已提交
102
	LIMIT_LOW,
103 104 105 106
	LIMIT_MAX,
	LIMIT_CNT,
};

107
struct throtl_grp {
108 109 110
	/* must be the first member */
	struct blkg_policy_data pd;

111
	/* active throtl group service_queue member */
112 113
	struct rb_node rb_node;

114 115 116
	/* throtl_data this group belongs to */
	struct throtl_data *td;

117 118 119
	/* this group's service queue */
	struct throtl_service_queue service_queue;

120 121 122 123 124 125 126 127 128 129 130
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

131 132 133 134 135 136 137 138 139
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

140 141 142
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

S
Shaohua Li 已提交
143
	/* internally used bytes per second rate limits */
144
	uint64_t bps[2][LIMIT_CNT];
S
Shaohua Li 已提交
145 146
	/* user configured bps limits */
	uint64_t bps_conf[2][LIMIT_CNT];
147

S
Shaohua Li 已提交
148
	/* internally used IOPS limits */
149
	unsigned int iops[2][LIMIT_CNT];
S
Shaohua Li 已提交
150 151
	/* user configured IOPS limits */
	unsigned int iops_conf[2][LIMIT_CNT];
152

153 154
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
155 156
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
157

S
Shaohua Li 已提交
158 159 160 161 162 163 164
	unsigned long last_low_overflow_time[2];

	uint64_t last_bytes_disp[2];
	unsigned int last_io_disp[2];

	unsigned long last_check_time;

165
	unsigned long latency_target; /* us */
166
	unsigned long latency_target_conf; /* us */
167 168 169
	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
170 171 172 173 174

	unsigned long last_finish_time; /* ns / 1024 */
	unsigned long checked_last_finish_time; /* ns / 1024 */
	unsigned long avg_idletime; /* ns / 1024 */
	unsigned long idletime_threshold; /* us */
175
	unsigned long idletime_threshold_conf; /* us */
176 177 178 179

	unsigned int bio_cnt; /* total bios */
	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
	unsigned long bio_cnt_reset_time;
180 181
};

182 183 184 185 186 187 188 189 190 191 192 193 194
/* We measure latency for request size from <= 4k to >= 1M */
#define LATENCY_BUCKET_SIZE 9

struct latency_bucket {
	unsigned long total_latency; /* ns / 1024 */
	int samples;
};

struct avg_latency_bucket {
	unsigned long latency; /* ns / 1024 */
	bool valid;
};

195 196 197
struct throtl_data
{
	/* service tree for active throtl groups */
198
	struct throtl_service_queue service_queue;
199 200 201 202 203 204

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

205 206
	unsigned int throtl_slice;

207
	/* Work for dispatching throttled bios */
208
	struct work_struct dispatch_work;
209 210
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
S
Shaohua Li 已提交
211 212 213

	unsigned long low_upgrade_time;
	unsigned long low_downgrade_time;
214 215

	unsigned int scale;
216

217 218 219
	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
	struct latency_bucket __percpu *latency_buckets[2];
220
	unsigned long last_calculate_time;
221
	unsigned long filtered_latency;
222 223

	bool track_bio_latency;
224 225
};

226
static void throtl_pending_timer_fn(struct timer_list *t);
227

228 229 230 231 232
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
233
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
234
{
235
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
236 237
}

T
Tejun Heo 已提交
238
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
239
{
240
	return pd_to_blkg(&tg->pd);
241 242
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
262
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
263 264 265 266 267 268 269 270 271 272 273 274
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
/*
 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 * make the IO dispatch more smooth.
 * Scale up: linearly scale up according to lapsed time since upgrade. For
 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 *           limit hits .max limit
 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 */
static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
{
	/* arbitrary value to avoid too big scale */
	if (td->scale < 4096 && time_after_eq(jiffies,
	    td->low_upgrade_time + td->scale * td->throtl_slice))
		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;

	return low + (low >> 1) * td->scale;
}

293 294
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
295
	struct blkcg_gq *blkg = tg_to_blkg(tg);
296
	struct throtl_data *td;
297 298 299 300
	uint64_t ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return U64_MAX;
301 302 303

	td = tg->td;
	ret = tg->bps[rw][td->limit_index];
304 305 306 307 308 309 310 311
	if (ret == 0 && td->limit_index == LIMIT_LOW) {
		/* intermediate node or iops isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->iops[rw][td->limit_index])
			return U64_MAX;
		else
			return MIN_THROTL_BPS;
	}
312 313 314 315 316 317 318 319

	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
	}
320
	return ret;
321 322 323 324
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
325
	struct blkcg_gq *blkg = tg_to_blkg(tg);
326
	struct throtl_data *td;
327 328 329 330
	unsigned int ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return UINT_MAX;
331

332 333
	td = tg->td;
	ret = tg->iops[rw][td->limit_index];
334 335 336 337 338 339 340 341
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
		/* intermediate node or bps isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->bps[rw][td->limit_index])
			return UINT_MAX;
		else
			return MIN_THROTL_IOPS;
	}
342 343 344 345 346 347 348 349 350 351

	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
		if (adjusted > UINT_MAX)
			adjusted = UINT_MAX;
		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
	}
352
	return ret;
353 354
}

355 356 357
#define request_bucket_index(sectors) \
	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)

358 359 360 361 362 363 364 365 366 367 368 369 370 371
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
372 373
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
374
	if ((__tg)) {							\
375 376
		blk_add_cgroup_trace_msg(__td->queue,			\
			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
377 378 379
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
380
} while (0)
381

382 383 384 385 386 387 388 389
static inline unsigned int throtl_bio_data_size(struct bio *bio)
{
	/* assume it's one sector */
	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
		return 512;
	return bio->bi_iter.bi_size;
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

473
/* init a service_queue, assumes the caller zeroed it */
474
static void throtl_service_queue_init(struct throtl_service_queue *sq)
475
{
476 477
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
478
	sq->pending_tree = RB_ROOT;
479
	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
480 481
}

482 483
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
{
484
	struct throtl_grp *tg;
T
Tejun Heo 已提交
485
	int rw;
486 487 488

	tg = kzalloc_node(sizeof(*tg), gfp, node);
	if (!tg)
489
		return NULL;
490

491 492 493 494 495 496 497 498
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
499 500 501 502
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
S
Shaohua Li 已提交
503 504 505 506 507
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
508

509
	tg->latency_target = DFL_LATENCY_TARGET;
510
	tg->latency_target_conf = DFL_LATENCY_TARGET;
511 512
	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
513

514
	return &tg->pd;
515 516
}

517
static void throtl_pd_init(struct blkg_policy_data *pd)
518
{
519 520
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
521
	struct throtl_data *td = blkg->q->td;
522
	struct throtl_service_queue *sq = &tg->service_queue;
523

524
	/*
525
	 * If on the default hierarchy, we switch to properly hierarchical
526 527 528 529 530
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
531
	 * If not on the default hierarchy, the broken flat hierarchy
532 533 534 535 536
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
537
	sq->parent_sq = &td->service_queue;
538
	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
539
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
540
	tg->td = td;
541 542
}

543 544 545 546 547 548 549 550
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
551
	struct throtl_data *td = tg->td;
552 553 554 555
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
556 557 558
			(td->limit_valid[td->limit_index] &&
			 (tg_bps_limit(tg, rw) != U64_MAX ||
			  tg_iops_limit(tg, rw) != UINT_MAX));
559 560
}

561
static void throtl_pd_online(struct blkg_policy_data *pd)
562
{
563
	struct throtl_grp *tg = pd_to_tg(pd);
564 565 566 567
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
568
	tg_update_has_rules(tg);
569 570
}

S
Shaohua Li 已提交
571 572 573 574 575 576 577 578 579 580 581
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
582
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
S
Shaohua Li 已提交
583
			low_valid = true;
584 585
			break;
		}
S
Shaohua Li 已提交
586 587 588 589 590 591
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}

592
static void throtl_upgrade_state(struct throtl_data *td);
S
Shaohua Li 已提交
593 594 595 596 597 598 599 600 601 602 603
static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

604 605
	if (!tg->td->limit_valid[tg->td->limit_index])
		throtl_upgrade_state(tg->td);
S
Shaohua Li 已提交
606 607
}

608 609
static void throtl_pd_free(struct blkg_policy_data *pd)
{
610 611
	struct throtl_grp *tg = pd_to_tg(pd);

612
	del_timer_sync(&tg->service_queue.pending_timer);
613
	kfree(tg);
614 615
}

616 617
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
618 619
{
	/* Service tree is empty */
620
	if (!parent_sq->nr_pending)
621 622
		return NULL;

623 624
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
625

626 627
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
628 629 630 631 632 633 634 635 636 637

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

638 639
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
640
{
641 642 643 644
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
645 646
}

647
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
648 649 650
{
	struct throtl_grp *tg;

651
	tg = throtl_rb_first(parent_sq);
652 653 654
	if (!tg)
		return;

655
	parent_sq->first_pending_disptime = tg->disptime;
656 657
}

658
static void tg_service_queue_add(struct throtl_grp *tg)
659
{
660
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
661
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
680
		parent_sq->first_pending = &tg->rb_node;
681 682

	rb_link_node(&tg->rb_node, parent, node);
683
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
684 685
}

686
static void __throtl_enqueue_tg(struct throtl_grp *tg)
687
{
688
	tg_service_queue_add(tg);
689
	tg->flags |= THROTL_TG_PENDING;
690
	tg->service_queue.parent_sq->nr_pending++;
691 692
}

693
static void throtl_enqueue_tg(struct throtl_grp *tg)
694
{
695
	if (!(tg->flags & THROTL_TG_PENDING))
696
		__throtl_enqueue_tg(tg);
697 698
}

699
static void __throtl_dequeue_tg(struct throtl_grp *tg)
700
{
701
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
702
	tg->flags &= ~THROTL_TG_PENDING;
703 704
}

705
static void throtl_dequeue_tg(struct throtl_grp *tg)
706
{
707
	if (tg->flags & THROTL_TG_PENDING)
708
		__throtl_dequeue_tg(tg);
709 710
}

711
/* Call with queue lock held */
712 713
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
714
{
715
	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
716 717 718 719 720 721 722 723 724 725

	/*
	 * Since we are adjusting the throttle limit dynamically, the sleep
	 * time calculated according to previous limit might be invalid. It's
	 * possible the cgroup sleep time is very long and no other cgroups
	 * have IO running so notify the limit changes. Make sure the cgroup
	 * doesn't sleep too long to avoid the missed notification.
	 */
	if (time_after(expires, max_expire))
		expires = max_expire;
726 727 728
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
729 730
}

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
751
{
752
	/* any pending children left? */
753
	if (!sq->nr_pending)
754
		return true;
755

756
	update_min_dispatch_time(sq);
757

758
	/* is the next dispatch time in the future? */
759
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
760
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
761
		return true;
762 763
	}

764 765
	/* tell the caller to continue dispatching */
	return false;
766 767
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

783
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
784 785 786 787 788 789
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

790
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
791 792
{
	tg->bytes_disp[rw] = 0;
793
	tg->io_disp[rw] = 0;
794
	tg->slice_start[rw] = jiffies;
795
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
796 797 798 799
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
800 801
}

802 803
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
804
{
805
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
806 807
}

808 809
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
810
{
811
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
812 813 814 815
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
816 817 818
}

/* Determine if previously allocated or extended slice is complete or not */
819
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
820 821
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
822
		return false;
823

824
	return true;
825 826 827
}

/* Trim the used slices and adjust slice start accordingly */
828
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
829
{
830 831
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
832 833 834 835 836 837 838 839

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
840
	if (throtl_slice_used(tg, rw))
841 842
		return;

843 844 845 846 847 848 849 850
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

851
	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
852

853 854
	time_elapsed = jiffies - tg->slice_start[rw];

855
	nr_slices = time_elapsed / tg->td->throtl_slice;
856 857 858

	if (!nr_slices)
		return;
859
	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
860 861
	do_div(tmp, HZ);
	bytes_trim = tmp;
862

863 864
	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
		HZ;
865

866
	if (!bytes_trim && !io_trim)
867 868 869 870 871 872 873
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

874 875 876 877 878
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

879
	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
880

881 882 883 884
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
885 886
}

887 888
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
889 890
{
	bool rw = bio_data_dir(bio);
891
	unsigned int io_allowed;
892
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
893
	u64 tmp;
894

895
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
896

897 898
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
899
		jiffy_elapsed_rnd = tg->td->throtl_slice;
900

901
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
902

903 904 905 906 907 908 909
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

910
	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
911 912 913 914 915 916
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
917 918

	if (tg->io_disp[rw] + 1 <= io_allowed) {
919 920
		if (wait)
			*wait = 0;
921
		return true;
922 923
	}

924
	/* Calc approx time to dispatch */
925
	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
926 927 928

	if (wait)
		*wait = jiffy_wait;
929
	return false;
930 931
}

932 933
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
934 935
{
	bool rw = bio_data_dir(bio);
936
	u64 bytes_allowed, extra_bytes, tmp;
937
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
938
	unsigned int bio_size = throtl_bio_data_size(bio);
939 940 941 942 943

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
944
		jiffy_elapsed_rnd = tg->td->throtl_slice;
945

946
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
947

948
	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
949
	do_div(tmp, HZ);
950
	bytes_allowed = tmp;
951

952
	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
953 954
		if (wait)
			*wait = 0;
955
		return true;
956 957 958
	}

	/* Calc approx time to dispatch */
959
	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
960
	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
961 962 963 964 965 966 967 968 969 970 971

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
972
	return false;
973 974 975 976 977 978
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
979 980
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
981 982 983 984 985 986 987 988 989 990
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
991
	BUG_ON(tg->service_queue.nr_queued[rw] &&
992
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
993

994
	/* If tg->bps = -1, then BW is unlimited */
995 996
	if (tg_bps_limit(tg, rw) == U64_MAX &&
	    tg_iops_limit(tg, rw) == UINT_MAX) {
997 998
		if (wait)
			*wait = 0;
999
		return true;
1000 1001 1002 1003 1004
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
1005 1006 1007
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
1008
	 */
1009
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1010
		throtl_start_new_slice(tg, rw);
1011
	else {
1012 1013 1014 1015
		if (time_before(tg->slice_end[rw],
		    jiffies + tg->td->throtl_slice))
			throtl_extend_slice(tg, rw,
				jiffies + tg->td->throtl_slice);
1016 1017
	}

1018 1019
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1020 1021
		if (wait)
			*wait = 0;
1022
		return true;
1023 1024 1025 1026 1027 1028 1029 1030
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1031
		throtl_extend_slice(tg, rw, jiffies + max_wait);
1032

1033
	return false;
1034 1035 1036 1037 1038
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);
1039
	unsigned int bio_size = throtl_bio_data_size(bio);
1040 1041

	/* Charge the bio to the group */
1042
	tg->bytes_disp[rw] += bio_size;
1043
	tg->io_disp[rw]++;
1044
	tg->last_bytes_disp[rw] += bio_size;
S
Shaohua Li 已提交
1045
	tg->last_io_disp[rw]++;
1046

1047
	/*
1048
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1049 1050 1051 1052
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
1053 1054
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
1055 1056
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
1068
{
1069
	struct throtl_service_queue *sq = &tg->service_queue;
1070 1071
	bool rw = bio_data_dir(bio);

1072 1073 1074
	if (!qn)
		qn = &tg->qnode_on_self[rw];

1075 1076 1077 1078 1079 1080 1081 1082 1083
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

1084 1085
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

1086
	sq->nr_queued[rw]++;
1087
	throtl_enqueue_tg(tg);
1088 1089
}

1090
static void tg_update_disptime(struct throtl_grp *tg)
1091
{
1092
	struct throtl_service_queue *sq = &tg->service_queue;
1093 1094 1095
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

1096 1097
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
1098
		tg_may_dispatch(tg, bio, &read_wait);
1099

1100 1101
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
1102
		tg_may_dispatch(tg, bio, &write_wait);
1103 1104 1105 1106 1107

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
1108
	throtl_dequeue_tg(tg);
1109
	tg->disptime = disptime;
1110
	throtl_enqueue_tg(tg);
1111 1112 1113

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1114 1115
}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1126
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1127
{
1128
	struct throtl_service_queue *sq = &tg->service_queue;
1129 1130
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1131
	struct throtl_grp *tg_to_put = NULL;
1132 1133
	struct bio *bio;

1134 1135 1136 1137 1138 1139 1140
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1141
	sq->nr_queued[rw]--;
1142 1143

	throtl_charge_bio(tg, bio);
1144 1145 1146 1147 1148 1149 1150 1151 1152

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1153
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1154
		start_parent_slice_with_credit(tg, parent_tg, rw);
1155
	} else {
1156 1157
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1158 1159 1160
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1161

1162
	throtl_trim_slice(tg, rw);
1163

1164 1165
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1166 1167
}

1168
static int throtl_dispatch_tg(struct throtl_grp *tg)
1169
{
1170
	struct throtl_service_queue *sq = &tg->service_queue;
1171 1172
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1173
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1174 1175 1176 1177
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1178
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1179
	       tg_may_dispatch(tg, bio, NULL)) {
1180

1181
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1182 1183 1184 1185 1186 1187
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1188
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1189
	       tg_may_dispatch(tg, bio, NULL)) {
1190

1191
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1192 1193 1194 1195 1196 1197 1198 1199 1200
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1201
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1202 1203 1204 1205
{
	unsigned int nr_disp = 0;

	while (1) {
1206
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1207
		struct throtl_service_queue *sq;
1208 1209 1210 1211 1212 1213 1214

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1215
		throtl_dequeue_tg(tg);
1216

1217
		nr_disp += throtl_dispatch_tg(tg);
1218

1219
		sq = &tg->service_queue;
1220
		if (sq->nr_queued[0] || sq->nr_queued[1])
1221
			tg_update_disptime(tg);
1222 1223 1224 1225 1226 1227 1228 1229

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1230 1231
static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg);
1232 1233 1234 1235 1236 1237 1238
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1239 1240 1241 1242 1243 1244 1245
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1246
 */
1247
static void throtl_pending_timer_fn(struct timer_list *t)
1248
{
1249
	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1250
	struct throtl_grp *tg = sq_to_tg(sq);
1251
	struct throtl_data *td = sq_to_td(sq);
1252
	struct request_queue *q = td->queue;
1253 1254
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1255
	int ret;
1256 1257

	spin_lock_irq(q->queue_lock);
1258 1259 1260
	if (throtl_can_upgrade(td, NULL))
		throtl_upgrade_state(td);

1261 1262 1263
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1264

1265 1266
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1267 1268
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1269 1270 1271 1272 1273 1274

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1275

1276 1277
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1278

1279 1280 1281 1282
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1283
	}
1284

1285 1286
	if (!dispatched)
		goto out_unlock;
1287

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1304
	spin_unlock_irq(q->queue_lock);
1305
}
1306

1307 1308 1309 1310 1311 1312 1313 1314
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1315
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1329 1330 1331
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1332 1333 1334
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1335
		blk_start_plug(&plug);
1336 1337
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1338
		blk_finish_plug(&plug);
1339 1340 1341
	}
}

1342 1343
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1344
{
1345 1346
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1347

1348
	if (v == U64_MAX)
1349
		return 0;
1350
	return __blkg_prfill_u64(sf, pd, v);
1351 1352
}

1353 1354
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1355
{
1356 1357
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1358

1359
	if (v == UINT_MAX)
1360
		return 0;
1361
	return __blkg_prfill_u64(sf, pd, v);
1362 1363
}

1364
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1365
{
1366 1367
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1368
	return 0;
1369 1370
}

1371
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1372
{
1373 1374
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1375
	return 0;
1376 1377
}

1378
static void tg_conf_updated(struct throtl_grp *tg, bool global)
1379
{
1380
	struct throtl_service_queue *sq = &tg->service_queue;
1381
	struct cgroup_subsys_state *pos_css;
1382
	struct blkcg_gq *blkg;
1383

1384 1385
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1386 1387
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1388

1389 1390 1391 1392 1393 1394 1395
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1396 1397
	blkg_for_each_descendant_pre(blkg, pos_css,
			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
		struct throtl_grp *this_tg = blkg_to_tg(blkg);
		struct throtl_grp *parent_tg;

		tg_update_has_rules(this_tg);
		/* ignore root/second level */
		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
		    !blkg->parent->parent)
			continue;
		parent_tg = blkg_to_tg(blkg->parent);
		/*
		 * make sure all children has lower idle time threshold and
		 * higher latency target
		 */
		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
				parent_tg->idletime_threshold);
		this_tg->latency_target = max(this_tg->latency_target,
				parent_tg->latency_target);
	}
1416

1417 1418 1419 1420 1421 1422 1423 1424
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1425 1426
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1427

1428
	if (tg->flags & THROTL_TG_PENDING) {
1429
		tg_update_disptime(tg);
1430
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1431
	}
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1451
		v = U64_MAX;
1452 1453 1454 1455 1456 1457 1458

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1459

1460
	tg_conf_updated(tg, false);
1461 1462
	ret = 0;
out_finish:
1463
	blkg_conf_finish(&ctx);
1464
	return ret ?: nbytes;
1465 1466
}

1467 1468
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1469
{
1470
	return tg_set_conf(of, buf, nbytes, off, true);
1471 1472
}

1473 1474
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1475
{
1476
	return tg_set_conf(of, buf, nbytes, off, false);
1477 1478
}

1479
static struct cftype throtl_legacy_files[] = {
1480 1481
	{
		.name = "throttle.read_bps_device",
1482
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1483
		.seq_show = tg_print_conf_u64,
1484
		.write = tg_set_conf_u64,
1485 1486 1487
	},
	{
		.name = "throttle.write_bps_device",
1488
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1489
		.seq_show = tg_print_conf_u64,
1490
		.write = tg_set_conf_u64,
1491 1492 1493
	},
	{
		.name = "throttle.read_iops_device",
1494
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1495
		.seq_show = tg_print_conf_uint,
1496
		.write = tg_set_conf_uint,
1497 1498 1499
	},
	{
		.name = "throttle.write_iops_device",
1500
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1501
		.seq_show = tg_print_conf_uint,
1502
		.write = tg_set_conf_uint,
1503 1504 1505
	},
	{
		.name = "throttle.io_service_bytes",
1506 1507
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1508
	},
1509 1510 1511 1512 1513
	{
		.name = "throttle.io_service_bytes_recursive",
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes_recursive,
	},
1514 1515
	{
		.name = "throttle.io_serviced",
1516 1517
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1518
	},
1519 1520 1521 1522 1523
	{
		.name = "throttle.io_serviced_recursive",
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios_recursive,
	},
1524 1525 1526
	{ }	/* terminate */
};

S
Shaohua Li 已提交
1527
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1528 1529 1530 1531 1532
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
S
Shaohua Li 已提交
1533 1534
	u64 bps_dft;
	unsigned int iops_dft;
1535
	char idle_time[26] = "";
1536
	char latency_time[26] = "";
1537 1538 1539

	if (!dname)
		return 0;
1540

S
Shaohua Li 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
1552
	    tg->iops_conf[WRITE][off] == iops_dft &&
1553
	    (off != LIMIT_LOW ||
1554
	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1555
	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1556 1557
		return 0;

1558
	if (tg->bps_conf[READ][off] != U64_MAX)
1559
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
S
Shaohua Li 已提交
1560
			tg->bps_conf[READ][off]);
1561
	if (tg->bps_conf[WRITE][off] != U64_MAX)
1562
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
S
Shaohua Li 已提交
1563
			tg->bps_conf[WRITE][off]);
1564
	if (tg->iops_conf[READ][off] != UINT_MAX)
1565
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
S
Shaohua Li 已提交
1566
			tg->iops_conf[READ][off]);
1567
	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1568
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
S
Shaohua Li 已提交
1569
			tg->iops_conf[WRITE][off]);
1570
	if (off == LIMIT_LOW) {
1571
		if (tg->idletime_threshold_conf == ULONG_MAX)
1572 1573 1574
			strcpy(idle_time, " idle=max");
		else
			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1575
				tg->idletime_threshold_conf);
1576

1577
		if (tg->latency_target_conf == ULONG_MAX)
1578 1579 1580
			strcpy(latency_time, " latency=max");
		else
			snprintf(latency_time, sizeof(latency_time),
1581
				" latency=%lu", tg->latency_target_conf);
1582
	}
1583

1584 1585 1586
	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
		   latency_time);
1587 1588 1589
	return 0;
}

S
Shaohua Li 已提交
1590
static int tg_print_limit(struct seq_file *sf, void *v)
1591
{
S
Shaohua Li 已提交
1592
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1593 1594 1595 1596
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

S
Shaohua Li 已提交
1597
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1598 1599 1600 1601 1602 1603
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
1604
	unsigned long idle_time;
1605
	unsigned long latency_time;
1606
	int ret;
S
Shaohua Li 已提交
1607
	int index = of_cft(of)->private;
1608 1609 1610 1611 1612 1613 1614

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

S
Shaohua Li 已提交
1615 1616 1617 1618
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1619

1620 1621
	idle_time = tg->idletime_threshold_conf;
	latency_time = tg->latency_target_conf;
1622 1623 1624
	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1625
		u64 val = U64_MAX;
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
1653 1654
		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
			idle_time = val;
1655 1656
		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
			latency_time = val;
1657 1658 1659 1660
		else
			goto out_finish;
	}

S
Shaohua Li 已提交
1661 1662 1663 1664
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1665

S
Shaohua Li 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	tg->idletime_threshold_conf = idle_time;
	tg->latency_target_conf = latency_time;

	/* force user to configure all settings for low limit  */
	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
		tg->bps[READ][LIMIT_LOW] = 0;
		tg->bps[WRITE][LIMIT_LOW] = 0;
		tg->iops[READ][LIMIT_LOW] = 0;
		tg->iops[WRITE][LIMIT_LOW] = 0;
		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
		tg->latency_target = DFL_LATENCY_TARGET;
	} else if (index == LIMIT_LOW) {
1695 1696
		tg->idletime_threshold = tg->idletime_threshold_conf;
		tg->latency_target = tg->latency_target_conf;
S
Shaohua Li 已提交
1697
	}
1698 1699 1700 1701 1702 1703 1704

	blk_throtl_update_limit_valid(tg->td);
	if (tg->td->limit_valid[LIMIT_LOW]) {
		if (index == LIMIT_LOW)
			tg->td->limit_index = LIMIT_LOW;
	} else
		tg->td->limit_index = LIMIT_MAX;
1705 1706
	tg_conf_updated(tg, index == LIMIT_LOW &&
		tg->td->limit_valid[LIMIT_LOW]);
1707 1708 1709 1710 1711 1712 1713
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
S
Shaohua Li 已提交
1714 1715 1716 1717 1718 1719 1720 1721 1722
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1723 1724 1725
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
S
Shaohua Li 已提交
1726 1727 1728
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1729 1730 1731 1732
	},
	{ }	/* terminate */
};

1733
static void throtl_shutdown_wq(struct request_queue *q)
1734 1735 1736
{
	struct throtl_data *td = q->td;

1737
	cancel_work_sync(&td->dispatch_work);
1738 1739
}

T
Tejun Heo 已提交
1740
static struct blkcg_policy blkcg_policy_throtl = {
1741
	.dfl_cftypes		= throtl_files,
1742
	.legacy_cftypes		= throtl_legacy_files,
1743

1744
	.pd_alloc_fn		= throtl_pd_alloc,
1745
	.pd_init_fn		= throtl_pd_init,
1746
	.pd_online_fn		= throtl_pd_online,
S
Shaohua Li 已提交
1747
	.pd_offline_fn		= throtl_pd_offline,
1748
	.pd_free_fn		= throtl_pd_free,
1749 1750
};

S
Shaohua Li 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
{
	unsigned long rtime = jiffies, wtime = jiffies;

	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
		rtime = tg->last_low_overflow_time[READ];
	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
		wtime = tg->last_low_overflow_time[WRITE];
	return min(rtime, wtime);
}

/* tg should not be an intermediate node */
static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
{
	struct throtl_service_queue *parent_sq;
	struct throtl_grp *parent = tg;
	unsigned long ret = __tg_last_low_overflow_time(tg);

	while (true) {
		parent_sq = parent->service_queue.parent_sq;
		parent = sq_to_tg(parent_sq);
		if (!parent)
			break;

		/*
		 * The parent doesn't have low limit, it always reaches low
		 * limit. Its overflow time is useless for children
		 */
		if (!parent->bps[READ][LIMIT_LOW] &&
		    !parent->iops[READ][LIMIT_LOW] &&
		    !parent->bps[WRITE][LIMIT_LOW] &&
		    !parent->iops[WRITE][LIMIT_LOW])
			continue;
		if (time_after(__tg_last_low_overflow_time(parent), ret))
			ret = __tg_last_low_overflow_time(parent);
	}
	return ret;
}

1790 1791 1792 1793 1794
static bool throtl_tg_is_idle(struct throtl_grp *tg)
{
	/*
	 * cgroup is idle if:
	 * - single idle is too long, longer than a fixed value (in case user
1795
	 *   configure a too big threshold) or 4 times of idletime threshold
1796
	 * - average think time is more than threshold
1797
	 * - IO latency is largely below threshold
1798
	 */
1799
	unsigned long time;
1800
	bool ret;
1801

1802 1803 1804 1805 1806 1807
	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
	ret = tg->latency_target == DFL_LATENCY_TARGET ||
	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
	      tg->avg_idletime > tg->idletime_threshold ||
	      (tg->latency_target && tg->bio_cnt &&
1808
		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1809 1810 1811 1812 1813
	throtl_log(&tg->service_queue,
		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
		tg->bio_cnt, ret, tg->td->scale);
	return ret;
1814 1815
}

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
{
	struct throtl_service_queue *sq = &tg->service_queue;
	bool read_limit, write_limit;

	/*
	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
	 * reaches), it's ok to upgrade to next limit
	 */
	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
	if (!read_limit && !write_limit)
		return true;
	if (read_limit && sq->nr_queued[READ] &&
	    (!write_limit || sq->nr_queued[WRITE]))
		return true;
	if (write_limit && sq->nr_queued[WRITE] &&
	    (!read_limit || sq->nr_queued[READ]))
		return true;
1835 1836

	if (time_after_eq(jiffies,
1837 1838
		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
	    throtl_tg_is_idle(tg))
1839
		return true;
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	return false;
}

static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
{
	while (true) {
		if (throtl_tg_can_upgrade(tg))
			return true;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			return false;
	}
	return false;
}

static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	if (td->limit_index != LIMIT_LOW)
		return false;

1864
	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
S
Shaohua Li 已提交
1865 1866
		return false;

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg == this_tg)
			continue;
		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
			continue;
		if (!throtl_hierarchy_can_upgrade(tg)) {
			rcu_read_unlock();
			return false;
		}
	}
	rcu_read_unlock();
	return true;
}

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
static void throtl_upgrade_check(struct throtl_grp *tg)
{
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_LOW)
		return;

	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
		return;

	tg->last_check_time = now;

	if (!time_after_eq(now,
	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
		return;

	if (throtl_can_upgrade(tg->td, NULL))
		throtl_upgrade_state(tg->td);
}

1904 1905 1906 1907 1908
static void throtl_upgrade_state(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

1909
	throtl_log(&td->service_queue, "upgrade to max");
1910
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
1911
	td->low_upgrade_time = jiffies;
1912
	td->scale = 0;
1913 1914 1915 1916 1917 1918 1919
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);
		struct throtl_service_queue *sq = &tg->service_queue;

		tg->disptime = jiffies - 1;
		throtl_select_dispatch(sq);
1920
		throtl_schedule_next_dispatch(sq, true);
1921 1922 1923
	}
	rcu_read_unlock();
	throtl_select_dispatch(&td->service_queue);
1924
	throtl_schedule_next_dispatch(&td->service_queue, true);
1925 1926 1927
	queue_work(kthrotld_workqueue, &td->dispatch_work);
}

S
Shaohua Li 已提交
1928 1929
static void throtl_downgrade_state(struct throtl_data *td, int new)
{
1930 1931
	td->scale /= 2;

1932
	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1933 1934 1935 1936 1937
	if (td->scale) {
		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
		return;
	}

S
Shaohua Li 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	td->limit_index = new;
	td->low_downgrade_time = jiffies;
}

static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
{
	struct throtl_data *td = tg->td;
	unsigned long now = jiffies;

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
1951 1952
	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1953 1954 1955
					td->throtl_slice) &&
	    (!throtl_tg_is_idle(tg) ||
	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
S
Shaohua Li 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
		return true;
	return false;
}

static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
{
	while (true) {
		if (!throtl_tg_can_downgrade(tg))
			return false;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			break;
	}
	return true;
}

static void throtl_downgrade_check(struct throtl_grp *tg)
{
	uint64_t bps;
	unsigned int iops;
	unsigned long elapsed_time;
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_MAX ||
	    !tg->td->limit_valid[LIMIT_LOW])
		return;
	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
		return;
1984
	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
S
Shaohua Li 已提交
1985 1986 1987 1988 1989
		return;

	elapsed_time = now - tg->last_check_time;
	tg->last_check_time = now;

1990 1991
	if (time_before(now, tg_last_low_overflow_time(tg) +
			tg->td->throtl_slice))
S
Shaohua Li 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
		return;

	if (tg->bps[READ][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[READ] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->bps[WRITE][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[WRITE] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	if (tg->iops[READ][LIMIT_LOW]) {
		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
		if (iops >= tg->iops[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->iops[WRITE][LIMIT_LOW]) {
		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
		if (iops >= tg->iops[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
	if (throtl_hierarchy_can_downgrade(tg))
		throtl_downgrade_state(tg->td, LIMIT_LOW);

	tg->last_bytes_disp[READ] = 0;
	tg->last_bytes_disp[WRITE] = 0;
	tg->last_io_disp[READ] = 0;
	tg->last_io_disp[WRITE] = 0;
}

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
static void blk_throtl_update_idletime(struct throtl_grp *tg)
{
	unsigned long now = ktime_get_ns() >> 10;
	unsigned long last_finish_time = tg->last_finish_time;

	if (now <= last_finish_time || last_finish_time == 0 ||
	    last_finish_time == tg->checked_last_finish_time)
		return;

	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
	tg->checked_last_finish_time = last_finish_time;
}

2046 2047 2048
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
static void throtl_update_latency_buckets(struct throtl_data *td)
{
2049 2050 2051 2052
	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
	int i, cpu, rw;
	unsigned long last_latency[2] = { 0 };
	unsigned long latency[2];
2053 2054 2055 2056 2057 2058 2059 2060

	if (!blk_queue_nonrot(td->queue))
		return;
	if (time_before(jiffies, td->last_calculate_time + HZ))
		return;
	td->last_calculate_time = jiffies;

	memset(avg_latency, 0, sizeof(avg_latency));
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	for (rw = READ; rw <= WRITE; rw++) {
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];

			for_each_possible_cpu(cpu) {
				struct latency_bucket *bucket;

				/* this isn't race free, but ok in practice */
				bucket = per_cpu_ptr(td->latency_buckets[rw],
					cpu);
				tmp->total_latency += bucket[i].total_latency;
				tmp->samples += bucket[i].samples;
				bucket[i].total_latency = 0;
				bucket[i].samples = 0;
			}
2076

2077 2078
			if (tmp->samples >= 32) {
				int samples = tmp->samples;
2079

2080
				latency[rw] = tmp->total_latency;
2081

2082 2083 2084 2085 2086 2087 2088
				tmp->total_latency = 0;
				tmp->samples = 0;
				latency[rw] /= samples;
				if (latency[rw] == 0)
					continue;
				avg_latency[rw][i].latency = latency[rw];
			}
2089 2090 2091
		}
	}

2092 2093 2094 2095 2096 2097 2098 2099
	for (rw = READ; rw <= WRITE; rw++) {
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			if (!avg_latency[rw][i].latency) {
				if (td->avg_buckets[rw][i].latency < last_latency[rw])
					td->avg_buckets[rw][i].latency =
						last_latency[rw];
				continue;
			}
2100

2101 2102 2103 2104 2105
			if (!td->avg_buckets[rw][i].valid)
				latency[rw] = avg_latency[rw][i].latency;
			else
				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
					avg_latency[rw][i].latency) >> 3;
2106

2107 2108 2109 2110 2111
			td->avg_buckets[rw][i].latency = max(latency[rw],
				last_latency[rw]);
			td->avg_buckets[rw][i].valid = true;
			last_latency[rw] = td->avg_buckets[rw][i].latency;
		}
2112
	}
2113 2114 2115

	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
		throtl_log(&td->service_queue,
2116 2117 2118 2119 2120 2121
			"Latency bucket %d: read latency=%ld, read valid=%d, "
			"write latency=%ld, write valid=%d", i,
			td->avg_buckets[READ][i].latency,
			td->avg_buckets[READ][i].valid,
			td->avg_buckets[WRITE][i].latency,
			td->avg_buckets[WRITE][i].valid);
2122 2123 2124 2125 2126 2127 2128
}
#else
static inline void throtl_update_latency_buckets(struct throtl_data *td)
{
}
#endif

2129 2130 2131
static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
{
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2132 2133 2134
	/* fallback to root_blkg if we fail to get a blkg ref */
	if (bio->bi_css && (bio_associate_blkg(bio, tg_to_blkg(tg)) == -ENODEV))
		bio_associate_blkg(bio, bio->bi_disk->queue->root_blkg);
2135
	bio_issue_init(&bio->bi_issue, bio_sectors(bio));
2136 2137 2138
#endif
}

2139 2140
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
2141
{
2142
	struct throtl_qnode *qn = NULL;
2143
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2144
	struct throtl_service_queue *sq;
2145
	bool rw = bio_data_dir(bio);
2146
	bool throttled = false;
2147
	struct throtl_data *td = tg->td;
2148

2149 2150
	WARN_ON_ONCE(!rcu_read_lock_held());

2151
	/* see throtl_charge_bio() */
2152
	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2153
		goto out;
2154 2155

	spin_lock_irq(q->queue_lock);
2156

2157 2158
	throtl_update_latency_buckets(td);

2159
	if (unlikely(blk_queue_bypass(q)))
2160
		goto out_unlock;
2161

2162
	blk_throtl_assoc_bio(tg, bio);
2163 2164
	blk_throtl_update_idletime(tg);

2165 2166
	sq = &tg->service_queue;

2167
again:
2168
	while (true) {
S
Shaohua Li 已提交
2169 2170 2171
		if (tg->last_low_overflow_time[rw] == 0)
			tg->last_low_overflow_time[rw] = jiffies;
		throtl_downgrade_check(tg);
2172
		throtl_upgrade_check(tg);
2173 2174 2175
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
2176

2177
		/* if above limits, break to queue */
2178
		if (!tg_may_dispatch(tg, bio, NULL)) {
S
Shaohua Li 已提交
2179
			tg->last_low_overflow_time[rw] = jiffies;
2180 2181
			if (throtl_can_upgrade(td, tg)) {
				throtl_upgrade_state(td);
2182 2183
				goto again;
			}
2184
			break;
2185
		}
2186 2187

		/* within limits, let's charge and dispatch directly */
2188
		throtl_charge_bio(tg, bio);
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
2201
		throtl_trim_slice(tg, rw);
2202 2203 2204 2205 2206 2207

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
2208
		qn = &tg->qnode_on_parent[rw];
2209 2210 2211 2212
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
2213 2214
	}

2215
	/* out-of-limit, queue to @tg */
2216 2217
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
2218 2219 2220
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2221
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2222

S
Shaohua Li 已提交
2223 2224
	tg->last_low_overflow_time[rw] = jiffies;

2225
	td->nr_queued[rw]++;
2226
	throtl_add_bio_tg(bio, qn, tg);
2227
	throttled = true;
2228

2229 2230 2231 2232 2233 2234
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
2235
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2236
		tg_update_disptime(tg);
2237
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2238 2239
	}

2240
out_unlock:
2241
	spin_unlock_irq(q->queue_lock);
2242
out:
S
Shaohua Li 已提交
2243
	bio_set_flag(bio, BIO_THROTTLED);
2244 2245 2246

#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	if (throttled || !td->track_bio_latency)
2247
		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2248
#endif
2249
	return throttled;
2250 2251
}

2252
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2253 2254 2255 2256 2257 2258
static void throtl_track_latency(struct throtl_data *td, sector_t size,
	int op, unsigned long time)
{
	struct latency_bucket *latency;
	int index;

2259 2260
	if (!td || td->limit_index != LIMIT_LOW ||
	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2261 2262 2263 2264 2265
	    !blk_queue_nonrot(td->queue))
		return;

	index = request_bucket_index(size);

2266
	latency = get_cpu_ptr(td->latency_buckets[op]);
2267 2268
	latency[index].total_latency += time;
	latency[index].samples++;
2269
	put_cpu_ptr(td->latency_buckets[op]);
2270 2271 2272 2273 2274 2275 2276
}

void blk_throtl_stat_add(struct request *rq, u64 time_ns)
{
	struct request_queue *q = rq->q;
	struct throtl_data *td = q->td;

2277
	throtl_track_latency(td, rq->throtl_size, req_op(rq), time_ns >> 10);
2278 2279
}

2280 2281
void blk_throtl_bio_endio(struct bio *bio)
{
2282
	struct blkcg_gq *blkg;
2283
	struct throtl_grp *tg;
2284 2285 2286 2287
	u64 finish_time_ns;
	unsigned long finish_time;
	unsigned long start_time;
	unsigned long lat;
2288
	int rw = bio_data_dir(bio);
2289

2290 2291
	blkg = bio->bi_blkg;
	if (!blkg)
2292
		return;
2293
	tg = blkg_to_tg(blkg);
2294

2295 2296 2297
	finish_time_ns = ktime_get_ns();
	tg->last_finish_time = finish_time_ns >> 10;

2298 2299
	start_time = bio_issue_time(&bio->bi_issue) >> 10;
	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2300
	if (!start_time || finish_time <= start_time)
2301 2302 2303
		return;

	lat = finish_time - start_time;
2304
	/* this is only for bio based driver */
2305 2306 2307
	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
				     bio_op(bio), lat);
2308

2309
	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2310 2311 2312
		int bucket;
		unsigned int threshold;

2313
		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2314
		threshold = tg->td->avg_buckets[rw][bucket].latency +
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
			tg->latency_target;
		if (lat > threshold)
			tg->bad_bio_cnt++;
		/*
		 * Not race free, could get wrong count, which means cgroups
		 * will be throttled
		 */
		tg->bio_cnt++;
	}

	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
		tg->bio_cnt /= 2;
		tg->bad_bio_cnt /= 2;
2329
	}
2330 2331 2332
}
#endif

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

2348
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2349
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2350
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2351 2352 2353 2354
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
2365
	struct blkcg_gq *blkg;
2366
	struct cgroup_subsys_state *pos_css;
2367
	struct bio *bio;
2368
	int rw;
2369

2370
	queue_lockdep_assert_held(q);
2371
	rcu_read_lock();
2372

2373 2374 2375 2376 2377 2378
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
2379
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2380
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2381

2382 2383 2384 2385
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
2386 2387
	spin_unlock_irq(q->queue_lock);

2388
	/* all bios now should be in td->service_queue, issue them */
2389
	for (rw = READ; rw <= WRITE; rw++)
2390 2391
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
2392
			generic_make_request(bio);
2393 2394 2395 2396

	spin_lock_irq(q->queue_lock);
}

2397 2398 2399
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
2400
	int ret;
2401 2402 2403 2404

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;
2405
	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2406
		LATENCY_BUCKET_SIZE, __alignof__(u64));
2407 2408 2409 2410 2411
	if (!td->latency_buckets[READ]) {
		kfree(td);
		return -ENOMEM;
	}
	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2412
		LATENCY_BUCKET_SIZE, __alignof__(u64));
2413 2414
	if (!td->latency_buckets[WRITE]) {
		free_percpu(td->latency_buckets[READ]);
2415 2416 2417
		kfree(td);
		return -ENOMEM;
	}
2418

2419
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2420
	throtl_service_queue_init(&td->service_queue);
2421

2422
	q->td = td;
2423
	td->queue = q;
V
Vivek Goyal 已提交
2424

2425
	td->limit_valid[LIMIT_MAX] = true;
S
Shaohua Li 已提交
2426
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
2427 2428
	td->low_upgrade_time = jiffies;
	td->low_downgrade_time = jiffies;
2429

2430
	/* activate policy */
T
Tejun Heo 已提交
2431
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2432
	if (ret) {
2433 2434
		free_percpu(td->latency_buckets[READ]);
		free_percpu(td->latency_buckets[WRITE]);
2435
		kfree(td);
2436
	}
2437
	return ret;
2438 2439 2440 2441
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
2442
	BUG_ON(!q->td);
2443
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
2444
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2445 2446
	free_percpu(q->td->latency_buckets[READ]);
	free_percpu(q->td->latency_buckets[WRITE]);
2447
	kfree(q->td);
2448 2449
}

2450 2451 2452
void blk_throtl_register_queue(struct request_queue *q)
{
	struct throtl_data *td;
2453
	int i;
2454 2455 2456 2457

	td = q->td;
	BUG_ON(!td);

2458
	if (blk_queue_nonrot(q)) {
2459
		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2460 2461
		td->filtered_latency = LATENCY_FILTERED_SSD;
	} else {
2462
		td->throtl_slice = DFL_THROTL_SLICE_HD;
2463
		td->filtered_latency = LATENCY_FILTERED_HD;
2464 2465 2466 2467
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
		}
2468
	}
2469 2470 2471 2472
#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
	/* if no low limit, use previous default */
	td->throtl_slice = DFL_THROTL_SLICE_HD;
#endif
2473

2474
	td->track_bio_latency = !queue_is_rq_based(q);
2475 2476
	if (!td->track_bio_latency)
		blk_stat_enable_accounting(q);
2477 2478
}

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
{
	if (!q->td)
		return -EINVAL;
	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
}

ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count)
{
	unsigned long v;
	unsigned long t;

	if (!q->td)
		return -EINVAL;
	if (kstrtoul(page, 10, &v))
		return -EINVAL;
	t = msecs_to_jiffies(v);
	if (t == 0 || t > MAX_THROTL_SLICE)
		return -EINVAL;
	q->td->throtl_slice = t;
	return count;
}
#endif

2505 2506
static int __init throtl_init(void)
{
2507 2508 2509 2510
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
2511
	return blkcg_policy_register(&blkcg_policy_throtl);
2512 2513 2514
}

module_init(throtl_init);