workqueue.c 104.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/hashtable.h>
45

46
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
47

T
Tejun Heo 已提交
48
enum {
49 50
	/*
	 * worker_pool flags
51
	 *
52
	 * A bound pool is either associated or disassociated with its CPU.
53 54 55 56 57 58
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
59
	 * be executing on any CPU.  The pool behaves as an unbound one.
60 61
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
62 63
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
64
	 */
65
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
66
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
67
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
68
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
69

T
Tejun Heo 已提交
70 71 72 73
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
74
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
75
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
76
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
77

78
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
79
				  WORKER_CPU_INTENSIVE,
80

81
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
82

T
Tejun Heo 已提交
83
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
84

85 86 87
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

88 89 90
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
91 92 93 94 95 96 97 98
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
99
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
100
};
L
Linus Torvalds 已提交
101 102

/*
T
Tejun Heo 已提交
103 104
 * Structure fields follow one of the following exclusion rules.
 *
105 106
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
107
 *
108 109 110
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
111
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
112
 *
113 114 115 116
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
117
 *
118 119
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
120
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
121 122
 */

123
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
124

125
struct worker_pool {
126
	spinlock_t		lock;		/* the pool lock */
127
	unsigned int		cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
128
	int			id;		/* I: pool ID */
129
	unsigned int		flags;		/* X: flags */
130 131 132

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
133 134

	/* nr_idle includes the ones off idle_list for rebinding */
135 136 137 138 139 140
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

141 142 143 144
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

145
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
146
	struct ida		worker_ida;	/* L: for worker IDs */
147 148 149 150 151 152 153

	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
154 155
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
156
/*
157
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
158 159
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
160 161
 */
struct cpu_workqueue_struct {
162
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
163
	struct workqueue_struct *wq;		/* I: the owning workqueue */
164 165 166 167
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
168
	int			nr_active;	/* L: nr of active works */
169
	int			max_active;	/* L: max active works */
170
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
171
};
L
Linus Torvalds 已提交
172

173 174 175 176 177 178 179 180 181
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

182 183 184 185 186 187 188 189 190 191
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
192
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
193 194 195 196 197 198 199 200 201
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
202 203 204 205 206 207

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
208
	unsigned int		flags;		/* W: WQ_* flags */
209 210 211 212 213
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
214
	struct list_head	list;		/* W: list of all workqueues */
215 216 217 218 219 220 221 222 223

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

224
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
225 226
	struct worker		*rescuer;	/* I: rescue worker */

227
	int			nr_drainers;	/* W: drain in progress */
228
	int			saved_max_active; /* W: saved cwq max_active */
229
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
230
	struct lockdep_map	lockdep_map;
231
#endif
232
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
233 234
};

235 236
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
237
struct workqueue_struct *system_highpri_wq __read_mostly;
238
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
239
struct workqueue_struct *system_long_wq __read_mostly;
240
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
241
struct workqueue_struct *system_unbound_wq __read_mostly;
242
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
243
struct workqueue_struct *system_freezable_wq __read_mostly;
244
EXPORT_SYMBOL_GPL(system_freezable_wq);
245

246 247 248
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

249
#define for_each_std_worker_pool(pool, cpu)				\
T
Tejun Heo 已提交
250 251
	for ((pool) = &std_worker_pools(cpu)[0];			\
	     (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
252

253 254
#define for_each_busy_worker(worker, i, pos, pool)			\
	hash_for_each(pool->busy_hash, i, pos, worker, hentry)
255

256 257
static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				unsigned int sw)
258 259 260 261 262 263 264 265 266 267
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
268
	return WORK_CPU_END;
269 270
}

271 272
static inline int __next_cwq_cpu(int cpu, const struct cpumask *mask,
				 struct workqueue_struct *wq)
273
{
274
	return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
275 276
}

277 278 279
/*
 * CPU iterators
 *
280
 * An extra cpu number is defined using an invalid cpu number
281
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
282 283
 * specific CPU.  The following iterators are similar to for_each_*_cpu()
 * iterators but also considers the unbound CPU.
284
 *
285 286
 * for_each_wq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_wq_cpu()	: online CPUs + WORK_CPU_UNBOUND
287 288 289
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
290 291
#define for_each_wq_cpu(cpu)						\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3);		\
292
	     (cpu) < WORK_CPU_END;					\
293
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
294

295 296
#define for_each_online_wq_cpu(cpu)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3);		\
297
	     (cpu) < WORK_CPU_END;					\
298
	     (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
299 300

#define for_each_cwq_cpu(cpu, wq)					\
301
	for ((cpu) = __next_cwq_cpu(-1, cpu_possible_mask, (wq));	\
302
	     (cpu) < WORK_CPU_END;					\
303
	     (cpu) = __next_cwq_cpu((cpu), cpu_possible_mask, (wq)))
304

305 306 307 308
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

309 310 311 312 313
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
349
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
385
	.debug_hint	= work_debug_hint,
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

421 422
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
423
static LIST_HEAD(workqueues);
424
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
425

426
/*
427 428
 * The CPU and unbound standard worker pools.  The unbound ones have
 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
429
 */
430 431
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_std_worker_pools);
T
Tejun Heo 已提交
432
static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
433

T
Tejun Heo 已提交
434 435 436 437
/* idr of all pools */
static DEFINE_MUTEX(worker_pool_idr_mutex);
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
438
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
439

T
Tejun Heo 已提交
440
static struct worker_pool *std_worker_pools(int cpu)
441
{
442
	if (cpu != WORK_CPU_UNBOUND)
T
Tejun Heo 已提交
443
		return per_cpu(cpu_std_worker_pools, cpu);
444
	else
T
Tejun Heo 已提交
445
		return unbound_std_worker_pools;
446 447
}

T
Tejun Heo 已提交
448 449
static int std_worker_pool_pri(struct worker_pool *pool)
{
T
Tejun Heo 已提交
450
	return pool - std_worker_pools(pool->cpu);
T
Tejun Heo 已提交
451 452
}

T
Tejun Heo 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

	mutex_lock(&worker_pool_idr_mutex);
	idr_pre_get(&worker_pool_idr, GFP_KERNEL);
	ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	mutex_unlock(&worker_pool_idr_mutex);

	return ret;
}

466 467 468 469 470 471 472 473 474
/*
 * Lookup worker_pool by id.  The idr currently is built during boot and
 * never modified.  Don't worry about locking for now.
 */
static struct worker_pool *worker_pool_by_id(int pool_id)
{
	return idr_find(&worker_pool_idr, pool_id);
}

475 476
static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
{
T
Tejun Heo 已提交
477
	struct worker_pool *pools = std_worker_pools(cpu);
478

T
Tejun Heo 已提交
479
	return &pools[highpri];
480 481
}

T
Tejun Heo 已提交
482 483
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
484
{
485
	if (!(wq->flags & WQ_UNBOUND)) {
486
		if (likely(cpu < nr_cpu_ids))
487 488 489 490
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
491 492
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
508

509
/*
510 511
 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
 * contain the pointer to the queued cwq.  Once execution starts, the flag
512
 * is cleared and the high bits contain OFFQ flags and pool ID.
513
 *
514 515
 * set_work_cwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the cwq, pool or clear
516 517
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
518
 *
519 520 521 522
 * get_work_pool() and get_work_cwq() can be used to obtain the pool or cwq
 * corresponding to a work.  Pool is available once the work has been
 * queued anywhere after initialization until it is sync canceled.  cwq is
 * available only while the work item is queued.
523
 *
524 525 526 527
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
528
 */
529 530
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
531
{
532
	BUG_ON(!work_pending(work));
533 534
	atomic_long_set(&work->data, data | flags | work_static(work));
}
535

536 537 538 539 540
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
541
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
542 543
}

544 545 546 547 548 549 550
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

551 552
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
553
{
554 555 556 557 558 559 560
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
561
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
562
}
563

564
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
565
{
566 567
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
568 569
}

570
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
571
{
572
	unsigned long data = atomic_long_read(&work->data);
573

574 575 576 577
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
578 579
}

580 581 582 583 584 585 586
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
587
{
588
	unsigned long data = atomic_long_read(&work->data);
589 590
	struct worker_pool *pool;
	int pool_id;
591

592 593
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
594
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
595

596 597
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
598 599
		return NULL;

600 601 602 603 604 605 606 607 608 609 610 611 612 613
	pool = worker_pool_by_id(pool_id);
	WARN_ON_ONCE(!pool);
	return pool;
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
614 615 616 617 618
	unsigned long data = atomic_long_read(&work->data);

	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
619

620
	return data >> WORK_OFFQ_POOL_SHIFT;
621 622
}

623 624
static void mark_work_canceling(struct work_struct *work)
{
625
	unsigned long pool_id = get_work_pool_id(work);
626

627 628
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
629 630 631 632 633 634 635 636 637
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
}

638
/*
639 640
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
641
 * they're being called with pool->lock held.
642 643
 */

644
static bool __need_more_worker(struct worker_pool *pool)
645
{
646
	return !atomic_read(&pool->nr_running);
647 648
}

649
/*
650 651
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
652 653
 *
 * Note that, because unbound workers never contribute to nr_running, this
654
 * function will always return %true for unbound pools as long as the
655
 * worklist isn't empty.
656
 */
657
static bool need_more_worker(struct worker_pool *pool)
658
{
659
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
660
}
661

662
/* Can I start working?  Called from busy but !running workers. */
663
static bool may_start_working(struct worker_pool *pool)
664
{
665
	return pool->nr_idle;
666 667 668
}

/* Do I need to keep working?  Called from currently running workers. */
669
static bool keep_working(struct worker_pool *pool)
670
{
671 672
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
673 674 675
}

/* Do we need a new worker?  Called from manager. */
676
static bool need_to_create_worker(struct worker_pool *pool)
677
{
678
	return need_more_worker(pool) && !may_start_working(pool);
679
}
680

681
/* Do I need to be the manager? */
682
static bool need_to_manage_workers(struct worker_pool *pool)
683
{
684
	return need_to_create_worker(pool) ||
685
		(pool->flags & POOL_MANAGE_WORKERS);
686 687 688
}

/* Do we have too many workers and should some go away? */
689
static bool too_many_workers(struct worker_pool *pool)
690
{
691
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
692 693
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
694

695 696 697 698 699 700 701
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

702
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
703 704
}

705
/*
706 707 708
 * Wake up functions.
 */

709
/* Return the first worker.  Safe with preemption disabled */
710
static struct worker *first_worker(struct worker_pool *pool)
711
{
712
	if (unlikely(list_empty(&pool->idle_list)))
713 714
		return NULL;

715
	return list_first_entry(&pool->idle_list, struct worker, entry);
716 717 718 719
}

/**
 * wake_up_worker - wake up an idle worker
720
 * @pool: worker pool to wake worker from
721
 *
722
 * Wake up the first idle worker of @pool.
723 724
 *
 * CONTEXT:
725
 * spin_lock_irq(pool->lock).
726
 */
727
static void wake_up_worker(struct worker_pool *pool)
728
{
729
	struct worker *worker = first_worker(pool);
730 731 732 733 734

	if (likely(worker))
		wake_up_process(worker->task);
}

735
/**
736 737 738 739 740 741 742 743 744 745 746 747 748 749
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

750
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
751
		WARN_ON_ONCE(worker->pool->cpu != cpu);
752
		atomic_inc(&worker->pool->nr_running);
753
	}
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
775
	struct worker_pool *pool;
776

777 778 779 780 781
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
782
	if (worker->flags & WORKER_NOT_RUNNING)
783 784
		return NULL;

785 786
	pool = worker->pool;

787 788 789 790 791 792 793 794
	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
795 796 797
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
798
	 * manipulating idle_list, so dereferencing idle_list without pool
799
	 * lock is safe.
800
	 */
801 802
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
803
		to_wakeup = first_worker(pool);
804 805 806 807 808
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
809
 * @worker: self
810 811 812
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
813 814 815
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
816
 *
817
 * CONTEXT:
818
 * spin_lock_irq(pool->lock)
819 820 821 822
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
823
	struct worker_pool *pool = worker->pool;
824

825 826
	WARN_ON_ONCE(worker->task != current);

827 828 829 830 831 832 833 834
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
835
			if (atomic_dec_and_test(&pool->nr_running) &&
836
			    !list_empty(&pool->worklist))
837
				wake_up_worker(pool);
838
		} else
839
			atomic_dec(&pool->nr_running);
840 841
	}

842 843 844 845
	worker->flags |= flags;
}

/**
846
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
847
 * @worker: self
848 849
 * @flags: flags to clear
 *
850
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
851
 *
852
 * CONTEXT:
853
 * spin_lock_irq(pool->lock)
854 855 856
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
857
	struct worker_pool *pool = worker->pool;
858 859
	unsigned int oflags = worker->flags;

860 861
	WARN_ON_ONCE(worker->task != current);

862
	worker->flags &= ~flags;
863

864 865 866 867 868
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
869 870
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
871
			atomic_inc(&pool->nr_running);
872 873
}

874 875
/**
 * find_worker_executing_work - find worker which is executing a work
876
 * @pool: pool of interest
877 878
 * @work: work to find worker for
 *
879 880
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
900 901
 *
 * CONTEXT:
902
 * spin_lock_irq(pool->lock).
903 904 905 906
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
907
 */
908
static struct worker *find_worker_executing_work(struct worker_pool *pool,
909
						 struct work_struct *work)
910
{
911 912 913
	struct worker *worker;
	struct hlist_node *tmp;

914
	hash_for_each_possible(pool->busy_hash, worker, tmp, hentry,
915 916 917
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
918 919 920
			return worker;

	return NULL;
921 922
}

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
938
 * spin_lock_irq(pool->lock).
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

964
static void cwq_activate_delayed_work(struct work_struct *work)
965
{
966
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
967 968 969 970 971 972 973

	trace_workqueue_activate_work(work);
	move_linked_works(work, &cwq->pool->worklist, NULL);
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
	cwq->nr_active++;
}

974 975 976 977 978 979 980 981
static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

	cwq_activate_delayed_work(work);
}

982 983 984 985 986 987 988 989 990
/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
991
 * spin_lock_irq(pool->lock).
992
 */
993
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
994 995 996 997 998 999 1000
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;

1001 1002 1003 1004 1005
	cwq->nr_active--;
	if (!list_empty(&cwq->delayed_works)) {
		/* one down, submit a delayed one */
		if (cwq->nr_active < cwq->max_active)
			cwq_activate_first_delayed(cwq);
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	}

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1027
/**
1028
 * try_to_grab_pending - steal work item from worklist and disable irq
1029 1030
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1031
 * @flags: place to store irq state
1032 1033 1034 1035 1036 1037 1038
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1039 1040
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1041
 *
1042
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1043 1044 1045
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1046 1047 1048 1049
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1050
 * This function is safe to call from any context including IRQ handler.
1051
 */
1052 1053
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1054
{
1055
	struct worker_pool *pool;
1056
	struct cpu_workqueue_struct *cwq;
1057

1058 1059
	local_irq_save(*flags);

1060 1061 1062 1063
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1064 1065 1066 1067 1068
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1069 1070 1071 1072 1073
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1074 1075 1076 1077 1078 1079 1080
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1081 1082
	pool = get_work_pool(work);
	if (!pool)
1083
		goto fail;
1084

1085
	spin_lock(&pool->lock);
1086 1087 1088 1089 1090 1091 1092 1093 1094
	/*
	 * work->data is guaranteed to point to cwq only while the work
	 * item is queued on cwq->wq, and both updating work->data to point
	 * to cwq on queueing and to pool on dequeueing are done under
	 * cwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to cwq which is associated with a locked pool, the work
	 * item is currently queued on that pool.
	 */
	cwq = get_work_cwq(work);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	if (cwq && cwq->pool == pool) {
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
		 * on the delayed_list, will confuse cwq->nr_active
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
			cwq_activate_delayed_work(work);

		list_del_init(&work->entry);
		cwq_dec_nr_in_flight(get_work_cwq(work), get_work_color(work));

		/* work->data points to cwq iff queued, point to pool */
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1116
	}
1117
	spin_unlock(&pool->lock);
1118 1119 1120 1121 1122
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1123
	return -EAGAIN;
1124 1125
}

T
Tejun Heo 已提交
1126
/**
1127
 * insert_work - insert a work into a pool
T
Tejun Heo 已提交
1128 1129 1130 1131 1132
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1133 1134
 * Insert @work which belongs to @cwq after @head.  @extra_flags is or'd to
 * work_struct flags.
T
Tejun Heo 已提交
1135 1136
 *
 * CONTEXT:
1137
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1138
 */
O
Oleg Nesterov 已提交
1139
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
1140 1141
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
1142
{
1143
	struct worker_pool *pool = cwq->pool;
1144

T
Tejun Heo 已提交
1145
	/* we own @work, set data and link */
1146
	set_work_cwq(work, cwq, extra_flags);
1147
	list_add_tail(&work->entry, head);
1148 1149 1150 1151 1152 1153 1154 1155

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1156 1157
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1158 1159
}

1160 1161
/*
 * Test whether @work is being queued from another work executing on the
1162
 * same workqueue.
1163 1164 1165
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1166 1167 1168 1169 1170 1171 1172 1173
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
	return worker && worker->current_cwq->wq == wq;
1174 1175
}

T
Tejun Heo 已提交
1176
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1177 1178
			 struct work_struct *work)
{
1179
	struct cpu_workqueue_struct *cwq;
1180
	struct list_head *worklist;
1181
	unsigned int work_flags;
1182
	unsigned int req_cpu = cpu;
1183 1184 1185 1186 1187 1188 1189 1190

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1191

1192
	debug_work_activate(work);
1193

1194
	/* if dying, only works from the same workqueue are allowed */
1195
	if (unlikely(wq->flags & WQ_DRAINING) &&
1196
	    WARN_ON_ONCE(!is_chained_work(wq)))
1197 1198
		return;

1199
	/* determine the cwq to use */
1200
	if (!(wq->flags & WQ_UNBOUND)) {
1201
		struct worker_pool *last_pool;
1202

1203
		if (cpu == WORK_CPU_UNBOUND)
1204 1205
			cpu = raw_smp_processor_id();

1206
		/*
1207 1208 1209 1210
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1211
		 */
1212
		cwq = get_cwq(cpu, wq);
1213
		last_pool = get_work_pool(work);
1214

1215
		if (last_pool && last_pool != cwq->pool) {
1216 1217
			struct worker *worker;

1218
			spin_lock(&last_pool->lock);
1219

1220
			worker = find_worker_executing_work(last_pool, work);
1221

1222 1223 1224
			if (worker && worker->current_cwq->wq == wq) {
				cwq = get_cwq(last_pool->cpu, wq);
			} else {
1225
				/* meh... not running there, queue here */
1226
				spin_unlock(&last_pool->lock);
1227
				spin_lock(&cwq->pool->lock);
1228
			}
1229
		} else {
1230
			spin_lock(&cwq->pool->lock);
1231
		}
1232
	} else {
1233 1234
		cwq = get_cwq(WORK_CPU_UNBOUND, wq);
		spin_lock(&cwq->pool->lock);
1235 1236
	}

1237
	/* cwq determined, queue */
1238
	trace_workqueue_queue_work(req_cpu, cwq, work);
1239

1240
	if (WARN_ON(!list_empty(&work->entry))) {
1241
		spin_unlock(&cwq->pool->lock);
1242 1243
		return;
	}
1244

1245
	cwq->nr_in_flight[cwq->work_color]++;
1246
	work_flags = work_color_to_flags(cwq->work_color);
1247 1248

	if (likely(cwq->nr_active < cwq->max_active)) {
1249
		trace_workqueue_activate_work(work);
1250
		cwq->nr_active++;
1251
		worklist = &cwq->pool->worklist;
1252 1253
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1254
		worklist = &cwq->delayed_works;
1255
	}
1256

1257
	insert_work(cwq, work, worklist, work_flags);
1258

1259
	spin_unlock(&cwq->pool->lock);
L
Linus Torvalds 已提交
1260 1261
}

1262
/**
1263 1264
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1265 1266 1267
 * @wq: workqueue to use
 * @work: work to queue
 *
1268
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1269
 *
1270 1271
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1272
 */
1273 1274
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1275
{
1276
	bool ret = false;
1277
	unsigned long flags;
1278

1279
	local_irq_save(flags);
1280

1281
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1282
		__queue_work(cpu, wq, work);
1283
		ret = true;
1284
	}
1285

1286
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1287 1288
	return ret;
}
1289
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1290

1291
/**
1292
 * queue_work - queue work on a workqueue
1293 1294 1295
 * @wq: workqueue to use
 * @work: work to queue
 *
1296
 * Returns %false if @work was already on a queue, %true otherwise.
1297
 *
1298 1299
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1300
 */
1301
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1302
{
1303
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1304
}
1305
EXPORT_SYMBOL_GPL(queue_work);
1306

1307
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1308
{
1309
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1310

1311
	/* should have been called from irqsafe timer with irq already off */
1312
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1313
}
1314
EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1315

1316 1317
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1318
{
1319 1320 1321 1322 1323
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1324 1325
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1326

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1338
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1339

1340
	dwork->wq = wq;
1341
	dwork->cpu = cpu;
1342 1343 1344 1345 1346 1347
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1348 1349
}

1350 1351 1352 1353
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1354
 * @dwork: work to queue
1355 1356
 * @delay: number of jiffies to wait before queueing
 *
1357 1358 1359
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1360
 */
1361 1362
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1363
{
1364
	struct work_struct *work = &dwork->work;
1365
	bool ret = false;
1366
	unsigned long flags;
1367

1368 1369
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1370

1371
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1372
		__queue_delayed_work(cpu, wq, dwork, delay);
1373
		ret = true;
1374
	}
1375

1376
	local_irq_restore(flags);
1377 1378
	return ret;
}
1379
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1380

1381 1382 1383 1384 1385 1386
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1387
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1388
 */
1389
bool queue_delayed_work(struct workqueue_struct *wq,
1390 1391
			struct delayed_work *dwork, unsigned long delay)
{
1392
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1393 1394
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1395

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1411
 * This function is safe to call from any context including IRQ handler.
1412 1413 1414 1415 1416 1417 1418
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1419

1420 1421 1422
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1423

1424 1425 1426
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1427
	}
1428 1429

	/* -ENOENT from try_to_grab_pending() becomes %true */
1430 1431
	return ret;
}
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1448

T
Tejun Heo 已提交
1449 1450 1451 1452 1453 1454 1455 1456
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1457
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1458 1459
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1460
{
1461
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1462 1463 1464 1465 1466

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1467 1468
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1469
	pool->nr_idle++;
1470
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1471 1472

	/* idle_list is LIFO */
1473
	list_add(&worker->entry, &pool->idle_list);
1474

1475 1476
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1477

1478
	/*
1479
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1480
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1481 1482
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1483
	 */
1484
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1485
		     pool->nr_workers == pool->nr_idle &&
1486
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1496
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1497 1498 1499
 */
static void worker_leave_idle(struct worker *worker)
{
1500
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1501 1502

	BUG_ON(!(worker->flags & WORKER_IDLE));
1503
	worker_clr_flags(worker, WORKER_IDLE);
1504
	pool->nr_idle--;
T
Tejun Heo 已提交
1505 1506 1507
	list_del_init(&worker->entry);
}

1508
/**
1509
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1521
 * verbatim as it's best effort and blocking and pool may be
1522 1523
 * [dis]associated in the meantime.
 *
1524
 * This function tries set_cpus_allowed() and locks pool and verifies the
1525
 * binding against %POOL_DISASSOCIATED which is set during
1526 1527 1528
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1529 1530
 *
 * CONTEXT:
1531
 * Might sleep.  Called without any lock but returns with pool->lock
1532 1533 1534
 * held.
 *
 * RETURNS:
1535
 * %true if the associated pool is online (@worker is successfully
1536 1537 1538
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1539
__acquires(&pool->lock)
1540
{
1541
	struct worker_pool *pool = worker->pool;
1542 1543 1544
	struct task_struct *task = worker->task;

	while (true) {
1545
		/*
1546 1547 1548
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1549
		 * against POOL_DISASSOCIATED.
1550
		 */
1551
		if (!(pool->flags & POOL_DISASSOCIATED))
1552
			set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
1553

1554
		spin_lock_irq(&pool->lock);
1555
		if (pool->flags & POOL_DISASSOCIATED)
1556
			return false;
1557
		if (task_cpu(task) == pool->cpu &&
1558
		    cpumask_equal(&current->cpus_allowed,
1559
				  get_cpu_mask(pool->cpu)))
1560
			return true;
1561
		spin_unlock_irq(&pool->lock);
1562

1563 1564 1565 1566 1567 1568
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1569
		cpu_relax();
1570
		cond_resched();
1571 1572 1573
	}
}

1574
/*
1575
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1576
 * list_empty(@worker->entry) before leaving idle and call this function.
1577 1578 1579
 */
static void idle_worker_rebind(struct worker *worker)
{
1580 1581 1582
	/* CPU may go down again inbetween, clear UNBOUND only on success */
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1583

1584 1585
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1586
	spin_unlock_irq(&worker->pool->lock);
1587 1588
}

1589
/*
1590
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1591 1592 1593
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1594
 */
1595
static void busy_worker_rebind_fn(struct work_struct *work)
1596 1597 1598
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1599 1600
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1601

1602
	spin_unlock_irq(&worker->pool->lock);
1603 1604
}

1605
/**
1606 1607
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1608
 *
1609
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1610 1611
 * is different for idle and busy ones.
 *
1612 1613 1614 1615
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1616
 *
1617 1618 1619 1620
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1621
 *
1622 1623 1624 1625
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1626
 */
1627
static void rebind_workers(struct worker_pool *pool)
1628
{
1629
	struct worker *worker, *n;
1630 1631 1632
	struct hlist_node *pos;
	int i;

1633 1634
	lockdep_assert_held(&pool->assoc_mutex);
	lockdep_assert_held(&pool->lock);
1635

1636
	/* dequeue and kick idle ones */
1637 1638 1639 1640 1641 1642
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1643

1644 1645 1646 1647 1648 1649
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1650

1651 1652 1653 1654
	/* rebind busy workers */
	for_each_busy_worker(worker, i, pos, pool) {
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1655

1656 1657 1658
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1659

1660
		debug_work_activate(rebind_work);
1661

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
		/*
		 * wq doesn't really matter but let's keep @worker->pool
		 * and @cwq->pool consistent for sanity.
		 */
		if (std_worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;

		insert_work(get_cwq(pool->cpu, wq), rebind_work,
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1674
	}
1675 1676
}

T
Tejun Heo 已提交
1677 1678 1679 1680 1681
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1682 1683
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1684
		INIT_LIST_HEAD(&worker->scheduled);
1685
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1686 1687
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1688
	}
T
Tejun Heo 已提交
1689 1690 1691 1692 1693
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1694
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1695
 *
1696
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1697 1698 1699 1700 1701 1702 1703 1704 1705
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1706
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1707
{
1708
	const char *pri = std_worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1709
	struct worker *worker = NULL;
1710
	int id = -1;
T
Tejun Heo 已提交
1711

1712
	spin_lock_irq(&pool->lock);
1713
	while (ida_get_new(&pool->worker_ida, &id)) {
1714
		spin_unlock_irq(&pool->lock);
1715
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1716
			goto fail;
1717
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1718
	}
1719
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1720 1721 1722 1723 1724

	worker = alloc_worker();
	if (!worker)
		goto fail;

1725
	worker->pool = pool;
T
Tejun Heo 已提交
1726 1727
	worker->id = id;

1728
	if (pool->cpu != WORK_CPU_UNBOUND)
1729
		worker->task = kthread_create_on_node(worker_thread,
1730 1731
					worker, cpu_to_node(pool->cpu),
					"kworker/%u:%d%s", pool->cpu, id, pri);
1732 1733
	else
		worker->task = kthread_create(worker_thread, worker,
1734
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1735 1736 1737
	if (IS_ERR(worker->task))
		goto fail;

1738
	if (std_worker_pool_pri(pool))
1739 1740
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1741
	/*
1742
	 * Determine CPU binding of the new worker depending on
1743
	 * %POOL_DISASSOCIATED.  The caller is responsible for ensuring the
1744 1745 1746 1747 1748
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1749
	 */
1750
	if (!(pool->flags & POOL_DISASSOCIATED)) {
1751
		kthread_bind(worker->task, pool->cpu);
1752
	} else {
1753
		worker->task->flags |= PF_THREAD_BOUND;
1754
		worker->flags |= WORKER_UNBOUND;
1755
	}
T
Tejun Heo 已提交
1756 1757 1758 1759

	return worker;
fail:
	if (id >= 0) {
1760
		spin_lock_irq(&pool->lock);
1761
		ida_remove(&pool->worker_ida, id);
1762
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1772
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1773 1774
 *
 * CONTEXT:
1775
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1776 1777 1778
 */
static void start_worker(struct worker *worker)
{
1779
	worker->flags |= WORKER_STARTED;
1780
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1781
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1782 1783 1784 1785 1786 1787 1788
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1789
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1790 1791
 *
 * CONTEXT:
1792
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1793 1794 1795
 */
static void destroy_worker(struct worker *worker)
{
1796
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1797 1798 1799 1800
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1801
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1802

T
Tejun Heo 已提交
1803
	if (worker->flags & WORKER_STARTED)
1804
		pool->nr_workers--;
T
Tejun Heo 已提交
1805
	if (worker->flags & WORKER_IDLE)
1806
		pool->nr_idle--;
T
Tejun Heo 已提交
1807 1808

	list_del_init(&worker->entry);
1809
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1810

1811
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1812

T
Tejun Heo 已提交
1813 1814 1815
	kthread_stop(worker->task);
	kfree(worker);

1816
	spin_lock_irq(&pool->lock);
1817
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1818 1819
}

1820
static void idle_worker_timeout(unsigned long __pool)
1821
{
1822
	struct worker_pool *pool = (void *)__pool;
1823

1824
	spin_lock_irq(&pool->lock);
1825

1826
	if (too_many_workers(pool)) {
1827 1828 1829 1830
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1831
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1832 1833 1834
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1835
			mod_timer(&pool->idle_timer, expires);
1836 1837
		else {
			/* it's been idle for too long, wake up manager */
1838
			pool->flags |= POOL_MANAGE_WORKERS;
1839
			wake_up_worker(pool);
1840
		}
1841 1842
	}

1843
	spin_unlock_irq(&pool->lock);
1844
}
1845

1846 1847 1848 1849
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1850
	unsigned int cpu;
1851 1852 1853 1854 1855

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1856
	cpu = cwq->pool->cpu;
1857 1858 1859
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1860
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1861 1862 1863 1864
		wake_up_process(wq->rescuer->task);
	return true;
}

1865
static void pool_mayday_timeout(unsigned long __pool)
1866
{
1867
	struct worker_pool *pool = (void *)__pool;
1868 1869
	struct work_struct *work;

1870
	spin_lock_irq(&pool->lock);
1871

1872
	if (need_to_create_worker(pool)) {
1873 1874 1875 1876 1877 1878
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1879
		list_for_each_entry(work, &pool->worklist, entry)
1880
			send_mayday(work);
L
Linus Torvalds 已提交
1881
	}
1882

1883
	spin_unlock_irq(&pool->lock);
1884

1885
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1886 1887
}

1888 1889
/**
 * maybe_create_worker - create a new worker if necessary
1890
 * @pool: pool to create a new worker for
1891
 *
1892
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1893 1894
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1895
 * sent to all rescuers with works scheduled on @pool to resolve
1896 1897 1898 1899 1900 1901
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
1902
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1903 1904 1905 1906
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1907
 * false if no action was taken and pool->lock stayed locked, true
1908 1909
 * otherwise.
 */
1910
static bool maybe_create_worker(struct worker_pool *pool)
1911 1912
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1913
{
1914
	if (!need_to_create_worker(pool))
1915 1916
		return false;
restart:
1917
	spin_unlock_irq(&pool->lock);
1918

1919
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1920
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1921 1922 1923 1924

	while (true) {
		struct worker *worker;

1925
		worker = create_worker(pool);
1926
		if (worker) {
1927
			del_timer_sync(&pool->mayday_timer);
1928
			spin_lock_irq(&pool->lock);
1929
			start_worker(worker);
1930
			BUG_ON(need_to_create_worker(pool));
1931 1932 1933
			return true;
		}

1934
		if (!need_to_create_worker(pool))
1935
			break;
L
Linus Torvalds 已提交
1936

1937 1938
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1939

1940
		if (!need_to_create_worker(pool))
1941 1942 1943
			break;
	}

1944
	del_timer_sync(&pool->mayday_timer);
1945
	spin_lock_irq(&pool->lock);
1946
	if (need_to_create_worker(pool))
1947 1948 1949 1950 1951 1952
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1953
 * @pool: pool to destroy workers for
1954
 *
1955
 * Destroy @pool workers which have been idle for longer than
1956 1957 1958
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1959
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1960 1961 1962
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1963
 * false if no action was taken and pool->lock stayed locked, true
1964 1965
 * otherwise.
 */
1966
static bool maybe_destroy_workers(struct worker_pool *pool)
1967 1968
{
	bool ret = false;
L
Linus Torvalds 已提交
1969

1970
	while (too_many_workers(pool)) {
1971 1972
		struct worker *worker;
		unsigned long expires;
1973

1974
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1975
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1976

1977
		if (time_before(jiffies, expires)) {
1978
			mod_timer(&pool->idle_timer, expires);
1979
			break;
1980
		}
L
Linus Torvalds 已提交
1981

1982 1983
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
1984
	}
1985

1986
	return ret;
1987 1988
}

1989
/**
1990 1991
 * manage_workers - manage worker pool
 * @worker: self
1992
 *
1993
 * Assume the manager role and manage the worker pool @worker belongs
1994
 * to.  At any given time, there can be only zero or one manager per
1995
 * pool.  The exclusion is handled automatically by this function.
1996 1997 1998 1999
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2000 2001
 *
 * CONTEXT:
2002
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2003 2004 2005
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2006 2007
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2008
 */
2009
static bool manage_workers(struct worker *worker)
2010
{
2011
	struct worker_pool *pool = worker->pool;
2012
	bool ret = false;
2013

2014
	if (pool->flags & POOL_MANAGING_WORKERS)
2015
		return ret;
2016

2017
	pool->flags |= POOL_MANAGING_WORKERS;
2018

2019 2020 2021 2022 2023 2024
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2025
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2026 2027
	 * manager against CPU hotplug.
	 *
2028
	 * assoc_mutex would always be free unless CPU hotplug is in
2029
	 * progress.  trylock first without dropping @pool->lock.
2030
	 */
2031
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2032
		spin_unlock_irq(&pool->lock);
2033
		mutex_lock(&pool->assoc_mutex);
2034 2035
		/*
		 * CPU hotplug could have happened while we were waiting
2036
		 * for assoc_mutex.  Hotplug itself can't handle us
2037
		 * because manager isn't either on idle or busy list, and
2038
		 * @pool's state and ours could have deviated.
2039
		 *
2040
		 * As hotplug is now excluded via assoc_mutex, we can
2041
		 * simply try to bind.  It will succeed or fail depending
2042
		 * on @pool's current state.  Try it and adjust
2043 2044 2045 2046 2047 2048
		 * %WORKER_UNBOUND accordingly.
		 */
		if (worker_maybe_bind_and_lock(worker))
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2049

2050 2051
		ret = true;
	}
2052

2053
	pool->flags &= ~POOL_MANAGE_WORKERS;
2054 2055

	/*
2056 2057
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2058
	 */
2059 2060
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2061

2062
	pool->flags &= ~POOL_MANAGING_WORKERS;
2063
	mutex_unlock(&pool->assoc_mutex);
2064
	return ret;
2065 2066
}

2067 2068
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2069
 * @worker: self
2070 2071 2072 2073 2074 2075 2076 2077 2078
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2079
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2080
 */
T
Tejun Heo 已提交
2081
static void process_one_work(struct worker *worker, struct work_struct *work)
2082 2083
__releases(&pool->lock)
__acquires(&pool->lock)
2084
{
2085
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2086
	struct worker_pool *pool = worker->pool;
2087
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2088
	int work_color;
2089
	struct worker *collision;
2090 2091 2092 2093 2094 2095 2096 2097
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2098 2099 2100
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2101
#endif
2102 2103 2104
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2105
	 * unbound or a disassociated pool.
2106
	 */
2107
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2108
		     !(pool->flags & POOL_DISASSOCIATED) &&
2109
		     raw_smp_processor_id() != pool->cpu);
2110

2111 2112 2113 2114 2115 2116
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2117
	collision = find_worker_executing_work(pool, work);
2118 2119 2120 2121 2122
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2123
	/* claim and dequeue */
2124
	debug_work_deactivate(work);
2125
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2126
	worker->current_work = work;
2127
	worker->current_func = work->func;
2128
	worker->current_cwq = cwq;
2129
	work_color = get_work_color(work);
2130

2131 2132
	list_del_init(&work->entry);

2133 2134 2135 2136 2137 2138 2139
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2140
	/*
2141
	 * Unbound pool isn't concurrency managed and work items should be
2142 2143
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2144 2145
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2146

2147
	/*
2148
	 * Record the last pool and clear PENDING which should be the last
2149
	 * update to @work.  Also, do this inside @pool->lock so that
2150 2151
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2152
	 */
2153
	set_work_pool_and_clear_pending(work, pool->id);
2154

2155
	spin_unlock_irq(&pool->lock);
2156

2157
	lock_map_acquire_read(&cwq->wq->lockdep_map);
2158
	lock_map_acquire(&lockdep_map);
2159
	trace_workqueue_execute_start(work);
2160
	worker->current_func(work);
2161 2162 2163 2164 2165
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2166 2167 2168 2169
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2170 2171
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2172 2173
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2174 2175 2176 2177
		debug_show_held_locks(current);
		dump_stack();
	}

2178
	spin_lock_irq(&pool->lock);
2179

2180 2181 2182 2183
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2184
	/* we're done with it, release */
2185
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2186
	worker->current_work = NULL;
2187
	worker->current_func = NULL;
2188
	worker->current_cwq = NULL;
2189
	cwq_dec_nr_in_flight(cwq, work_color);
2190 2191
}

2192 2193 2194 2195 2196 2197 2198 2199 2200
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2201
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2202 2203 2204
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2205
{
2206 2207
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2208
						struct work_struct, entry);
T
Tejun Heo 已提交
2209
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2210 2211 2212
	}
}

T
Tejun Heo 已提交
2213 2214
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2215
 * @__worker: self
T
Tejun Heo 已提交
2216
 *
2217 2218
 * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
 * of these per each cpu.  These workers process all works regardless of
2219 2220 2221
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2222
 */
T
Tejun Heo 已提交
2223
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2224
{
T
Tejun Heo 已提交
2225
	struct worker *worker = __worker;
2226
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2227

2228 2229
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2230
woke_up:
2231
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2232

2233 2234
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2235
		spin_unlock_irq(&pool->lock);
2236

2237
		/* if DIE is set, destruction is requested */
2238 2239 2240 2241 2242
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2243
		/* otherwise, rebind */
2244 2245
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2246
	}
2247

T
Tejun Heo 已提交
2248
	worker_leave_idle(worker);
2249
recheck:
2250
	/* no more worker necessary? */
2251
	if (!need_more_worker(pool))
2252 2253 2254
		goto sleep;

	/* do we need to manage? */
2255
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2256 2257
		goto recheck;

T
Tejun Heo 已提交
2258 2259 2260 2261 2262 2263 2264
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2265 2266 2267 2268 2269 2270 2271 2272
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2273
		struct work_struct *work =
2274
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2275 2276 2277 2278 2279 2280
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2281
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2282 2283 2284
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2285
		}
2286
	} while (keep_working(pool));
2287 2288

	worker_set_flags(worker, WORKER_PREP, false);
2289
sleep:
2290
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2291
		goto recheck;
2292

T
Tejun Heo 已提交
2293
	/*
2294 2295 2296 2297 2298
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2299 2300 2301
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2302
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2303 2304
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2305 2306
}

2307 2308
/**
 * rescuer_thread - the rescuer thread function
2309
 * @__rescuer: self
2310 2311 2312 2313
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
2314
 * Regular work processing on a pool may block trying to create a new
2315 2316 2317 2318 2319
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2320 2321
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2322 2323 2324 2325
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2326
static int rescuer_thread(void *__rescuer)
2327
{
2328 2329
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2330
	struct list_head *scheduled = &rescuer->scheduled;
2331
	bool is_unbound = wq->flags & WQ_UNBOUND;
2332 2333 2334
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2335 2336 2337 2338 2339 2340

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2341 2342 2343
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2344 2345
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2346
		rescuer->task->flags &= ~PF_WQ_WORKER;
2347
		return 0;
2348
	}
2349

2350 2351 2352 2353
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2354
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2355 2356
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2357
		struct worker_pool *pool = cwq->pool;
2358 2359 2360
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2361
		mayday_clear_cpu(cpu, wq->mayday_mask);
2362 2363

		/* migrate to the target cpu if possible */
2364
		rescuer->pool = pool;
2365 2366 2367 2368 2369 2370 2371
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2372
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2373 2374 2375 2376
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2377 2378

		/*
2379
		 * Leave this pool.  If keep_working() is %true, notify a
2380 2381 2382
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2383 2384
		if (keep_working(pool))
			wake_up_worker(pool);
2385

2386
		spin_unlock_irq(&pool->lock);
2387 2388
	}

2389 2390
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2391 2392
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2393 2394
}

O
Oleg Nesterov 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2406 2407 2408 2409
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2410 2411
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2412
 *
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2426 2427
 *
 * CONTEXT:
2428
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2429
 */
2430
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2431 2432
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2433
{
2434 2435 2436
	struct list_head *head;
	unsigned int linked = 0;

2437
	/*
2438
	 * debugobject calls are safe here even with pool->lock locked
2439 2440 2441 2442
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2443
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2444
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2445
	init_completion(&barr->done);
2446

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2462
	debug_work_activate(&barr->work);
2463 2464
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2465 2466
}

2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2500
{
2501 2502
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2503

2504 2505 2506
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2507
	}
2508

2509
	for_each_cwq_cpu(cpu, wq) {
2510
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2511
		struct worker_pool *pool = cwq->pool;
O
Oleg Nesterov 已提交
2512

2513
		spin_lock_irq(&pool->lock);
2514

2515 2516
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2517

2518 2519 2520 2521 2522 2523
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2524

2525 2526 2527 2528
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2529

2530
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2531
	}
2532

2533 2534
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2535

2536
	return wait;
L
Linus Torvalds 已提交
2537 2538
}

2539
/**
L
Linus Torvalds 已提交
2540
 * flush_workqueue - ensure that any scheduled work has run to completion.
2541
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2542 2543 2544 2545
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2546 2547
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2548
 */
2549
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2550
{
2551 2552 2553 2554 2555 2556
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2557

2558 2559
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2621 2622 2623 2624
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2692
}
2693
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2694

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2725
		bool drained;
2726

2727
		spin_lock_irq(&cwq->pool->lock);
2728
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2729
		spin_unlock_irq(&cwq->pool->lock);
2730 2731

		if (drained)
2732 2733 2734 2735
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2736 2737
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2748
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2749
{
2750
	struct worker *worker = NULL;
2751
	struct worker_pool *pool;
2752 2753 2754
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2755 2756
	pool = get_work_pool(work);
	if (!pool)
2757
		return false;
2758

2759
	spin_lock_irq(&pool->lock);
2760 2761 2762 2763
	/* see the comment in try_to_grab_pending() with the same code */
	cwq = get_work_cwq(work);
	if (cwq) {
		if (unlikely(cwq->pool != pool))
T
Tejun Heo 已提交
2764
			goto already_gone;
2765
	} else {
2766
		worker = find_worker_executing_work(pool, work);
2767
		if (!worker)
T
Tejun Heo 已提交
2768
			goto already_gone;
2769
		cwq = worker->current_cwq;
2770
	}
2771

2772
	insert_wq_barrier(cwq, barr, work, worker);
2773
	spin_unlock_irq(&pool->lock);
2774

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2785
	lock_map_release(&cwq->wq->lockdep_map);
2786

2787
	return true;
T
Tejun Heo 已提交
2788
already_gone:
2789
	spin_unlock_irq(&pool->lock);
2790
	return false;
2791
}
2792 2793 2794 2795 2796

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2797 2798
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2799 2800 2801 2802 2803 2804 2805 2806 2807
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2808 2809 2810
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2811
	if (start_flush_work(work, &barr)) {
2812 2813 2814
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2815
	} else {
2816
		return false;
2817 2818
	}
}
2819
EXPORT_SYMBOL_GPL(flush_work);
2820

2821
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2822
{
2823
	unsigned long flags;
2824 2825 2826
	int ret;

	do {
2827 2828 2829 2830 2831 2832
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2833
			flush_work(work);
2834 2835
	} while (unlikely(ret < 0));

2836 2837 2838 2839
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2840
	flush_work(work);
2841
	clear_work_data(work);
2842 2843 2844
	return ret;
}

2845
/**
2846 2847
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2848
 *
2849 2850 2851 2852
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2853
 *
2854 2855
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2856
 *
2857
 * The caller must ensure that the workqueue on which @work was last
2858
 * queued can't be destroyed before this function returns.
2859 2860 2861
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2862
 */
2863
bool cancel_work_sync(struct work_struct *work)
2864
{
2865
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2866
}
2867
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2868

2869
/**
2870 2871
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2872
 *
2873 2874 2875
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2876
 *
2877 2878 2879
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2880
 */
2881 2882
bool flush_delayed_work(struct delayed_work *dwork)
{
2883
	local_irq_disable();
2884
	if (del_timer_sync(&dwork->timer))
2885
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2886
	local_irq_enable();
2887 2888 2889 2890
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2891
/**
2892 2893
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2894
 *
2895 2896 2897 2898 2899
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2900
 *
2901
 * This function is safe to call from any context including IRQ handler.
2902
 */
2903
bool cancel_delayed_work(struct delayed_work *dwork)
2904
{
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2915 2916
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2917
	local_irq_restore(flags);
2918
	return ret;
2919
}
2920
EXPORT_SYMBOL(cancel_delayed_work);
2921

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2932
{
2933
	return __cancel_work_timer(&dwork->work, true);
2934
}
2935
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2936

2937
/**
2938 2939 2940 2941 2942 2943
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2944
bool schedule_work_on(int cpu, struct work_struct *work)
2945
{
2946
	return queue_work_on(cpu, system_wq, work);
2947 2948 2949
}
EXPORT_SYMBOL(schedule_work_on);

2950 2951 2952 2953
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
2954 2955
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
2956 2957 2958 2959
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
2960
 */
2961
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
2962
{
2963
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
2964
}
2965
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
2966

2967 2968 2969
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
2970
 * @dwork: job to be done
2971 2972 2973 2974 2975
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
2976 2977
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
2978
{
2979
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
2980
}
2981
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
2982

2983 2984
/**
 * schedule_delayed_work - put work task in global workqueue after delay
2985 2986
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
2987 2988 2989 2990
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
2991
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
2992
{
2993
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
2994
}
2995
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
2996

2997
/**
2998
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2999 3000
 * @func: the function to call
 *
3001 3002
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3003
 * schedule_on_each_cpu() is very slow.
3004 3005 3006
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3007
 */
3008
int schedule_on_each_cpu(work_func_t func)
3009 3010
{
	int cpu;
3011
	struct work_struct __percpu *works;
3012

3013 3014
	works = alloc_percpu(struct work_struct);
	if (!works)
3015
		return -ENOMEM;
3016

3017 3018
	get_online_cpus();

3019
	for_each_online_cpu(cpu) {
3020 3021 3022
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3023
		schedule_work_on(cpu, work);
3024
	}
3025 3026 3027 3028

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3029
	put_online_cpus();
3030
	free_percpu(works);
3031 3032 3033
	return 0;
}

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3058 3059
void flush_scheduled_work(void)
{
3060
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3061
}
3062
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3063

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3076
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3077 3078
{
	if (!in_interrupt()) {
3079
		fn(&ew->work);
3080 3081 3082
		return 0;
	}

3083
	INIT_WORK(&ew->work, fn);
3084 3085 3086 3087 3088 3089
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3090 3091
int keventd_up(void)
{
3092
	return system_wq != NULL;
L
Linus Torvalds 已提交
3093 3094
}

3095
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3096
{
3097
	/*
T
Tejun Heo 已提交
3098 3099 3100
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3101
	 */
T
Tejun Heo 已提交
3102 3103 3104
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3105

3106
	if (!(wq->flags & WQ_UNBOUND))
3107
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3108
	else {
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
3121
	}
3122

3123
	/* just in case, make sure it's actually aligned */
3124 3125
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3126 3127
}

3128
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3129
{
3130
	if (!(wq->flags & WQ_UNBOUND))
3131 3132 3133
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
3134
		kfree(*(void **)(wq->cpu_wq.single + 1));
3135
	}
T
Tejun Heo 已提交
3136 3137
}

3138 3139
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3140
{
3141 3142 3143
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3144 3145
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3146

3147
	return clamp_val(max_active, 1, lim);
3148 3149
}

3150
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3151 3152 3153
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3154
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3155
{
3156
	va_list args, args1;
L
Linus Torvalds 已提交
3157
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3158
	unsigned int cpu;
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3173

3174 3175 3176 3177 3178 3179 3180
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3181
	max_active = max_active ?: WQ_DFL_ACTIVE;
3182
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3183

3184
	/* init wq */
3185
	wq->flags = flags;
3186
	wq->saved_max_active = max_active;
3187 3188 3189 3190
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3191

3192
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3193
	INIT_LIST_HEAD(&wq->list);
3194

3195 3196 3197
	if (alloc_cwqs(wq) < 0)
		goto err;

3198
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
3199 3200
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

T
Tejun Heo 已提交
3201
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
T
Tejun Heo 已提交
3202
		cwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
3203
		cwq->wq = wq;
3204
		cwq->flush_color = -1;
3205 3206
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
3207
	}
T
Tejun Heo 已提交
3208

3209 3210 3211
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3212
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3213 3214 3215 3216 3217 3218
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3219 3220
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3221
					       wq->name);
3222 3223 3224 3225 3226
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3227 3228
	}

3229 3230 3231 3232 3233
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3234
	spin_lock(&workqueue_lock);
3235

3236
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3237
		for_each_cwq_cpu(cpu, wq)
3238 3239
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3240
	list_add(&wq->list, &workqueues);
3241

T
Tejun Heo 已提交
3242 3243
	spin_unlock(&workqueue_lock);

3244
	return wq;
T
Tejun Heo 已提交
3245 3246
err:
	if (wq) {
3247
		free_cwqs(wq);
3248
		free_mayday_mask(wq->mayday_mask);
3249
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3250 3251 3252
		kfree(wq);
	}
	return NULL;
3253
}
3254
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3255

3256 3257 3258 3259 3260 3261 3262 3263
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3264
	unsigned int cpu;
3265

3266 3267
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3268

3269 3270 3271 3272
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3273
	spin_lock(&workqueue_lock);
3274
	list_del(&wq->list);
3275
	spin_unlock(&workqueue_lock);
3276

3277
	/* sanity check */
3278
	for_each_cwq_cpu(cpu, wq) {
3279 3280 3281 3282 3283
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3284 3285
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3286
	}
3287

3288 3289
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3290
		free_mayday_mask(wq->mayday_mask);
3291
		kfree(wq->rescuer);
3292 3293
	}

3294
	free_cwqs(wq);
3295 3296 3297 3298
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3299 3300 3301 3302 3303 3304 3305 3306 3307
/**
 * cwq_set_max_active - adjust max_active of a cwq
 * @cwq: target cpu_workqueue_struct
 * @max_active: new max_active value.
 *
 * Set @cwq->max_active to @max_active and activate delayed works if
 * increased.
 *
 * CONTEXT:
3308
 * spin_lock_irq(pool->lock).
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
 */
static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
{
	cwq->max_active = max_active;

	while (!list_empty(&cwq->delayed_works) &&
	       cwq->nr_active < cwq->max_active)
		cwq_activate_first_delayed(cwq);
}

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3333
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3334 3335 3336 3337 3338

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3339
	for_each_cwq_cpu(cpu, wq) {
3340 3341
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		struct worker_pool *pool = cwq->pool;
3342

3343
		spin_lock_irq(&pool->lock);
3344

3345
		if (!(wq->flags & WQ_FREEZABLE) ||
3346 3347
		    !(pool->flags & POOL_FREEZING))
			cwq_set_max_active(cwq, max_active);
3348

3349
		spin_unlock_irq(&pool->lock);
3350
	}
3351

3352
	spin_unlock(&workqueue_lock);
3353
}
3354
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3355

3356
/**
3357 3358 3359
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3360
 *
3361 3362 3363
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3364
 *
3365 3366
 * RETURNS:
 * %true if congested, %false otherwise.
3367
 */
3368
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3369
{
3370 3371 3372
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3373
}
3374
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3375

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3388
{
3389
	struct worker_pool *pool = get_work_pool(work);
3390 3391
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3392

3393 3394
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
3395

3396 3397 3398 3399 3400 3401
	if (pool) {
		spin_lock_irqsave(&pool->lock, flags);
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
		spin_unlock_irqrestore(&pool->lock, flags);
	}
L
Linus Torvalds 已提交
3402

3403
	return ret;
L
Linus Torvalds 已提交
3404
}
3405
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3406

3407 3408 3409
/*
 * CPU hotplug.
 *
3410 3411
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
3412
 * pool which make migrating pending and scheduled works very
3413
 * difficult to implement without impacting hot paths.  Secondly,
3414
 * worker pools serve mix of short, long and very long running works making
3415 3416
 * blocked draining impractical.
 *
3417
 * This is solved by allowing the pools to be disassociated from the CPU
3418 3419
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3420
 */
L
Linus Torvalds 已提交
3421

3422
static void wq_unbind_fn(struct work_struct *work)
3423
{
3424
	int cpu = smp_processor_id();
3425
	struct worker_pool *pool;
3426 3427 3428
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3429

3430 3431
	for_each_std_worker_pool(pool, cpu) {
		BUG_ON(cpu != smp_processor_id());
3432

3433 3434
		mutex_lock(&pool->assoc_mutex);
		spin_lock_irq(&pool->lock);
3435

3436 3437 3438 3439 3440 3441 3442
		/*
		 * We've claimed all manager positions.  Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
3443
		list_for_each_entry(worker, &pool->idle_list, entry)
3444
			worker->flags |= WORKER_UNBOUND;
3445

3446 3447
		for_each_busy_worker(worker, i, pos, pool)
			worker->flags |= WORKER_UNBOUND;
3448

3449
		pool->flags |= POOL_DISASSOCIATED;
3450

3451 3452 3453
		spin_unlock_irq(&pool->lock);
		mutex_unlock(&pool->assoc_mutex);
	}
3454

3455
	/*
3456
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3457 3458
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3459 3460
	 */
	schedule();
3461

3462
	/*
3463 3464
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
3465 3466 3467
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
3468 3469 3470 3471
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3472
	 */
3473
	for_each_std_worker_pool(pool, cpu)
3474
		atomic_set(&pool->nr_running, 0);
3475 3476
}

T
Tejun Heo 已提交
3477 3478 3479 3480
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3481
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3482 3483
					       unsigned long action,
					       void *hcpu)
3484 3485
{
	unsigned int cpu = (unsigned long)hcpu;
3486
	struct worker_pool *pool;
3487

T
Tejun Heo 已提交
3488
	switch (action & ~CPU_TASKS_FROZEN) {
3489
	case CPU_UP_PREPARE:
3490
		for_each_std_worker_pool(pool, cpu) {
3491 3492 3493 3494 3495 3496 3497 3498 3499
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

3500
			spin_lock_irq(&pool->lock);
3501
			start_worker(worker);
3502
			spin_unlock_irq(&pool->lock);
3503
		}
T
Tejun Heo 已提交
3504
		break;
3505

3506 3507
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3508
		for_each_std_worker_pool(pool, cpu) {
3509 3510 3511
			mutex_lock(&pool->assoc_mutex);
			spin_lock_irq(&pool->lock);

3512
			pool->flags &= ~POOL_DISASSOCIATED;
3513 3514 3515 3516 3517
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
			mutex_unlock(&pool->assoc_mutex);
		}
3518
		break;
3519
	}
3520 3521 3522 3523 3524 3525 3526
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3527
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3528 3529 3530
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3531 3532 3533
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3534 3535
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3536
		/* unbinding should happen on the local CPU */
3537
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3538
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3539 3540
		flush_work(&unbind_work);
		break;
3541 3542 3543 3544
	}
	return NOTIFY_OK;
}

3545
#ifdef CONFIG_SMP
3546

3547
struct work_for_cpu {
3548
	struct work_struct work;
3549 3550 3551 3552 3553
	long (*fn)(void *);
	void *arg;
	long ret;
};

3554
static void work_for_cpu_fn(struct work_struct *work)
3555
{
3556 3557
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3558 3559 3560 3561 3562 3563 3564 3565 3566
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3567 3568
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3569
 * The caller must not hold any locks which would prevent @fn from completing.
3570 3571 3572
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3573
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3574

3575 3576 3577
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3578 3579 3580 3581 3582
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3583 3584 3585 3586 3587
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3588 3589
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
3590
 * pool->worklist.
3591 3592
 *
 * CONTEXT:
3593
 * Grabs and releases workqueue_lock and pool->lock's.
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3604
	for_each_wq_cpu(cpu) {
3605
		struct worker_pool *pool;
3606
		struct workqueue_struct *wq;
3607

3608
		for_each_std_worker_pool(pool, cpu) {
3609
			spin_lock_irq(&pool->lock);
3610

3611 3612
			WARN_ON_ONCE(pool->flags & POOL_FREEZING);
			pool->flags |= POOL_FREEZING;
3613

3614 3615
			list_for_each_entry(wq, &workqueues, list) {
				struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3616

3617 3618 3619 3620
				if (cwq && cwq->pool == pool &&
				    (wq->flags & WQ_FREEZABLE))
					cwq->max_active = 0;
			}
3621

3622 3623
			spin_unlock_irq(&pool->lock);
		}
3624 3625 3626 3627 3628 3629
	}

	spin_unlock(&workqueue_lock);
}

/**
3630
 * freeze_workqueues_busy - are freezable workqueues still busy?
3631 3632 3633 3634 3635 3636 3637 3638
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3639 3640
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3651
	for_each_wq_cpu(cpu) {
3652
		struct workqueue_struct *wq;
3653 3654 3655 3656 3657 3658 3659
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3660
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3679
 * frozen works are transferred to their respective pool worklists.
3680 3681
 *
 * CONTEXT:
3682
 * Grabs and releases workqueue_lock and pool->lock's.
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3693
	for_each_wq_cpu(cpu) {
3694
		struct worker_pool *pool;
3695
		struct workqueue_struct *wq;
3696

3697
		for_each_std_worker_pool(pool, cpu) {
3698
			spin_lock_irq(&pool->lock);
3699

3700 3701
			WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
			pool->flags &= ~POOL_FREEZING;
3702

3703 3704
			list_for_each_entry(wq, &workqueues, list) {
				struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3705

3706 3707 3708
				if (!cwq || cwq->pool != pool ||
				    !(wq->flags & WQ_FREEZABLE))
					continue;
3709

3710 3711 3712
				/* restore max_active and repopulate worklist */
				cwq_set_max_active(cwq, wq->saved_max_active);
			}
3713

3714
			wake_up_worker(pool);
3715 3716

			spin_unlock_irq(&pool->lock);
3717
		}
3718 3719 3720 3721 3722 3723 3724 3725
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3726
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3727
{
T
Tejun Heo 已提交
3728 3729
	unsigned int cpu;

3730 3731
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3732
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
3733

3734
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3735
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3736

3737 3738
	/* initialize CPU pools */
	for_each_wq_cpu(cpu) {
3739
		struct worker_pool *pool;
3740

3741
		for_each_std_worker_pool(pool, cpu) {
3742
			spin_lock_init(&pool->lock);
3743
			pool->cpu = cpu;
3744
			pool->flags |= POOL_DISASSOCIATED;
3745 3746
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3747
			hash_init(pool->busy_hash);
3748

3749 3750 3751
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3752

3753
			setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3754 3755
				    (unsigned long)pool);

3756
			mutex_init(&pool->assoc_mutex);
3757
			ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3758 3759 3760

			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
3761
		}
3762 3763
	}

3764
	/* create the initial worker */
3765
	for_each_online_wq_cpu(cpu) {
3766
		struct worker_pool *pool;
3767

3768
		for_each_std_worker_pool(pool, cpu) {
3769 3770
			struct worker *worker;

3771 3772 3773
			if (cpu != WORK_CPU_UNBOUND)
				pool->flags &= ~POOL_DISASSOCIATED;

3774
			worker = create_worker(pool);
3775
			BUG_ON(!worker);
3776
			spin_lock_irq(&pool->lock);
3777
			start_worker(worker);
3778
			spin_unlock_irq(&pool->lock);
3779
		}
3780 3781
	}

3782
	system_wq = alloc_workqueue("events", 0, 0);
3783
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3784
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3785 3786
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3787 3788
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3789
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3790
	       !system_unbound_wq || !system_freezable_wq);
3791
	return 0;
L
Linus Torvalds 已提交
3792
}
3793
early_initcall(init_workqueues);