workqueue.c 104.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/hashtable.h>
45
#include <linux/rculist.h>
46

47
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
48

T
Tejun Heo 已提交
49
enum {
50 51
	/*
	 * worker_pool flags
52
	 *
53
	 * A bound pool is either associated or disassociated with its CPU.
54 55 56 57 58 59
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
60
	 * be executing on any CPU.  The pool behaves as an unbound one.
61 62
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
63 64
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
65
	 */
66
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
67
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
68
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
69
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
70

T
Tejun Heo 已提交
71 72 73 74
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
75
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
76
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78

79
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
80
				  WORKER_CPU_INTENSIVE,
81

82
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
83

T
Tejun Heo 已提交
84
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
85

86 87 88
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

89 90 91
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
92 93 94 95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
100
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
101
};
L
Linus Torvalds 已提交
102 103

/*
T
Tejun Heo 已提交
104 105
 * Structure fields follow one of the following exclusion rules.
 *
106 107
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
108
 *
109 110 111
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
112
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
113
 *
114 115 116 117
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
118
 *
119 120
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
121
 * W: workqueue_lock protected.
122 123
 *
 * R: workqueue_lock protected for writes.  Sched-RCU protected for reads.
L
Linus Torvalds 已提交
124 125
 */

126
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
127

128
struct worker_pool {
129
	spinlock_t		lock;		/* the pool lock */
130
	int			cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
131
	int			id;		/* I: pool ID */
132
	unsigned int		flags;		/* X: flags */
133 134 135

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
136 137

	/* nr_idle includes the ones off idle_list for rebinding */
138 139 140 141 142 143
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

144 145 146 147
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

148
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
149
	struct ida		worker_ida;	/* L: for worker IDs */
150 151 152 153 154 155 156

	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
157 158
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
159
/*
160 161 162 163
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
164
 */
165
struct pool_workqueue {
166
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
167
	struct workqueue_struct *wq;		/* I: the owning workqueue */
168 169 170 171
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
172
	int			nr_active;	/* L: nr of active works */
173
	int			max_active;	/* L: max active works */
174
	struct list_head	delayed_works;	/* L: delayed works */
175
	struct list_head	pwqs_node;	/* R: node on wq->pwqs */
176
	struct list_head	mayday_node;	/* W: node on wq->maydays */
177
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
178

179 180 181 182 183 184 185 186 187
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

L
Linus Torvalds 已提交
188 189 190 191 192
/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
193
	unsigned int		flags;		/* W: WQ_* flags */
194
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
195
	struct list_head	pwqs;		/* R: all pwqs of this wq */
T
Tejun Heo 已提交
196
	struct list_head	list;		/* W: list of all workqueues */
197 198 199 200

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
201
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
202 203 204 205
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

206
	struct list_head	maydays;	/* W: pwqs requesting rescue */
207 208
	struct worker		*rescuer;	/* I: rescue worker */

209
	int			nr_drainers;	/* W: drain in progress */
210
	int			saved_max_active; /* W: saved pwq max_active */
211
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
212
	struct lockdep_map	lockdep_map;
213
#endif
214
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
215 216
};

217 218
static struct kmem_cache *pwq_cache;

219 220
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
221
struct workqueue_struct *system_highpri_wq __read_mostly;
222
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
223
struct workqueue_struct *system_long_wq __read_mostly;
224
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
225
struct workqueue_struct *system_unbound_wq __read_mostly;
226
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
227
struct workqueue_struct *system_freezable_wq __read_mostly;
228
EXPORT_SYMBOL_GPL(system_freezable_wq);
229

230 231 232
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

233 234 235 236 237
#define assert_rcu_or_wq_lock()						\
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
			   lockdep_is_held(&workqueue_lock),		\
			   "sched RCU or workqueue lock should be held")

238
#define for_each_std_worker_pool(pool, cpu)				\
T
Tejun Heo 已提交
239 240
	for ((pool) = &std_worker_pools(cpu)[0];			\
	     (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
241

242 243
#define for_each_busy_worker(worker, i, pool)				\
	hash_for_each(pool->busy_hash, i, worker, hentry)
244

245 246
static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				unsigned int sw)
247 248 249 250 251 252 253 254 255 256
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
257
	return WORK_CPU_END;
258 259
}

260 261 262
/*
 * CPU iterators
 *
263
 * An extra cpu number is defined using an invalid cpu number
264
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
265 266
 * specific CPU.  The following iterators are similar to for_each_*_cpu()
 * iterators but also considers the unbound CPU.
267
 *
268 269
 * for_each_wq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_wq_cpu()	: online CPUs + WORK_CPU_UNBOUND
270
 */
271 272
#define for_each_wq_cpu(cpu)						\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3);		\
273
	     (cpu) < WORK_CPU_END;					\
274
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
275

276 277
#define for_each_online_wq_cpu(cpu)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3);		\
278
	     (cpu) < WORK_CPU_END;					\
279
	     (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
280

T
Tejun Heo 已提交
281 282 283 284 285 286 287 288
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
 * @id: integer used for iteration
 */
#define for_each_pool(pool, id)						\
	idr_for_each_entry(&worker_pool_idr, pool, id)

289 290 291 292
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
293 294 295 296 297 298 299
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pwq needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pwq stays online.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
300 301
 */
#define for_each_pwq(pwq, wq)						\
302 303 304
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
		if (({ assert_rcu_or_wq_lock(); false; })) { }		\
		else
305

306 307 308 309
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

310 311 312 313 314
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
350
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
386
	.debug_hint	= work_debug_hint,
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

422 423
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
424
static LIST_HEAD(workqueues);
425
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
426

427
/*
428 429
 * The CPU and unbound standard worker pools.  The unbound ones have
 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
430
 */
431 432
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_std_worker_pools);
T
Tejun Heo 已提交
433
static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
434

T
Tejun Heo 已提交
435 436 437 438
/* idr of all pools */
static DEFINE_MUTEX(worker_pool_idr_mutex);
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
439
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
440

T
Tejun Heo 已提交
441
static struct worker_pool *std_worker_pools(int cpu)
442
{
443
	if (cpu != WORK_CPU_UNBOUND)
T
Tejun Heo 已提交
444
		return per_cpu(cpu_std_worker_pools, cpu);
445
	else
T
Tejun Heo 已提交
446
		return unbound_std_worker_pools;
447 448
}

T
Tejun Heo 已提交
449 450
static int std_worker_pool_pri(struct worker_pool *pool)
{
T
Tejun Heo 已提交
451
	return pool - std_worker_pools(pool->cpu);
T
Tejun Heo 已提交
452 453
}

T
Tejun Heo 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

	mutex_lock(&worker_pool_idr_mutex);
	idr_pre_get(&worker_pool_idr, GFP_KERNEL);
	ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	mutex_unlock(&worker_pool_idr_mutex);

	return ret;
}

467 468 469 470 471 472 473 474 475
/*
 * Lookup worker_pool by id.  The idr currently is built during boot and
 * never modified.  Don't worry about locking for now.
 */
static struct worker_pool *worker_pool_by_id(int pool_id)
{
	return idr_find(&worker_pool_idr, pool_id);
}

476 477
static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
{
T
Tejun Heo 已提交
478
	struct worker_pool *pools = std_worker_pools(cpu);
479

T
Tejun Heo 已提交
480
	return &pools[highpri];
481 482
}

483 484 485 486 487 488 489 490
/**
 * first_pwq - return the first pool_workqueue of the specified workqueue
 * @wq: the target workqueue
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pwq needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pwq stays online.
 */
491
static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
492
{
493 494 495
	assert_rcu_or_wq_lock();
	return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
				      pwqs_node);
496 497
}

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
513

514
/*
515 516
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
517
 * is cleared and the high bits contain OFFQ flags and pool ID.
518
 *
519 520
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
521 522
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
523
 *
524
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
525
 * corresponding to a work.  Pool is available once the work has been
526
 * queued anywhere after initialization until it is sync canceled.  pwq is
527
 * available only while the work item is queued.
528
 *
529 530 531 532
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
533
 */
534 535
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
536
{
537
	WARN_ON_ONCE(!work_pending(work));
538 539
	atomic_long_set(&work->data, data | flags | work_static(work));
}
540

541
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
542 543
			 unsigned long extra_flags)
{
544 545
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
546 547
}

548 549 550 551 552 553 554
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

555 556
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
557
{
558 559 560 561 562 563 564
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
565
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
566
}
567

568
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
569
{
570 571
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
572 573
}

574
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
575
{
576
	unsigned long data = atomic_long_read(&work->data);
577

578
	if (data & WORK_STRUCT_PWQ)
579 580 581
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
582 583
}

584 585 586 587 588 589 590
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
591
{
592
	unsigned long data = atomic_long_read(&work->data);
593 594
	struct worker_pool *pool;
	int pool_id;
595

596 597
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
598
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
599

600 601
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
602 603
		return NULL;

604 605 606 607 608 609 610 611 612 613 614 615 616 617
	pool = worker_pool_by_id(pool_id);
	WARN_ON_ONCE(!pool);
	return pool;
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
618 619
	unsigned long data = atomic_long_read(&work->data);

620 621
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
622
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
623

624
	return data >> WORK_OFFQ_POOL_SHIFT;
625 626
}

627 628
static void mark_work_canceling(struct work_struct *work)
{
629
	unsigned long pool_id = get_work_pool_id(work);
630

631 632
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
633 634 635 636 637 638
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

639
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
640 641
}

642
/*
643 644
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
645
 * they're being called with pool->lock held.
646 647
 */

648
static bool __need_more_worker(struct worker_pool *pool)
649
{
650
	return !atomic_read(&pool->nr_running);
651 652
}

653
/*
654 655
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
656 657
 *
 * Note that, because unbound workers never contribute to nr_running, this
658
 * function will always return %true for unbound pools as long as the
659
 * worklist isn't empty.
660
 */
661
static bool need_more_worker(struct worker_pool *pool)
662
{
663
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
664
}
665

666
/* Can I start working?  Called from busy but !running workers. */
667
static bool may_start_working(struct worker_pool *pool)
668
{
669
	return pool->nr_idle;
670 671 672
}

/* Do I need to keep working?  Called from currently running workers. */
673
static bool keep_working(struct worker_pool *pool)
674
{
675 676
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
677 678 679
}

/* Do we need a new worker?  Called from manager. */
680
static bool need_to_create_worker(struct worker_pool *pool)
681
{
682
	return need_more_worker(pool) && !may_start_working(pool);
683
}
684

685
/* Do I need to be the manager? */
686
static bool need_to_manage_workers(struct worker_pool *pool)
687
{
688
	return need_to_create_worker(pool) ||
689
		(pool->flags & POOL_MANAGE_WORKERS);
690 691 692
}

/* Do we have too many workers and should some go away? */
693
static bool too_many_workers(struct worker_pool *pool)
694
{
695
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
696 697
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
698

699 700 701 702 703 704 705
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

706
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
707 708
}

709
/*
710 711 712
 * Wake up functions.
 */

713
/* Return the first worker.  Safe with preemption disabled */
714
static struct worker *first_worker(struct worker_pool *pool)
715
{
716
	if (unlikely(list_empty(&pool->idle_list)))
717 718
		return NULL;

719
	return list_first_entry(&pool->idle_list, struct worker, entry);
720 721 722 723
}

/**
 * wake_up_worker - wake up an idle worker
724
 * @pool: worker pool to wake worker from
725
 *
726
 * Wake up the first idle worker of @pool.
727 728
 *
 * CONTEXT:
729
 * spin_lock_irq(pool->lock).
730
 */
731
static void wake_up_worker(struct worker_pool *pool)
732
{
733
	struct worker *worker = first_worker(pool);
734 735 736 737 738

	if (likely(worker))
		wake_up_process(worker->task);
}

739
/**
740 741 742 743 744 745 746 747 748 749
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
750
void wq_worker_waking_up(struct task_struct *task, int cpu)
751 752 753
{
	struct worker *worker = kthread_data(task);

754
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
755
		WARN_ON_ONCE(worker->pool->cpu != cpu);
756
		atomic_inc(&worker->pool->nr_running);
757
	}
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
775
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
776 777
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
778
	struct worker_pool *pool;
779

780 781 782 783 784
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
785
	if (worker->flags & WORKER_NOT_RUNNING)
786 787
		return NULL;

788 789
	pool = worker->pool;

790
	/* this can only happen on the local cpu */
791 792
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
793 794 795 796 797 798

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
799 800 801
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
802
	 * manipulating idle_list, so dereferencing idle_list without pool
803
	 * lock is safe.
804
	 */
805 806
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
807
		to_wakeup = first_worker(pool);
808 809 810 811 812
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
813
 * @worker: self
814 815 816
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
817 818 819
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
820
 *
821
 * CONTEXT:
822
 * spin_lock_irq(pool->lock)
823 824 825 826
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
827
	struct worker_pool *pool = worker->pool;
828

829 830
	WARN_ON_ONCE(worker->task != current);

831 832 833 834 835 836 837 838
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
839
			if (atomic_dec_and_test(&pool->nr_running) &&
840
			    !list_empty(&pool->worklist))
841
				wake_up_worker(pool);
842
		} else
843
			atomic_dec(&pool->nr_running);
844 845
	}

846 847 848 849
	worker->flags |= flags;
}

/**
850
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
851
 * @worker: self
852 853
 * @flags: flags to clear
 *
854
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
855
 *
856
 * CONTEXT:
857
 * spin_lock_irq(pool->lock)
858 859 860
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
861
	struct worker_pool *pool = worker->pool;
862 863
	unsigned int oflags = worker->flags;

864 865
	WARN_ON_ONCE(worker->task != current);

866
	worker->flags &= ~flags;
867

868 869 870 871 872
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
873 874
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
875
			atomic_inc(&pool->nr_running);
876 877
}

878 879
/**
 * find_worker_executing_work - find worker which is executing a work
880
 * @pool: pool of interest
881 882
 * @work: work to find worker for
 *
883 884
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
904 905
 *
 * CONTEXT:
906
 * spin_lock_irq(pool->lock).
907 908 909 910
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
911
 */
912
static struct worker *find_worker_executing_work(struct worker_pool *pool,
913
						 struct work_struct *work)
914
{
915 916
	struct worker *worker;

917
	hash_for_each_possible(pool->busy_hash, worker, hentry,
918 919 920
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
921 922 923
			return worker;

	return NULL;
924 925
}

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
941
 * spin_lock_irq(pool->lock).
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

967
static void pwq_activate_delayed_work(struct work_struct *work)
968
{
969
	struct pool_workqueue *pwq = get_work_pwq(work);
970 971

	trace_workqueue_activate_work(work);
972
	move_linked_works(work, &pwq->pool->worklist, NULL);
973
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
974
	pwq->nr_active++;
975 976
}

977
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
978
{
979
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
980 981
						    struct work_struct, entry);

982
	pwq_activate_delayed_work(work);
983 984
}

985
/**
986 987
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
988 989 990
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
991
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
992 993
 *
 * CONTEXT:
994
 * spin_lock_irq(pool->lock).
995
 */
996
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
997 998 999 1000 1001
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

1002
	pwq->nr_in_flight[color]--;
1003

1004 1005
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1006
		/* one down, submit a delayed one */
1007 1008
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1009 1010 1011
	}

	/* is flush in progress and are we at the flushing tip? */
1012
	if (likely(pwq->flush_color != color))
1013 1014 1015
		return;

	/* are there still in-flight works? */
1016
	if (pwq->nr_in_flight[color])
1017 1018
		return;

1019 1020
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1021 1022

	/*
1023
	 * If this was the last pwq, wake up the first flusher.  It
1024 1025
	 * will handle the rest.
	 */
1026 1027
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
1028 1029
}

1030
/**
1031
 * try_to_grab_pending - steal work item from worklist and disable irq
1032 1033
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1034
 * @flags: place to store irq state
1035 1036 1037 1038 1039 1040 1041
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1042 1043
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1044
 *
1045
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1046 1047 1048
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1049 1050 1051 1052
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1053
 * This function is safe to call from any context including IRQ handler.
1054
 */
1055 1056
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1057
{
1058
	struct worker_pool *pool;
1059
	struct pool_workqueue *pwq;
1060

1061 1062
	local_irq_save(*flags);

1063 1064 1065 1066
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1067 1068 1069 1070 1071
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1072 1073 1074 1075 1076
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1077 1078 1079 1080 1081 1082 1083
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1084 1085
	pool = get_work_pool(work);
	if (!pool)
1086
		goto fail;
1087

1088
	spin_lock(&pool->lock);
1089
	/*
1090 1091 1092 1093 1094
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1095 1096
	 * item is currently queued on that pool.
	 */
1097 1098
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1099 1100 1101 1102 1103
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1104
		 * on the delayed_list, will confuse pwq->nr_active
1105 1106 1107 1108
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1109
			pwq_activate_delayed_work(work);
1110 1111

		list_del_init(&work->entry);
1112
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1113

1114
		/* work->data points to pwq iff queued, point to pool */
1115 1116 1117 1118
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1119
	}
1120
	spin_unlock(&pool->lock);
1121 1122 1123 1124 1125
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1126
	return -EAGAIN;
1127 1128
}

T
Tejun Heo 已提交
1129
/**
1130
 * insert_work - insert a work into a pool
1131
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1132 1133 1134 1135
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1136
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1137
 * work_struct flags.
T
Tejun Heo 已提交
1138 1139
 *
 * CONTEXT:
1140
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1141
 */
1142 1143
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1144
{
1145
	struct worker_pool *pool = pwq->pool;
1146

T
Tejun Heo 已提交
1147
	/* we own @work, set data and link */
1148
	set_work_pwq(work, pwq, extra_flags);
1149
	list_add_tail(&work->entry, head);
1150 1151 1152 1153 1154 1155 1156 1157

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1158 1159
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1160 1161
}

1162 1163
/*
 * Test whether @work is being queued from another work executing on the
1164
 * same workqueue.
1165 1166 1167
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1168 1169 1170 1171 1172 1173 1174
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1175
	return worker && worker->current_pwq->wq == wq;
1176 1177
}

1178
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1179 1180
			 struct work_struct *work)
{
1181
	struct pool_workqueue *pwq;
1182
	struct list_head *worklist;
1183
	unsigned int work_flags;
1184
	unsigned int req_cpu = cpu;
1185 1186 1187 1188 1189 1190 1191 1192

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1193

1194
	debug_work_activate(work);
1195

1196
	/* if dying, only works from the same workqueue are allowed */
1197
	if (unlikely(wq->flags & WQ_DRAINING) &&
1198
	    WARN_ON_ONCE(!is_chained_work(wq)))
1199 1200
		return;

1201
	/* determine the pwq to use */
1202
	if (!(wq->flags & WQ_UNBOUND)) {
1203
		struct worker_pool *last_pool;
1204

1205
		if (cpu == WORK_CPU_UNBOUND)
1206 1207
			cpu = raw_smp_processor_id();

1208
		/*
1209 1210 1211 1212
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1213
		 */
1214
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1215
		last_pool = get_work_pool(work);
1216

1217
		if (last_pool && last_pool != pwq->pool) {
1218 1219
			struct worker *worker;

1220
			spin_lock(&last_pool->lock);
1221

1222
			worker = find_worker_executing_work(last_pool, work);
1223

1224
			if (worker && worker->current_pwq->wq == wq) {
1225
				pwq = per_cpu_ptr(wq->cpu_pwqs, last_pool->cpu);
1226
			} else {
1227
				/* meh... not running there, queue here */
1228
				spin_unlock(&last_pool->lock);
1229
				spin_lock(&pwq->pool->lock);
1230
			}
1231
		} else {
1232
			spin_lock(&pwq->pool->lock);
1233
		}
1234
	} else {
1235
		pwq = first_pwq(wq);
1236
		spin_lock(&pwq->pool->lock);
1237 1238
	}

1239 1240
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1241

1242
	if (WARN_ON(!list_empty(&work->entry))) {
1243
		spin_unlock(&pwq->pool->lock);
1244 1245
		return;
	}
1246

1247 1248
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1249

1250
	if (likely(pwq->nr_active < pwq->max_active)) {
1251
		trace_workqueue_activate_work(work);
1252 1253
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1254 1255
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1256
		worklist = &pwq->delayed_works;
1257
	}
1258

1259
	insert_work(pwq, work, worklist, work_flags);
1260

1261
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1262 1263
}

1264
/**
1265 1266
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1267 1268 1269
 * @wq: workqueue to use
 * @work: work to queue
 *
1270
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1271
 *
1272 1273
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1274
 */
1275 1276
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1277
{
1278
	bool ret = false;
1279
	unsigned long flags;
1280

1281
	local_irq_save(flags);
1282

1283
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1284
		__queue_work(cpu, wq, work);
1285
		ret = true;
1286
	}
1287

1288
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1289 1290
	return ret;
}
1291
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1292

1293
/**
1294
 * queue_work - queue work on a workqueue
1295 1296 1297
 * @wq: workqueue to use
 * @work: work to queue
 *
1298
 * Returns %false if @work was already on a queue, %true otherwise.
1299
 *
1300 1301
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1302
 */
1303
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1304
{
1305
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1306
}
1307
EXPORT_SYMBOL_GPL(queue_work);
1308

1309
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1310
{
1311
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1312

1313
	/* should have been called from irqsafe timer with irq already off */
1314
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1315
}
1316
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1317

1318 1319
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1320
{
1321 1322 1323 1324 1325
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1326 1327
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1328

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1340
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1341

1342
	dwork->wq = wq;
1343
	dwork->cpu = cpu;
1344 1345 1346 1347 1348 1349
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1350 1351
}

1352 1353 1354 1355
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1356
 * @dwork: work to queue
1357 1358
 * @delay: number of jiffies to wait before queueing
 *
1359 1360 1361
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1362
 */
1363 1364
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1365
{
1366
	struct work_struct *work = &dwork->work;
1367
	bool ret = false;
1368
	unsigned long flags;
1369

1370 1371
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1372

1373
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1374
		__queue_delayed_work(cpu, wq, dwork, delay);
1375
		ret = true;
1376
	}
1377

1378
	local_irq_restore(flags);
1379 1380
	return ret;
}
1381
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1382

1383 1384 1385 1386 1387 1388
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1389
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1390
 */
1391
bool queue_delayed_work(struct workqueue_struct *wq,
1392 1393
			struct delayed_work *dwork, unsigned long delay)
{
1394
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1395 1396
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1397

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1413
 * This function is safe to call from any context including IRQ handler.
1414 1415 1416 1417 1418 1419 1420
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1421

1422 1423 1424
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1425

1426 1427 1428
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1429
	}
1430 1431

	/* -ENOENT from try_to_grab_pending() becomes %true */
1432 1433
	return ret;
}
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1450

T
Tejun Heo 已提交
1451 1452 1453 1454 1455 1456 1457 1458
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1459
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1460 1461
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1462
{
1463
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1464

1465 1466 1467 1468
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1469

1470 1471
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1472
	pool->nr_idle++;
1473
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1474 1475

	/* idle_list is LIFO */
1476
	list_add(&worker->entry, &pool->idle_list);
1477

1478 1479
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1480

1481
	/*
1482
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1483
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1484 1485
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1486
	 */
1487
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1488
		     pool->nr_workers == pool->nr_idle &&
1489
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1499
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1500 1501 1502
 */
static void worker_leave_idle(struct worker *worker)
{
1503
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1504

1505 1506
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1507
	worker_clr_flags(worker, WORKER_IDLE);
1508
	pool->nr_idle--;
T
Tejun Heo 已提交
1509 1510 1511
	list_del_init(&worker->entry);
}

1512
/**
1513 1514 1515 1516
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1517 1518 1519 1520 1521 1522
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1523
 * This function is to be used by unbound workers and rescuers to bind
1524 1525 1526
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1527
 * verbatim as it's best effort and blocking and pool may be
1528 1529
 * [dis]associated in the meantime.
 *
1530
 * This function tries set_cpus_allowed() and locks pool and verifies the
1531
 * binding against %POOL_DISASSOCIATED which is set during
1532 1533 1534
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1535 1536
 *
 * CONTEXT:
1537
 * Might sleep.  Called without any lock but returns with pool->lock
1538 1539 1540
 * held.
 *
 * RETURNS:
1541
 * %true if the associated pool is online (@worker is successfully
1542 1543
 * bound), %false if offline.
 */
1544
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1545
__acquires(&pool->lock)
1546 1547
{
	while (true) {
1548
		/*
1549 1550 1551
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1552
		 * against POOL_DISASSOCIATED.
1553
		 */
1554
		if (!(pool->flags & POOL_DISASSOCIATED))
1555
			set_cpus_allowed_ptr(current, get_cpu_mask(pool->cpu));
1556

1557
		spin_lock_irq(&pool->lock);
1558
		if (pool->flags & POOL_DISASSOCIATED)
1559
			return false;
1560
		if (task_cpu(current) == pool->cpu &&
1561
		    cpumask_equal(&current->cpus_allowed,
1562
				  get_cpu_mask(pool->cpu)))
1563
			return true;
1564
		spin_unlock_irq(&pool->lock);
1565

1566 1567 1568 1569 1570 1571
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1572
		cpu_relax();
1573
		cond_resched();
1574 1575 1576
	}
}

1577
/*
1578
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1579
 * list_empty(@worker->entry) before leaving idle and call this function.
1580 1581 1582
 */
static void idle_worker_rebind(struct worker *worker)
{
1583
	/* CPU may go down again inbetween, clear UNBOUND only on success */
1584
	if (worker_maybe_bind_and_lock(worker->pool))
1585
		worker_clr_flags(worker, WORKER_UNBOUND);
1586

1587 1588
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1589
	spin_unlock_irq(&worker->pool->lock);
1590 1591
}

1592
/*
1593
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1594 1595 1596
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1597
 */
1598
static void busy_worker_rebind_fn(struct work_struct *work)
1599 1600 1601
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1602
	if (worker_maybe_bind_and_lock(worker->pool))
1603
		worker_clr_flags(worker, WORKER_UNBOUND);
1604

1605
	spin_unlock_irq(&worker->pool->lock);
1606 1607
}

1608
/**
1609 1610
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1611
 *
1612
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1613 1614
 * is different for idle and busy ones.
 *
1615 1616 1617 1618
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1619
 *
1620 1621 1622 1623
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1624
 *
1625 1626 1627 1628
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1629
 */
1630
static void rebind_workers(struct worker_pool *pool)
1631
{
1632
	struct worker *worker, *n;
1633 1634
	int i;

1635 1636
	lockdep_assert_held(&pool->assoc_mutex);
	lockdep_assert_held(&pool->lock);
1637

1638
	/* dequeue and kick idle ones */
1639 1640 1641 1642 1643 1644
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1645

1646 1647 1648 1649 1650 1651
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1652

1653
	/* rebind busy workers */
1654
	for_each_busy_worker(worker, i, pool) {
1655 1656
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1657

1658 1659 1660
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1661

1662
		debug_work_activate(rebind_work);
1663

1664 1665
		/*
		 * wq doesn't really matter but let's keep @worker->pool
1666
		 * and @pwq->pool consistent for sanity.
1667 1668 1669 1670 1671 1672
		 */
		if (std_worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;

1673
		insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
1674 1675
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1676
	}
1677 1678
}

T
Tejun Heo 已提交
1679 1680 1681 1682 1683
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1684 1685
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1686
		INIT_LIST_HEAD(&worker->scheduled);
1687
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1688 1689
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1690
	}
T
Tejun Heo 已提交
1691 1692 1693 1694 1695
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1696
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1697
 *
1698
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1708
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1709
{
1710
	const char *pri = std_worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1711
	struct worker *worker = NULL;
1712
	int id = -1;
T
Tejun Heo 已提交
1713

1714
	spin_lock_irq(&pool->lock);
1715
	while (ida_get_new(&pool->worker_ida, &id)) {
1716
		spin_unlock_irq(&pool->lock);
1717
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1718
			goto fail;
1719
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1720
	}
1721
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1722 1723 1724 1725 1726

	worker = alloc_worker();
	if (!worker)
		goto fail;

1727
	worker->pool = pool;
T
Tejun Heo 已提交
1728 1729
	worker->id = id;

1730
	if (pool->cpu != WORK_CPU_UNBOUND)
1731
		worker->task = kthread_create_on_node(worker_thread,
1732
					worker, cpu_to_node(pool->cpu),
1733
					"kworker/%d:%d%s", pool->cpu, id, pri);
1734 1735
	else
		worker->task = kthread_create(worker_thread, worker,
1736
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1737 1738 1739
	if (IS_ERR(worker->task))
		goto fail;

1740
	if (std_worker_pool_pri(pool))
1741 1742
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1743
	/*
1744
	 * Determine CPU binding of the new worker depending on
1745
	 * %POOL_DISASSOCIATED.  The caller is responsible for ensuring the
1746 1747 1748 1749 1750
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1751
	 */
1752
	if (!(pool->flags & POOL_DISASSOCIATED)) {
1753
		kthread_bind(worker->task, pool->cpu);
1754
	} else {
1755
		worker->task->flags |= PF_THREAD_BOUND;
1756
		worker->flags |= WORKER_UNBOUND;
1757
	}
T
Tejun Heo 已提交
1758 1759 1760 1761

	return worker;
fail:
	if (id >= 0) {
1762
		spin_lock_irq(&pool->lock);
1763
		ida_remove(&pool->worker_ida, id);
1764
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1774
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1775 1776
 *
 * CONTEXT:
1777
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1778 1779 1780
 */
static void start_worker(struct worker *worker)
{
1781
	worker->flags |= WORKER_STARTED;
1782
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1783
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1784 1785 1786 1787 1788 1789 1790
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1791
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1792 1793
 *
 * CONTEXT:
1794
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1795 1796 1797
 */
static void destroy_worker(struct worker *worker)
{
1798
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1799 1800 1801
	int id = worker->id;

	/* sanity check frenzy */
1802 1803 1804
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1805

T
Tejun Heo 已提交
1806
	if (worker->flags & WORKER_STARTED)
1807
		pool->nr_workers--;
T
Tejun Heo 已提交
1808
	if (worker->flags & WORKER_IDLE)
1809
		pool->nr_idle--;
T
Tejun Heo 已提交
1810 1811

	list_del_init(&worker->entry);
1812
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1813

1814
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1815

T
Tejun Heo 已提交
1816 1817 1818
	kthread_stop(worker->task);
	kfree(worker);

1819
	spin_lock_irq(&pool->lock);
1820
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1821 1822
}

1823
static void idle_worker_timeout(unsigned long __pool)
1824
{
1825
	struct worker_pool *pool = (void *)__pool;
1826

1827
	spin_lock_irq(&pool->lock);
1828

1829
	if (too_many_workers(pool)) {
1830 1831 1832 1833
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1834
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1835 1836 1837
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1838
			mod_timer(&pool->idle_timer, expires);
1839 1840
		else {
			/* it's been idle for too long, wake up manager */
1841
			pool->flags |= POOL_MANAGE_WORKERS;
1842
			wake_up_worker(pool);
1843
		}
1844 1845
	}

1846
	spin_unlock_irq(&pool->lock);
1847
}
1848

1849
static void send_mayday(struct work_struct *work)
1850
{
1851 1852
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1853 1854

	lockdep_assert_held(&workqueue_lock);
1855 1856

	if (!(wq->flags & WQ_RESCUER))
1857
		return;
1858 1859

	/* mayday mayday mayday */
1860 1861
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1862
		wake_up_process(wq->rescuer->task);
1863
	}
1864 1865
}

1866
static void pool_mayday_timeout(unsigned long __pool)
1867
{
1868
	struct worker_pool *pool = (void *)__pool;
1869 1870
	struct work_struct *work;

1871 1872
	spin_lock_irq(&workqueue_lock);		/* for wq->maydays */
	spin_lock(&pool->lock);
1873

1874
	if (need_to_create_worker(pool)) {
1875 1876 1877 1878 1879 1880
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1881
		list_for_each_entry(work, &pool->worklist, entry)
1882
			send_mayday(work);
L
Linus Torvalds 已提交
1883
	}
1884

1885 1886
	spin_unlock(&pool->lock);
	spin_unlock_irq(&workqueue_lock);
1887

1888
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1889 1890
}

1891 1892
/**
 * maybe_create_worker - create a new worker if necessary
1893
 * @pool: pool to create a new worker for
1894
 *
1895
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1896 1897
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1898
 * sent to all rescuers with works scheduled on @pool to resolve
1899 1900 1901 1902 1903 1904
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
1905
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1906 1907 1908 1909
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1910
 * false if no action was taken and pool->lock stayed locked, true
1911 1912
 * otherwise.
 */
1913
static bool maybe_create_worker(struct worker_pool *pool)
1914 1915
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1916
{
1917
	if (!need_to_create_worker(pool))
1918 1919
		return false;
restart:
1920
	spin_unlock_irq(&pool->lock);
1921

1922
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1923
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1924 1925 1926 1927

	while (true) {
		struct worker *worker;

1928
		worker = create_worker(pool);
1929
		if (worker) {
1930
			del_timer_sync(&pool->mayday_timer);
1931
			spin_lock_irq(&pool->lock);
1932
			start_worker(worker);
1933 1934
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1935 1936 1937
			return true;
		}

1938
		if (!need_to_create_worker(pool))
1939
			break;
L
Linus Torvalds 已提交
1940

1941 1942
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1943

1944
		if (!need_to_create_worker(pool))
1945 1946 1947
			break;
	}

1948
	del_timer_sync(&pool->mayday_timer);
1949
	spin_lock_irq(&pool->lock);
1950
	if (need_to_create_worker(pool))
1951 1952 1953 1954 1955 1956
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1957
 * @pool: pool to destroy workers for
1958
 *
1959
 * Destroy @pool workers which have been idle for longer than
1960 1961 1962
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1963
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1964 1965 1966
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1967
 * false if no action was taken and pool->lock stayed locked, true
1968 1969
 * otherwise.
 */
1970
static bool maybe_destroy_workers(struct worker_pool *pool)
1971 1972
{
	bool ret = false;
L
Linus Torvalds 已提交
1973

1974
	while (too_many_workers(pool)) {
1975 1976
		struct worker *worker;
		unsigned long expires;
1977

1978
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1979
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1980

1981
		if (time_before(jiffies, expires)) {
1982
			mod_timer(&pool->idle_timer, expires);
1983
			break;
1984
		}
L
Linus Torvalds 已提交
1985

1986 1987
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
1988
	}
1989

1990
	return ret;
1991 1992
}

1993
/**
1994 1995
 * manage_workers - manage worker pool
 * @worker: self
1996
 *
1997
 * Assume the manager role and manage the worker pool @worker belongs
1998
 * to.  At any given time, there can be only zero or one manager per
1999
 * pool.  The exclusion is handled automatically by this function.
2000 2001 2002 2003
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2004 2005
 *
 * CONTEXT:
2006
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2007 2008 2009
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2010 2011
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2012
 */
2013
static bool manage_workers(struct worker *worker)
2014
{
2015
	struct worker_pool *pool = worker->pool;
2016
	bool ret = false;
2017

2018
	if (pool->flags & POOL_MANAGING_WORKERS)
2019
		return ret;
2020

2021
	pool->flags |= POOL_MANAGING_WORKERS;
2022

2023 2024 2025 2026 2027 2028
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2029
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2030 2031
	 * manager against CPU hotplug.
	 *
2032
	 * assoc_mutex would always be free unless CPU hotplug is in
2033
	 * progress.  trylock first without dropping @pool->lock.
2034
	 */
2035
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2036
		spin_unlock_irq(&pool->lock);
2037
		mutex_lock(&pool->assoc_mutex);
2038 2039
		/*
		 * CPU hotplug could have happened while we were waiting
2040
		 * for assoc_mutex.  Hotplug itself can't handle us
2041
		 * because manager isn't either on idle or busy list, and
2042
		 * @pool's state and ours could have deviated.
2043
		 *
2044
		 * As hotplug is now excluded via assoc_mutex, we can
2045
		 * simply try to bind.  It will succeed or fail depending
2046
		 * on @pool's current state.  Try it and adjust
2047 2048
		 * %WORKER_UNBOUND accordingly.
		 */
2049
		if (worker_maybe_bind_and_lock(pool))
2050 2051 2052
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2053

2054 2055
		ret = true;
	}
2056

2057
	pool->flags &= ~POOL_MANAGE_WORKERS;
2058 2059

	/*
2060 2061
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2062
	 */
2063 2064
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2065

2066
	pool->flags &= ~POOL_MANAGING_WORKERS;
2067
	mutex_unlock(&pool->assoc_mutex);
2068
	return ret;
2069 2070
}

2071 2072
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2073
 * @worker: self
2074 2075 2076 2077 2078 2079 2080 2081 2082
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2083
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2084
 */
T
Tejun Heo 已提交
2085
static void process_one_work(struct worker *worker, struct work_struct *work)
2086 2087
__releases(&pool->lock)
__acquires(&pool->lock)
2088
{
2089
	struct pool_workqueue *pwq = get_work_pwq(work);
2090
	struct worker_pool *pool = worker->pool;
2091
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2092
	int work_color;
2093
	struct worker *collision;
2094 2095 2096 2097 2098 2099 2100 2101
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2102 2103 2104
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2105
#endif
2106 2107 2108
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2109
	 * unbound or a disassociated pool.
2110
	 */
2111
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2112
		     !(pool->flags & POOL_DISASSOCIATED) &&
2113
		     raw_smp_processor_id() != pool->cpu);
2114

2115 2116 2117 2118 2119 2120
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2121
	collision = find_worker_executing_work(pool, work);
2122 2123 2124 2125 2126
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2127
	/* claim and dequeue */
2128
	debug_work_deactivate(work);
2129
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2130
	worker->current_work = work;
2131
	worker->current_func = work->func;
2132
	worker->current_pwq = pwq;
2133
	work_color = get_work_color(work);
2134

2135 2136
	list_del_init(&work->entry);

2137 2138 2139 2140 2141 2142 2143
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2144
	/*
2145
	 * Unbound pool isn't concurrency managed and work items should be
2146 2147
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2148 2149
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2150

2151
	/*
2152
	 * Record the last pool and clear PENDING which should be the last
2153
	 * update to @work.  Also, do this inside @pool->lock so that
2154 2155
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2156
	 */
2157
	set_work_pool_and_clear_pending(work, pool->id);
2158

2159
	spin_unlock_irq(&pool->lock);
2160

2161
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2162
	lock_map_acquire(&lockdep_map);
2163
	trace_workqueue_execute_start(work);
2164
	worker->current_func(work);
2165 2166 2167 2168 2169
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2170
	lock_map_release(&lockdep_map);
2171
	lock_map_release(&pwq->wq->lockdep_map);
2172 2173

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2174 2175
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2176 2177
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2178 2179 2180 2181
		debug_show_held_locks(current);
		dump_stack();
	}

2182
	spin_lock_irq(&pool->lock);
2183

2184 2185 2186 2187
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2188
	/* we're done with it, release */
2189
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2190
	worker->current_work = NULL;
2191
	worker->current_func = NULL;
2192 2193
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2194 2195
}

2196 2197 2198 2199 2200 2201 2202 2203 2204
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2205
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2206 2207 2208
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2209
{
2210 2211
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2212
						struct work_struct, entry);
T
Tejun Heo 已提交
2213
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2214 2215 2216
	}
}

T
Tejun Heo 已提交
2217 2218
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2219
 * @__worker: self
T
Tejun Heo 已提交
2220
 *
2221 2222
 * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
 * of these per each cpu.  These workers process all works regardless of
2223 2224 2225
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2226
 */
T
Tejun Heo 已提交
2227
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2228
{
T
Tejun Heo 已提交
2229
	struct worker *worker = __worker;
2230
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2231

2232 2233
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2234
woke_up:
2235
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2236

2237 2238
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2239
		spin_unlock_irq(&pool->lock);
2240

2241
		/* if DIE is set, destruction is requested */
2242 2243 2244 2245 2246
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2247
		/* otherwise, rebind */
2248 2249
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2250
	}
2251

T
Tejun Heo 已提交
2252
	worker_leave_idle(worker);
2253
recheck:
2254
	/* no more worker necessary? */
2255
	if (!need_more_worker(pool))
2256 2257 2258
		goto sleep;

	/* do we need to manage? */
2259
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2260 2261
		goto recheck;

T
Tejun Heo 已提交
2262 2263 2264 2265 2266
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2267
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2268

2269 2270 2271 2272 2273 2274 2275 2276
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2277
		struct work_struct *work =
2278
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2279 2280 2281 2282 2283 2284
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2285
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2286 2287 2288
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2289
		}
2290
	} while (keep_working(pool));
2291 2292

	worker_set_flags(worker, WORKER_PREP, false);
2293
sleep:
2294
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2295
		goto recheck;
2296

T
Tejun Heo 已提交
2297
	/*
2298 2299 2300 2301 2302
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2303 2304 2305
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2306
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2307 2308
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2309 2310
}

2311 2312
/**
 * rescuer_thread - the rescuer thread function
2313
 * @__rescuer: self
2314 2315 2316 2317
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
2318
 * Regular work processing on a pool may block trying to create a new
2319 2320 2321 2322 2323
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2324 2325
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2326 2327 2328 2329
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2330
static int rescuer_thread(void *__rescuer)
2331
{
2332 2333
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2334 2335 2336
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2337 2338 2339 2340 2341 2342

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2343 2344 2345
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2346 2347
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2348
		rescuer->task->flags &= ~PF_WQ_WORKER;
2349
		return 0;
2350
	}
2351

2352 2353 2354 2355 2356 2357
	/* see whether any pwq is asking for help */
	spin_lock_irq(&workqueue_lock);

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2358
		struct worker_pool *pool = pwq->pool;
2359 2360 2361
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2362 2363 2364
		list_del_init(&pwq->mayday_node);

		spin_unlock_irq(&workqueue_lock);
2365 2366

		/* migrate to the target cpu if possible */
2367
		worker_maybe_bind_and_lock(pool);
2368
		rescuer->pool = pool;
2369 2370 2371 2372 2373

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2374
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2375
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2376
			if (get_work_pwq(work) == pwq)
2377 2378 2379
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2380 2381

		/*
2382
		 * Leave this pool.  If keep_working() is %true, notify a
2383 2384 2385
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2386 2387
		if (keep_working(pool))
			wake_up_worker(pool);
2388

2389
		rescuer->pool = NULL;
2390 2391
		spin_unlock(&pool->lock);
		spin_lock(&workqueue_lock);
2392 2393
	}

2394 2395
	spin_unlock_irq(&workqueue_lock);

2396 2397
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2398 2399
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2400 2401
}

O
Oleg Nesterov 已提交
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2413 2414
/**
 * insert_wq_barrier - insert a barrier work
2415
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2416
 * @barr: wq_barrier to insert
2417 2418
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2419
 *
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2432
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2433 2434
 *
 * CONTEXT:
2435
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2436
 */
2437
static void insert_wq_barrier(struct pool_workqueue *pwq,
2438 2439
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2440
{
2441 2442 2443
	struct list_head *head;
	unsigned int linked = 0;

2444
	/*
2445
	 * debugobject calls are safe here even with pool->lock locked
2446 2447 2448 2449
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2450
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2451
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2452
	init_completion(&barr->done);
2453

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2469
	debug_work_activate(&barr->work);
2470
	insert_work(pwq, &barr->work, head,
2471
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2472 2473
}

2474
/**
2475
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2476 2477 2478 2479
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2480
 * Prepare pwqs for workqueue flushing.
2481
 *
2482 2483 2484 2485 2486
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2487 2488 2489 2490 2491 2492 2493
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2494
 * If @work_color is non-negative, all pwqs should have the same
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2505
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2506
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2507
{
2508
	bool wait = false;
2509
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2510

2511
	if (flush_color >= 0) {
2512
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2513
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2514
	}
2515

2516 2517
	local_irq_disable();

2518
	for_each_pwq(pwq, wq) {
2519
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2520

2521
		spin_lock(&pool->lock);
2522

2523
		if (flush_color >= 0) {
2524
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2525

2526 2527 2528
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2529 2530 2531
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2532

2533
		if (work_color >= 0) {
2534
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2535
			pwq->work_color = work_color;
2536
		}
L
Linus Torvalds 已提交
2537

2538
		spin_unlock(&pool->lock);
L
Linus Torvalds 已提交
2539
	}
2540

2541 2542
	local_irq_enable();

2543
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2544
		complete(&wq->first_flusher->done);
2545

2546
	return wait;
L
Linus Torvalds 已提交
2547 2548
}

2549
/**
L
Linus Torvalds 已提交
2550
 * flush_workqueue - ensure that any scheduled work has run to completion.
2551
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2552 2553 2554 2555
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2556 2557
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2558
 */
2559
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2560
{
2561 2562 2563 2564 2565 2566
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2567

2568 2569
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2584
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2585 2586 2587 2588 2589
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2590
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2591 2592 2593

			wq->first_flusher = &this_flusher;

2594
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2595 2596 2597 2598 2599 2600 2601 2602
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2603
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2604
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2605
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2631 2632 2633 2634
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2635 2636
	wq->first_flusher = NULL;

2637 2638
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2651 2652
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2672
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2673 2674 2675
		}

		if (list_empty(&wq->flusher_queue)) {
2676
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2677 2678 2679 2680 2681
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2682
		 * the new first flusher and arm pwqs.
2683
		 */
2684 2685
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2686 2687 2688 2689

		list_del_init(&next->list);
		wq->first_flusher = next;

2690
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2702
}
2703
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2704

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2719
	struct pool_workqueue *pwq;
2720 2721 2722 2723 2724 2725

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
2726
	spin_lock_irq(&workqueue_lock);
2727 2728
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
2729
	spin_unlock_irq(&workqueue_lock);
2730 2731 2732
reflush:
	flush_workqueue(wq);

2733 2734
	local_irq_disable();

2735
	for_each_pwq(pwq, wq) {
2736
		bool drained;
2737

2738
		spin_lock(&pwq->pool->lock);
2739
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2740
		spin_unlock(&pwq->pool->lock);
2741 2742

		if (drained)
2743 2744 2745 2746
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2747 2748
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2749 2750

		local_irq_enable();
2751 2752 2753
		goto reflush;
	}

2754
	spin_lock(&workqueue_lock);
2755 2756
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
2757 2758 2759
	spin_unlock(&workqueue_lock);

	local_irq_enable();
2760 2761 2762
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2763
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2764
{
2765
	struct worker *worker = NULL;
2766
	struct worker_pool *pool;
2767
	struct pool_workqueue *pwq;
2768 2769

	might_sleep();
2770 2771
	pool = get_work_pool(work);
	if (!pool)
2772
		return false;
2773

2774
	spin_lock_irq(&pool->lock);
2775
	/* see the comment in try_to_grab_pending() with the same code */
2776 2777 2778
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2779
			goto already_gone;
2780
	} else {
2781
		worker = find_worker_executing_work(pool, work);
2782
		if (!worker)
T
Tejun Heo 已提交
2783
			goto already_gone;
2784
		pwq = worker->current_pwq;
2785
	}
2786

2787
	insert_wq_barrier(pwq, barr, work, worker);
2788
	spin_unlock_irq(&pool->lock);
2789

2790 2791 2792 2793 2794 2795
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2796 2797
	if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&pwq->wq->lockdep_map);
2798
	else
2799 2800
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2801

2802
	return true;
T
Tejun Heo 已提交
2803
already_gone:
2804
	spin_unlock_irq(&pool->lock);
2805
	return false;
2806
}
2807 2808 2809 2810 2811

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2812 2813
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2814 2815 2816 2817 2818 2819 2820 2821 2822
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2823 2824 2825
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2826
	if (start_flush_work(work, &barr)) {
2827 2828 2829
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2830
	} else {
2831
		return false;
2832 2833
	}
}
2834
EXPORT_SYMBOL_GPL(flush_work);
2835

2836
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2837
{
2838
	unsigned long flags;
2839 2840 2841
	int ret;

	do {
2842 2843 2844 2845 2846 2847
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2848
			flush_work(work);
2849 2850
	} while (unlikely(ret < 0));

2851 2852 2853 2854
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2855
	flush_work(work);
2856
	clear_work_data(work);
2857 2858 2859
	return ret;
}

2860
/**
2861 2862
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2863
 *
2864 2865 2866 2867
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2868
 *
2869 2870
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2871
 *
2872
 * The caller must ensure that the workqueue on which @work was last
2873
 * queued can't be destroyed before this function returns.
2874 2875 2876
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2877
 */
2878
bool cancel_work_sync(struct work_struct *work)
2879
{
2880
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2881
}
2882
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2883

2884
/**
2885 2886
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2887
 *
2888 2889 2890
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2891
 *
2892 2893 2894
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2895
 */
2896 2897
bool flush_delayed_work(struct delayed_work *dwork)
{
2898
	local_irq_disable();
2899
	if (del_timer_sync(&dwork->timer))
2900
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2901
	local_irq_enable();
2902 2903 2904 2905
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2906
/**
2907 2908
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2909
 *
2910 2911 2912 2913 2914
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2915
 *
2916
 * This function is safe to call from any context including IRQ handler.
2917
 */
2918
bool cancel_delayed_work(struct delayed_work *dwork)
2919
{
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2930 2931
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2932
	local_irq_restore(flags);
2933
	return ret;
2934
}
2935
EXPORT_SYMBOL(cancel_delayed_work);
2936

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2947
{
2948
	return __cancel_work_timer(&dwork->work, true);
2949
}
2950
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2951

2952
/**
2953 2954 2955 2956 2957 2958
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2959
bool schedule_work_on(int cpu, struct work_struct *work)
2960
{
2961
	return queue_work_on(cpu, system_wq, work);
2962 2963 2964
}
EXPORT_SYMBOL(schedule_work_on);

2965 2966 2967 2968
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
2969 2970
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
2971 2972 2973 2974
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
2975
 */
2976
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
2977
{
2978
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
2979
}
2980
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
2981

2982 2983 2984
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
2985
 * @dwork: job to be done
2986 2987 2988 2989 2990
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
2991 2992
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
2993
{
2994
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
2995
}
2996
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
2997

2998 2999
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3000 3001
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3002 3003 3004 3005
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3006
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3007
{
3008
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3009
}
3010
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3011

3012
/**
3013
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3014 3015
 * @func: the function to call
 *
3016 3017
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3018
 * schedule_on_each_cpu() is very slow.
3019 3020 3021
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3022
 */
3023
int schedule_on_each_cpu(work_func_t func)
3024 3025
{
	int cpu;
3026
	struct work_struct __percpu *works;
3027

3028 3029
	works = alloc_percpu(struct work_struct);
	if (!works)
3030
		return -ENOMEM;
3031

3032 3033
	get_online_cpus();

3034
	for_each_online_cpu(cpu) {
3035 3036 3037
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3038
		schedule_work_on(cpu, work);
3039
	}
3040 3041 3042 3043

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3044
	put_online_cpus();
3045
	free_percpu(works);
3046 3047 3048
	return 0;
}

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3073 3074
void flush_scheduled_work(void)
{
3075
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3076
}
3077
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3078

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3091
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3092 3093
{
	if (!in_interrupt()) {
3094
		fn(&ew->work);
3095 3096 3097
		return 0;
	}

3098
	INIT_WORK(&ew->work, fn);
3099 3100 3101 3102 3103 3104
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3105 3106
int keventd_up(void)
{
3107
	return system_wq != NULL;
L
Linus Torvalds 已提交
3108 3109
}

3110
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3111
{
3112
	bool highpri = wq->flags & WQ_HIGHPRI;
3113 3114 3115
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
3116 3117
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3118 3119 3120
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3121 3122
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3123

3124
			pwq->pool = get_std_worker_pool(cpu, highpri);
3125
			list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
3126 3127 3128 3129 3130 3131 3132 3133
		}
	} else {
		struct pool_workqueue *pwq;

		pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
		if (!pwq)
			return -ENOMEM;

3134
		pwq->pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
3135
		list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
3136 3137 3138
	}

	return 0;
T
Tejun Heo 已提交
3139 3140
}

3141
static void free_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3142
{
3143
	if (!(wq->flags & WQ_UNBOUND))
3144 3145 3146 3147
		free_percpu(wq->cpu_pwqs);
	else if (!list_empty(&wq->pwqs))
		kmem_cache_free(pwq_cache, list_first_entry(&wq->pwqs,
					struct pool_workqueue, pwqs_node));
T
Tejun Heo 已提交
3148 3149
}

3150 3151
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3152
{
3153 3154 3155
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3156 3157
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3158

3159
	return clamp_val(max_active, 1, lim);
3160 3161
}

3162
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3163 3164 3165
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3166
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3167
{
3168
	va_list args, args1;
L
Linus Torvalds 已提交
3169
	struct workqueue_struct *wq;
3170
	struct pool_workqueue *pwq;
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3185

3186 3187 3188 3189 3190 3191 3192
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3193
	max_active = max_active ?: WQ_DFL_ACTIVE;
3194
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3195

3196
	/* init wq */
3197
	wq->flags = flags;
3198
	wq->saved_max_active = max_active;
3199
	mutex_init(&wq->flush_mutex);
3200
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3201
	INIT_LIST_HEAD(&wq->pwqs);
3202 3203
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3204
	INIT_LIST_HEAD(&wq->maydays);
3205

3206
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3207
	INIT_LIST_HEAD(&wq->list);
3208

3209
	if (alloc_and_link_pwqs(wq) < 0)
3210 3211
		goto err;

3212
	local_irq_disable();
3213
	for_each_pwq(pwq, wq) {
3214 3215 3216 3217 3218
		BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
		pwq->wq = wq;
		pwq->flush_color = -1;
		pwq->max_active = max_active;
		INIT_LIST_HEAD(&pwq->delayed_works);
3219
		INIT_LIST_HEAD(&pwq->mayday_node);
3220
	}
3221
	local_irq_enable();
T
Tejun Heo 已提交
3222

3223 3224 3225 3226 3227 3228 3229
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3230 3231
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3232
					       wq->name);
3233 3234 3235 3236 3237
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3238 3239
	}

3240 3241 3242 3243 3244
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
3245
	spin_lock_irq(&workqueue_lock);
3246

3247
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3248 3249
		for_each_pwq(pwq, wq)
			pwq->max_active = 0;
3250

T
Tejun Heo 已提交
3251
	list_add(&wq->list, &workqueues);
3252

3253
	spin_unlock_irq(&workqueue_lock);
T
Tejun Heo 已提交
3254

3255
	return wq;
T
Tejun Heo 已提交
3256 3257
err:
	if (wq) {
3258
		free_pwqs(wq);
3259
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3260 3261 3262
		kfree(wq);
	}
	return NULL;
3263
}
3264
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3265

3266 3267 3268 3269 3270 3271 3272 3273
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3274
	struct pool_workqueue *pwq;
3275

3276 3277
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3278

3279 3280
	spin_lock_irq(&workqueue_lock);

3281
	/* sanity checks */
3282
	for_each_pwq(pwq, wq) {
3283 3284
		int i;

3285 3286 3287
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
				spin_unlock_irq(&workqueue_lock);
3288
				return;
3289 3290 3291
			}
		}

3292
		if (WARN_ON(pwq->nr_active) ||
3293 3294
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
			spin_unlock_irq(&workqueue_lock);
3295
			return;
3296
		}
3297 3298
	}

3299 3300 3301 3302
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3303
	list_del(&wq->list);
3304

3305
	spin_unlock_irq(&workqueue_lock);
3306

3307 3308
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3309
		kfree(wq->rescuer);
3310 3311
	}

3312
	free_pwqs(wq);
3313 3314 3315 3316
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3317
/**
3318 3319
 * pwq_set_max_active - adjust max_active of a pwq
 * @pwq: target pool_workqueue
3320 3321
 * @max_active: new max_active value.
 *
3322
 * Set @pwq->max_active to @max_active and activate delayed works if
3323 3324 3325
 * increased.
 *
 * CONTEXT:
3326
 * spin_lock_irq(pool->lock).
3327
 */
3328
static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3329
{
3330
	pwq->max_active = max_active;
3331

3332 3333 3334
	while (!list_empty(&pwq->delayed_works) &&
	       pwq->nr_active < pwq->max_active)
		pwq_activate_first_delayed(pwq);
3335 3336
}

3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
3349
	struct pool_workqueue *pwq;
3350

3351
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3352

3353
	spin_lock_irq(&workqueue_lock);
3354 3355 3356

	wq->saved_max_active = max_active;

3357
	for_each_pwq(pwq, wq) {
3358
		struct worker_pool *pool = pwq->pool;
3359

3360
		spin_lock(&pool->lock);
3361

3362
		if (!(wq->flags & WQ_FREEZABLE) ||
3363
		    !(pool->flags & POOL_FREEZING))
3364
			pwq_set_max_active(pwq, max_active);
3365

3366
		spin_unlock(&pool->lock);
3367
	}
3368

3369
	spin_unlock_irq(&workqueue_lock);
3370
}
3371
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3372

3373
/**
3374 3375 3376
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3377
 *
3378 3379 3380
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3381
 *
3382 3383
 * RETURNS:
 * %true if congested, %false otherwise.
3384
 */
3385
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3386
{
3387
	struct pool_workqueue *pwq;
3388 3389 3390
	bool ret;

	preempt_disable();
3391 3392 3393 3394 3395

	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
		pwq = first_pwq(wq);
3396

3397 3398 3399 3400
	ret = !list_empty(&pwq->delayed_works);
	preempt_enable();

	return ret;
L
Linus Torvalds 已提交
3401
}
3402
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3403

3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3416
{
3417
	struct worker_pool *pool = get_work_pool(work);
3418 3419
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3420

3421 3422
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
3423

3424 3425 3426 3427 3428 3429
	if (pool) {
		spin_lock_irqsave(&pool->lock, flags);
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
		spin_unlock_irqrestore(&pool->lock, flags);
	}
L
Linus Torvalds 已提交
3430

3431
	return ret;
L
Linus Torvalds 已提交
3432
}
3433
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3434

3435 3436 3437
/*
 * CPU hotplug.
 *
3438
 * There are two challenges in supporting CPU hotplug.  Firstly, there
3439
 * are a lot of assumptions on strong associations among work, pwq and
3440
 * pool which make migrating pending and scheduled works very
3441
 * difficult to implement without impacting hot paths.  Secondly,
3442
 * worker pools serve mix of short, long and very long running works making
3443 3444
 * blocked draining impractical.
 *
3445
 * This is solved by allowing the pools to be disassociated from the CPU
3446 3447
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3448
 */
L
Linus Torvalds 已提交
3449

3450
static void wq_unbind_fn(struct work_struct *work)
3451
{
3452
	int cpu = smp_processor_id();
3453
	struct worker_pool *pool;
3454 3455
	struct worker *worker;
	int i;
3456

3457
	for_each_std_worker_pool(pool, cpu) {
3458
		WARN_ON_ONCE(cpu != smp_processor_id());
3459

3460 3461
		mutex_lock(&pool->assoc_mutex);
		spin_lock_irq(&pool->lock);
3462

3463 3464 3465 3466 3467 3468 3469
		/*
		 * We've claimed all manager positions.  Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
3470
		list_for_each_entry(worker, &pool->idle_list, entry)
3471
			worker->flags |= WORKER_UNBOUND;
3472

3473
		for_each_busy_worker(worker, i, pool)
3474
			worker->flags |= WORKER_UNBOUND;
3475

3476
		pool->flags |= POOL_DISASSOCIATED;
3477

3478 3479 3480
		spin_unlock_irq(&pool->lock);
		mutex_unlock(&pool->assoc_mutex);
	}
3481

3482
	/*
3483
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3484 3485
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3486 3487
	 */
	schedule();
3488

3489
	/*
3490 3491
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
3492 3493 3494
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
3495 3496 3497 3498
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3499
	 */
3500
	for_each_std_worker_pool(pool, cpu)
3501
		atomic_set(&pool->nr_running, 0);
3502 3503
}

T
Tejun Heo 已提交
3504 3505 3506 3507
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3508
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3509 3510
					       unsigned long action,
					       void *hcpu)
3511
{
3512
	int cpu = (unsigned long)hcpu;
3513
	struct worker_pool *pool;
3514

T
Tejun Heo 已提交
3515
	switch (action & ~CPU_TASKS_FROZEN) {
3516
	case CPU_UP_PREPARE:
3517
		for_each_std_worker_pool(pool, cpu) {
3518 3519 3520 3521 3522 3523 3524 3525 3526
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

3527
			spin_lock_irq(&pool->lock);
3528
			start_worker(worker);
3529
			spin_unlock_irq(&pool->lock);
3530
		}
T
Tejun Heo 已提交
3531
		break;
3532

3533 3534
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3535
		for_each_std_worker_pool(pool, cpu) {
3536 3537 3538
			mutex_lock(&pool->assoc_mutex);
			spin_lock_irq(&pool->lock);

3539
			pool->flags &= ~POOL_DISASSOCIATED;
3540 3541 3542 3543 3544
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
			mutex_unlock(&pool->assoc_mutex);
		}
3545
		break;
3546
	}
3547 3548 3549 3550 3551 3552 3553
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3554
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3555 3556 3557
						 unsigned long action,
						 void *hcpu)
{
3558
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
3559 3560
	struct work_struct unbind_work;

3561 3562
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3563
		/* unbinding should happen on the local CPU */
3564
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3565
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3566 3567
		flush_work(&unbind_work);
		break;
3568 3569 3570 3571
	}
	return NOTIFY_OK;
}

3572
#ifdef CONFIG_SMP
3573

3574
struct work_for_cpu {
3575
	struct work_struct work;
3576 3577 3578 3579 3580
	long (*fn)(void *);
	void *arg;
	long ret;
};

3581
static void work_for_cpu_fn(struct work_struct *work)
3582
{
3583 3584
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3585 3586 3587 3588 3589 3590 3591 3592 3593
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3594 3595
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3596
 * The caller must not hold any locks which would prevent @fn from completing.
3597
 */
3598
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
3599
{
3600
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3601

3602 3603 3604
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3605 3606 3607 3608 3609
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3610 3611 3612 3613 3614
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3615 3616
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
3617
 * pool->worklist.
3618 3619
 *
 * CONTEXT:
3620
 * Grabs and releases workqueue_lock and pool->lock's.
3621 3622 3623
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
3624
	struct worker_pool *pool;
3625 3626
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
T
Tejun Heo 已提交
3627
	int id;
3628

3629
	spin_lock_irq(&workqueue_lock);
3630

3631
	WARN_ON_ONCE(workqueue_freezing);
3632 3633
	workqueue_freezing = true;

3634
	/* set FREEZING */
T
Tejun Heo 已提交
3635 3636 3637 3638
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
3639 3640
		spin_unlock(&pool->lock);
	}
3641

3642 3643 3644 3645
	/* suppress further executions by setting max_active to zero */
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
3646

3647 3648 3649 3650
		for_each_pwq(pwq, wq) {
			spin_lock(&pwq->pool->lock);
			pwq->max_active = 0;
			spin_unlock(&pwq->pool->lock);
3651
		}
3652 3653
	}

3654
	spin_unlock_irq(&workqueue_lock);
3655 3656 3657
}

/**
3658
 * freeze_workqueues_busy - are freezable workqueues still busy?
3659 3660 3661 3662 3663 3664 3665 3666
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3667 3668
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3669 3670 3671 3672
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
3673 3674
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
3675

3676
	spin_lock_irq(&workqueue_lock);
3677

3678
	WARN_ON_ONCE(!workqueue_freezing);
3679

3680 3681 3682
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
3683 3684 3685 3686
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
3687
		for_each_pwq(pwq, wq) {
3688
			WARN_ON_ONCE(pwq->nr_active < 0);
3689
			if (pwq->nr_active) {
3690 3691 3692 3693 3694 3695
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
3696
	spin_unlock_irq(&workqueue_lock);
3697 3698 3699 3700 3701 3702 3703
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3704
 * frozen works are transferred to their respective pool worklists.
3705 3706
 *
 * CONTEXT:
3707
 * Grabs and releases workqueue_lock and pool->lock's.
3708 3709 3710
 */
void thaw_workqueues(void)
{
3711 3712 3713 3714
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
	int id;
3715

3716
	spin_lock_irq(&workqueue_lock);
3717 3718 3719 3720

	if (!workqueue_freezing)
		goto out_unlock;

3721 3722 3723 3724 3725 3726 3727
	/* clear FREEZING */
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
		spin_unlock(&pool->lock);
	}
3728

3729 3730 3731 3732
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
3733

3734 3735 3736 3737
		for_each_pwq(pwq, wq) {
			spin_lock(&pwq->pool->lock);
			pwq_set_max_active(pwq, wq->saved_max_active);
			spin_unlock(&pwq->pool->lock);
3738
		}
3739 3740
	}

3741 3742 3743 3744 3745 3746 3747
	/* kick workers */
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		wake_up_worker(pool);
		spin_unlock(&pool->lock);
	}

3748 3749
	workqueue_freezing = false;
out_unlock:
3750
	spin_unlock_irq(&workqueue_lock);
3751 3752 3753
}
#endif /* CONFIG_FREEZER */

3754
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3755
{
3756
	int cpu;
T
Tejun Heo 已提交
3757

3758 3759
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3760
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
3761

3762 3763 3764 3765
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

3766
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3767
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3768

3769 3770
	/* initialize CPU pools */
	for_each_wq_cpu(cpu) {
3771
		struct worker_pool *pool;
3772

3773
		for_each_std_worker_pool(pool, cpu) {
3774
			spin_lock_init(&pool->lock);
3775
			pool->cpu = cpu;
3776
			pool->flags |= POOL_DISASSOCIATED;
3777 3778
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3779
			hash_init(pool->busy_hash);
3780

3781 3782 3783
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3784

3785
			setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3786 3787
				    (unsigned long)pool);

3788
			mutex_init(&pool->assoc_mutex);
3789
			ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3790 3791 3792

			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
3793
		}
3794 3795
	}

3796
	/* create the initial worker */
3797
	for_each_online_wq_cpu(cpu) {
3798
		struct worker_pool *pool;
3799

3800
		for_each_std_worker_pool(pool, cpu) {
3801 3802
			struct worker *worker;

3803 3804 3805
			if (cpu != WORK_CPU_UNBOUND)
				pool->flags &= ~POOL_DISASSOCIATED;

3806
			worker = create_worker(pool);
3807
			BUG_ON(!worker);
3808
			spin_lock_irq(&pool->lock);
3809
			start_worker(worker);
3810
			spin_unlock_irq(&pool->lock);
3811
		}
3812 3813
	}

3814
	system_wq = alloc_workqueue("events", 0, 0);
3815
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3816
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3817 3818
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3819 3820
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3821
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3822
	       !system_unbound_wq || !system_freezable_wq);
3823
	return 0;
L
Linus Torvalds 已提交
3824
}
3825
early_initcall(init_workqueues);