xhci-mem.c 74.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * xHCI host controller driver
 *
 * Copyright (C) 2008 Intel Corp.
 *
 * Author: Sarah Sharp
 * Some code borrowed from the Linux EHCI driver.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/usb.h>
24
#include <linux/pci.h>
25
#include <linux/slab.h>
26
#include <linux/dmapool.h>
27 28 29

#include "xhci.h"

30 31 32 33 34 35 36
/*
 * Allocates a generic ring segment from the ring pool, sets the dma address,
 * initializes the segment to zero, and sets the private next pointer to NULL.
 *
 * Section 4.11.1.1:
 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
 */
37 38
static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
					unsigned int cycle_state, gfp_t flags)
39 40 41
{
	struct xhci_segment *seg;
	dma_addr_t	dma;
42
	int		i;
43 44 45

	seg = kzalloc(sizeof *seg, flags);
	if (!seg)
46
		return NULL;
47 48 49 50

	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
	if (!seg->trbs) {
		kfree(seg);
51
		return NULL;
52 53
	}

54
	memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
55 56 57 58 59
	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
	if (cycle_state == 0) {
		for (i = 0; i < TRBS_PER_SEGMENT; i++)
			seg->trbs[i].link.control |= TRB_CYCLE;
	}
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
	seg->dma = dma;
	seg->next = NULL;

	return seg;
}

static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
{
	if (seg->trbs) {
		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
		seg->trbs = NULL;
	}
	kfree(seg);
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88
static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
				struct xhci_segment *first)
{
	struct xhci_segment *seg;

	seg = first->next;
	while (seg != first) {
		struct xhci_segment *next = seg->next;
		xhci_segment_free(xhci, seg);
		seg = next;
	}
	xhci_segment_free(xhci, first);
}

89 90 91 92 93 94 95 96
/*
 * Make the prev segment point to the next segment.
 *
 * Change the last TRB in the prev segment to be a Link TRB which points to the
 * DMA address of the next segment.  The caller needs to set any Link TRB
 * related flags, such as End TRB, Toggle Cycle, and no snoop.
 */
static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
A
Andiry Xu 已提交
97
		struct xhci_segment *next, enum xhci_ring_type type)
98 99 100 101 102 103
{
	u32 val;

	if (!prev || !next)
		return;
	prev->next = next;
A
Andiry Xu 已提交
104
	if (type != TYPE_EVENT) {
105 106
		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
			cpu_to_le64(next->dma);
107 108

		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
M
Matt Evans 已提交
109
		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
110 111
		val &= ~TRB_TYPE_BITMASK;
		val |= TRB_TYPE(TRB_LINK);
112
		/* Always set the chain bit with 0.95 hardware */
113 114
		/* Set chain bit for isoc rings on AMD 0.96 host */
		if (xhci_link_trb_quirk(xhci) ||
A
Andiry Xu 已提交
115 116
				(type == TYPE_ISOC &&
				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
117
			val |= TRB_CHAIN;
M
Matt Evans 已提交
118
		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 120 121
	}
}

A
Andiry Xu 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * Link the ring to the new segments.
 * Set Toggle Cycle for the new ring if needed.
 */
static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
		struct xhci_segment *first, struct xhci_segment *last,
		unsigned int num_segs)
{
	struct xhci_segment *next;

	if (!ring || !first || !last)
		return;

	next = ring->enq_seg->next;
	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
	xhci_link_segments(xhci, last, next, ring->type);
	ring->num_segs += num_segs;
	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;

	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
			&= ~cpu_to_le32(LINK_TOGGLE);
		last->trbs[TRBS_PER_SEGMENT-1].link.control
			|= cpu_to_le32(LINK_TOGGLE);
		ring->last_seg = last;
	}
}

150
/* XXX: Do we need the hcd structure in all these functions? */
151
void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
152
{
153
	if (!ring)
154
		return;
155 156 157 158

	if (ring->first_seg)
		xhci_free_segments_for_ring(xhci, ring->first_seg);

159 160 161
	kfree(ring);
}

162 163
static void xhci_initialize_ring_info(struct xhci_ring *ring,
					unsigned int cycle_state)
164 165 166 167 168 169 170 171 172
{
	/* The ring is empty, so the enqueue pointer == dequeue pointer */
	ring->enqueue = ring->first_seg->trbs;
	ring->enq_seg = ring->first_seg;
	ring->dequeue = ring->enqueue;
	ring->deq_seg = ring->first_seg;
	/* The ring is initialized to 0. The producer must write 1 to the cycle
	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
173 174 175
	 *
	 * New rings are initialized with cycle state equal to 1; if we are
	 * handling ring expansion, set the cycle state equal to the old ring.
176
	 */
177
	ring->cycle_state = cycle_state;
178 179 180
	/* Not necessary for new rings, but needed for re-initialized rings */
	ring->enq_updates = 0;
	ring->deq_updates = 0;
181 182 183 184 185 186

	/*
	 * Each segment has a link TRB, and leave an extra TRB for SW
	 * accounting purpose
	 */
	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
187 188
}

189 190 191
/* Allocate segments and link them for a ring */
static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
		struct xhci_segment **first, struct xhci_segment **last,
192 193
		unsigned int num_segs, unsigned int cycle_state,
		enum xhci_ring_type type, gfp_t flags)
194 195 196
{
	struct xhci_segment *prev;

197
	prev = xhci_segment_alloc(xhci, cycle_state, flags);
198 199 200 201 202 203 204 205
	if (!prev)
		return -ENOMEM;
	num_segs--;

	*first = prev;
	while (num_segs > 0) {
		struct xhci_segment	*next;

206
		next = xhci_segment_alloc(xhci, cycle_state, flags);
207
		if (!next) {
208 209 210 211 212 213
			prev = *first;
			while (prev) {
				next = prev->next;
				xhci_segment_free(xhci, prev);
				prev = next;
			}
214 215 216 217 218 219 220 221 222 223 224 225 226
			return -ENOMEM;
		}
		xhci_link_segments(xhci, prev, next, type);

		prev = next;
		num_segs--;
	}
	xhci_link_segments(xhci, prev, *first, type);
	*last = prev;

	return 0;
}

227 228 229 230 231 232 233 234
/**
 * Create a new ring with zero or more segments.
 *
 * Link each segment together into a ring.
 * Set the end flag and the cycle toggle bit on the last segment.
 * See section 4.9.1 and figures 15 and 16.
 */
static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
235 236
		unsigned int num_segs, unsigned int cycle_state,
		enum xhci_ring_type type, gfp_t flags)
237 238
{
	struct xhci_ring	*ring;
239
	int ret;
240 241 242

	ring = kzalloc(sizeof *(ring), flags);
	if (!ring)
243
		return NULL;
244

245
	ring->num_segs = num_segs;
246
	INIT_LIST_HEAD(&ring->td_list);
A
Andiry Xu 已提交
247
	ring->type = type;
248 249 250
	if (num_segs == 0)
		return ring;

251
	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
252
			&ring->last_seg, num_segs, cycle_state, type, flags);
253
	if (ret)
254 255
		goto fail;

A
Andiry Xu 已提交
256 257
	/* Only event ring does not use link TRB */
	if (type != TYPE_EVENT) {
258
		/* See section 4.9.2.1 and 6.4.4.1 */
259
		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
260
			cpu_to_le32(LINK_TOGGLE);
261
	}
262
	xhci_initialize_ring_info(ring, cycle_state);
263 264 265
	return ring;

fail:
266
	kfree(ring);
267
	return NULL;
268 269
}

270 271 272 273 274 275 276 277 278 279
void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		unsigned int ep_index)
{
	int rings_cached;

	rings_cached = virt_dev->num_rings_cached;
	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
		virt_dev->ring_cache[rings_cached] =
			virt_dev->eps[ep_index].ring;
280
		virt_dev->num_rings_cached++;
281 282
		xhci_dbg(xhci, "Cached old ring, "
				"%d ring%s cached\n",
283 284
				virt_dev->num_rings_cached,
				(virt_dev->num_rings_cached > 1) ? "s" : "");
285 286 287 288 289 290 291 292 293
	} else {
		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
		xhci_dbg(xhci, "Ring cache full (%d rings), "
				"freeing ring\n",
				virt_dev->num_rings_cached);
	}
	virt_dev->eps[ep_index].ring = NULL;
}

294 295 296 297
/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 * pointers to the beginning of the ring.
 */
static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
298 299
			struct xhci_ring *ring, unsigned int cycle_state,
			enum xhci_ring_type type)
300 301
{
	struct xhci_segment	*seg = ring->first_seg;
302 303
	int i;

304 305 306
	do {
		memset(seg->trbs, 0,
				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
307 308 309 310
		if (cycle_state == 0) {
			for (i = 0; i < TRBS_PER_SEGMENT; i++)
				seg->trbs[i].link.control |= TRB_CYCLE;
		}
311
		/* All endpoint rings have link TRBs */
A
Andiry Xu 已提交
312
		xhci_link_segments(xhci, seg, seg->next, type);
313 314
		seg = seg->next;
	} while (seg != ring->first_seg);
A
Andiry Xu 已提交
315
	ring->type = type;
316
	xhci_initialize_ring_info(ring, cycle_state);
317 318 319 320 321 322
	/* td list should be empty since all URBs have been cancelled,
	 * but just in case...
	 */
	INIT_LIST_HEAD(&ring->td_list);
}

A
Andiry Xu 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/*
 * Expand an existing ring.
 * Look for a cached ring or allocate a new ring which has same segment numbers
 * and link the two rings.
 */
int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
				unsigned int num_trbs, gfp_t flags)
{
	struct xhci_segment	*first;
	struct xhci_segment	*last;
	unsigned int		num_segs;
	unsigned int		num_segs_needed;
	int			ret;

	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
				(TRBS_PER_SEGMENT - 1);

	/* Allocate number of segments we needed, or double the ring size */
	num_segs = ring->num_segs > num_segs_needed ?
			ring->num_segs : num_segs_needed;

	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
			num_segs, ring->cycle_state, ring->type, flags);
	if (ret)
		return -ENOMEM;

	xhci_link_rings(xhci, ring, first, last, num_segs);
	xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
			ring->num_segs);

	return 0;
}

356 357
#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)

358
static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
359 360
						    int type, gfp_t flags)
{
361 362 363 364 365 366
	struct xhci_container_ctx *ctx;

	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
		return NULL;

	ctx = kzalloc(sizeof(*ctx), flags);
367 368 369 370 371 372 373 374 375
	if (!ctx)
		return NULL;

	ctx->type = type;
	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
	if (type == XHCI_CTX_TYPE_INPUT)
		ctx->size += CTX_SIZE(xhci->hcc_params);

	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
376 377 378 379
	if (!ctx->bytes) {
		kfree(ctx);
		return NULL;
	}
380 381 382 383
	memset(ctx->bytes, 0, ctx->size);
	return ctx;
}

384
static void xhci_free_container_ctx(struct xhci_hcd *xhci,
385 386
			     struct xhci_container_ctx *ctx)
{
387 388
	if (!ctx)
		return;
389 390 391 392 393 394 395
	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
	kfree(ctx);
}

struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
					      struct xhci_container_ctx *ctx)
{
396 397 398
	if (ctx->type != XHCI_CTX_TYPE_INPUT)
		return NULL;

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
	return (struct xhci_input_control_ctx *)ctx->bytes;
}

struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
					struct xhci_container_ctx *ctx)
{
	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
		return (struct xhci_slot_ctx *)ctx->bytes;

	return (struct xhci_slot_ctx *)
		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
}

struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
				    struct xhci_container_ctx *ctx,
				    unsigned int ep_index)
{
	/* increment ep index by offset of start of ep ctx array */
	ep_index++;
	if (ctx->type == XHCI_CTX_TYPE_INPUT)
		ep_index++;

	return (struct xhci_ep_ctx *)
		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
}

425 426 427

/***************** Streams structures manipulation *************************/

428
static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
429 430 431 432 433 434
		unsigned int num_stream_ctxs,
		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
{
	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);

	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
435
		dma_free_coherent(&pdev->dev,
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
				stream_ctx, dma);
	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
		return dma_pool_free(xhci->small_streams_pool,
				stream_ctx, dma);
	else
		return dma_pool_free(xhci->medium_streams_pool,
				stream_ctx, dma);
}

/*
 * The stream context array for each endpoint with bulk streams enabled can
 * vary in size, based on:
 *  - how many streams the endpoint supports,
 *  - the maximum primary stream array size the host controller supports,
 *  - and how many streams the device driver asks for.
 *
 * The stream context array must be a power of 2, and can be as small as
 * 64 bytes or as large as 1MB.
 */
456
static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
457 458 459 460 461 462
		unsigned int num_stream_ctxs, dma_addr_t *dma,
		gfp_t mem_flags)
{
	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);

	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
463
		return dma_alloc_coherent(&pdev->dev,
464
				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
465
				dma, mem_flags);
466 467 468 469 470 471 472 473
	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
		return dma_pool_alloc(xhci->small_streams_pool,
				mem_flags, dma);
	else
		return dma_pool_alloc(xhci->medium_streams_pool,
				mem_flags, dma);
}

474 475 476 477 478 479
struct xhci_ring *xhci_dma_to_transfer_ring(
		struct xhci_virt_ep *ep,
		u64 address)
{
	if (ep->ep_state & EP_HAS_STREAMS)
		return radix_tree_lookup(&ep->stream_info->trb_address_map,
480
				address >> TRB_SEGMENT_SHIFT);
481 482 483 484
	return ep->ring;
}

/* Only use this when you know stream_info is valid */
485
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
486
static struct xhci_ring *dma_to_stream_ring(
487 488 489 490
		struct xhci_stream_info *stream_info,
		u64 address)
{
	return radix_tree_lookup(&stream_info->trb_address_map,
491
			address >> TRB_SEGMENT_SHIFT);
492 493 494
}
#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
struct xhci_ring *xhci_stream_id_to_ring(
		struct xhci_virt_device *dev,
		unsigned int ep_index,
		unsigned int stream_id)
{
	struct xhci_virt_ep *ep = &dev->eps[ep_index];

	if (stream_id == 0)
		return ep->ring;
	if (!ep->stream_info)
		return NULL;

	if (stream_id > ep->stream_info->num_streams)
		return NULL;
	return ep->stream_info->stream_rings[stream_id];
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
static int xhci_test_radix_tree(struct xhci_hcd *xhci,
		unsigned int num_streams,
		struct xhci_stream_info *stream_info)
{
	u32 cur_stream;
	struct xhci_ring *cur_ring;
	u64 addr;

	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		struct xhci_ring *mapped_ring;
		int trb_size = sizeof(union xhci_trb);

		cur_ring = stream_info->stream_rings[cur_stream];
		for (addr = cur_ring->first_seg->dma;
527
				addr < cur_ring->first_seg->dma + TRB_SEGMENT_SIZE;
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
				addr += trb_size) {
			mapped_ring = dma_to_stream_ring(stream_info, addr);
			if (cur_ring != mapped_ring) {
				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
						"didn't map to stream ID %u; "
						"mapped to ring %p\n",
						(unsigned long long) addr,
						cur_stream,
						mapped_ring);
				return -EINVAL;
			}
		}
		/* One TRB after the end of the ring segment shouldn't return a
		 * pointer to the current ring (although it may be a part of a
		 * different ring).
		 */
		mapped_ring = dma_to_stream_ring(stream_info, addr);
		if (mapped_ring != cur_ring) {
			/* One TRB before should also fail */
			addr = cur_ring->first_seg->dma - trb_size;
			mapped_ring = dma_to_stream_ring(stream_info, addr);
		}
		if (mapped_ring == cur_ring) {
			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
					"mapped to valid stream ID %u; "
					"mapped ring = %p\n",
					(unsigned long long) addr,
					cur_stream,
					mapped_ring);
			return -EINVAL;
		}
	}
	return 0;
}
#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */

/*
 * Change an endpoint's internal structure so it supports stream IDs.  The
 * number of requested streams includes stream 0, which cannot be used by device
 * drivers.
 *
 * The number of stream contexts in the stream context array may be bigger than
 * the number of streams the driver wants to use.  This is because the number of
 * stream context array entries must be a power of two.
 *
 * We need a radix tree for mapping physical addresses of TRBs to which stream
 * ID they belong to.  We need to do this because the host controller won't tell
 * us which stream ring the TRB came from.  We could store the stream ID in an
 * event data TRB, but that doesn't help us for the cancellation case, since the
 * endpoint may stop before it reaches that event data TRB.
 *
 * The radix tree maps the upper portion of the TRB DMA address to a ring
 * segment that has the same upper portion of DMA addresses.  For example, say I
 * have segments of size 1KB, that are always 64-byte aligned.  A segment may
 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 * pass the radix tree a key to get the right stream ID:
 *
 * 	0x10c90fff >> 10 = 0x43243
 * 	0x10c912c0 >> 10 = 0x43244
 * 	0x10c91400 >> 10 = 0x43245
 *
 * Obviously, only those TRBs with DMA addresses that are within the segment
 * will make the radix tree return the stream ID for that ring.
 *
 * Caveats for the radix tree:
 *
 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 * extended systems (where the DMA address can be bigger than 32-bits),
 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 */
struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
		unsigned int num_stream_ctxs,
		unsigned int num_streams, gfp_t mem_flags)
{
	struct xhci_stream_info *stream_info;
	u32 cur_stream;
	struct xhci_ring *cur_ring;
	unsigned long key;
	u64 addr;
	int ret;

	xhci_dbg(xhci, "Allocating %u streams and %u "
			"stream context array entries.\n",
			num_streams, num_stream_ctxs);
	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
		return NULL;
	}
	xhci->cmd_ring_reserved_trbs++;

	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
	if (!stream_info)
		goto cleanup_trbs;

	stream_info->num_streams = num_streams;
	stream_info->num_stream_ctxs = num_stream_ctxs;

	/* Initialize the array of virtual pointers to stream rings. */
	stream_info->stream_rings = kzalloc(
			sizeof(struct xhci_ring *)*num_streams,
			mem_flags);
	if (!stream_info->stream_rings)
		goto cleanup_info;

	/* Initialize the array of DMA addresses for stream rings for the HW. */
	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
			num_stream_ctxs, &stream_info->ctx_array_dma,
			mem_flags);
	if (!stream_info->stream_ctx_array)
		goto cleanup_ctx;
	memset(stream_info->stream_ctx_array, 0,
			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);

	/* Allocate everything needed to free the stream rings later */
	stream_info->free_streams_command =
		xhci_alloc_command(xhci, true, true, mem_flags);
	if (!stream_info->free_streams_command)
		goto cleanup_ctx;

	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);

	/* Allocate rings for all the streams that the driver will use,
	 * and add their segment DMA addresses to the radix tree.
	 * Stream 0 is reserved.
	 */
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		stream_info->stream_rings[cur_stream] =
660
			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
661 662 663
		cur_ring = stream_info->stream_rings[cur_stream];
		if (!cur_ring)
			goto cleanup_rings;
664
		cur_ring->stream_id = cur_stream;
665 666 667 668
		/* Set deq ptr, cycle bit, and stream context type */
		addr = cur_ring->first_seg->dma |
			SCT_FOR_CTX(SCT_PRI_TR) |
			cur_ring->cycle_state;
669 670
		stream_info->stream_ctx_array[cur_stream].stream_ring =
			cpu_to_le64(addr);
671 672 673 674
		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
				cur_stream, (unsigned long long) addr);

		key = (unsigned long)
675
			(cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
		ret = radix_tree_insert(&stream_info->trb_address_map,
				key, cur_ring);
		if (ret) {
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
			goto cleanup_rings;
		}
	}
	/* Leave the other unused stream ring pointers in the stream context
	 * array initialized to zero.  This will cause the xHC to give us an
	 * error if the device asks for a stream ID we don't have setup (if it
	 * was any other way, the host controller would assume the ring is
	 * "empty" and wait forever for data to be queued to that stream ID).
	 */
#if XHCI_DEBUG
	/* Do a little test on the radix tree to make sure it returns the
	 * correct values.
	 */
	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
		goto cleanup_rings;
#endif

	return stream_info;

cleanup_rings:
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			addr = cur_ring->first_seg->dma;
			radix_tree_delete(&stream_info->trb_address_map,
706
					addr >> TRB_SEGMENT_SHIFT);
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}
	xhci_free_command(xhci, stream_info->free_streams_command);
cleanup_ctx:
	kfree(stream_info->stream_rings);
cleanup_info:
	kfree(stream_info);
cleanup_trbs:
	xhci->cmd_ring_reserved_trbs--;
	return NULL;
}
/*
 * Sets the MaxPStreams field and the Linear Stream Array field.
 * Sets the dequeue pointer to the stream context array.
 */
void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
		struct xhci_ep_ctx *ep_ctx,
		struct xhci_stream_info *stream_info)
{
	u32 max_primary_streams;
	/* MaxPStreams is the number of stream context array entries, not the
	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
	 */
	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
			1 << (max_primary_streams + 1));
M
Matt Evans 已提交
736 737 738 739
	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
				       | EP_HAS_LSA);
	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
740 741 742 743 744 745 746 747 748 749 750 751
}

/*
 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 * not at the beginning of the ring).
 */
void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
		struct xhci_ep_ctx *ep_ctx,
		struct xhci_virt_ep *ep)
{
	dma_addr_t addr;
M
Matt Evans 已提交
752
	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
753
	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
M
Matt Evans 已提交
754
	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
}

/* Frees all stream contexts associated with the endpoint,
 *
 * Caller should fix the endpoint context streams fields.
 */
void xhci_free_stream_info(struct xhci_hcd *xhci,
		struct xhci_stream_info *stream_info)
{
	int cur_stream;
	struct xhci_ring *cur_ring;
	dma_addr_t addr;

	if (!stream_info)
		return;

	for (cur_stream = 1; cur_stream < stream_info->num_streams;
			cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			addr = cur_ring->first_seg->dma;
			radix_tree_delete(&stream_info->trb_address_map,
777
					addr >> TRB_SEGMENT_SHIFT);
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}
	xhci_free_command(xhci, stream_info->free_streams_command);
	xhci->cmd_ring_reserved_trbs--;
	if (stream_info->stream_ctx_array)
		xhci_free_stream_ctx(xhci,
				stream_info->num_stream_ctxs,
				stream_info->stream_ctx_array,
				stream_info->ctx_array_dma);

	if (stream_info)
		kfree(stream_info->stream_rings);
	kfree(stream_info);
}


/***************** Device context manipulation *************************/

798 799 800 801 802 803 804 805 806
static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
		struct xhci_virt_ep *ep)
{
	init_timer(&ep->stop_cmd_timer);
	ep->stop_cmd_timer.data = (unsigned long) ep;
	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
	ep->xhci = xhci;
}

807 808 809 810 811
static void xhci_free_tt_info(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		int slot_id)
{
	struct list_head *tt_list_head;
812 813
	struct xhci_tt_bw_info *tt_info, *next;
	bool slot_found = false;
814 815 816 817 818 819 820 821 822 823 824

	/* If the device never made it past the Set Address stage,
	 * it may not have the real_port set correctly.
	 */
	if (virt_dev->real_port == 0 ||
			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
		xhci_dbg(xhci, "Bad real port.\n");
		return;
	}

	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
825 826 827 828 829 830 831
	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
		/* Multi-TT hubs will have more than one entry */
		if (tt_info->slot_id == slot_id) {
			slot_found = true;
			list_del(&tt_info->tt_list);
			kfree(tt_info);
		} else if (slot_found) {
832
			break;
833
		}
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
	}
}

int xhci_alloc_tt_info(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_device *hdev,
		struct usb_tt *tt, gfp_t mem_flags)
{
	struct xhci_tt_bw_info		*tt_info;
	unsigned int			num_ports;
	int				i, j;

	if (!tt->multi)
		num_ports = 1;
	else
		num_ports = hdev->maxchild;

	for (i = 0; i < num_ports; i++, tt_info++) {
		struct xhci_interval_bw_table *bw_table;

		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
		if (!tt_info)
			goto free_tts;
		INIT_LIST_HEAD(&tt_info->tt_list);
		list_add(&tt_info->tt_list,
				&xhci->rh_bw[virt_dev->real_port - 1].tts);
		tt_info->slot_id = virt_dev->udev->slot_id;
		if (tt->multi)
			tt_info->ttport = i+1;
		bw_table = &tt_info->bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
	}
	return 0;

free_tts:
	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
	return -ENOMEM;
}


/* All the xhci_tds in the ring's TD list should be freed at this point.
 * Should be called with xhci->lock held if there is any chance the TT lists
 * will be manipulated by the configure endpoint, allocate device, or update
 * hub functions while this function is removing the TT entries from the list.
 */
880 881 882 883
void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
{
	struct xhci_virt_device *dev;
	int i;
884
	int old_active_eps = 0;
885 886 887 888 889 890

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || !xhci->devs[slot_id])
		return;

	dev = xhci->devs[slot_id];
891
	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
892 893 894
	if (!dev)
		return;

895 896 897
	if (dev->tt_info)
		old_active_eps = dev->tt_info->active_eps;

898
	for (i = 0; i < 31; ++i) {
899 900
		if (dev->eps[i].ring)
			xhci_ring_free(xhci, dev->eps[i].ring);
901 902 903
		if (dev->eps[i].stream_info)
			xhci_free_stream_info(xhci,
					dev->eps[i].stream_info);
904 905 906 907 908 909 910 911 912
		/* Endpoints on the TT/root port lists should have been removed
		 * when usb_disable_device() was called for the device.
		 * We can't drop them anyway, because the udev might have gone
		 * away by this point, and we can't tell what speed it was.
		 */
		if (!list_empty(&dev->eps[i].bw_endpoint_list))
			xhci_warn(xhci, "Slot %u endpoint %u "
					"not removed from BW list!\n",
					slot_id, i);
913
	}
914 915
	/* If this is a hub, free the TT(s) from the TT list */
	xhci_free_tt_info(xhci, dev, slot_id);
916 917
	/* If necessary, update the number of active TTs on this root port */
	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
918

919 920 921 922 923 924
	if (dev->ring_cache) {
		for (i = 0; i < dev->num_rings_cached; i++)
			xhci_ring_free(xhci, dev->ring_cache[i]);
		kfree(dev->ring_cache);
	}

925
	if (dev->in_ctx)
926
		xhci_free_container_ctx(xhci, dev->in_ctx);
927
	if (dev->out_ctx)
928 929
		xhci_free_container_ctx(xhci, dev->out_ctx);

930
	kfree(xhci->devs[slot_id]);
931
	xhci->devs[slot_id] = NULL;
932 933 934 935 936 937
}

int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
		struct usb_device *udev, gfp_t flags)
{
	struct xhci_virt_device *dev;
938
	int i;
939 940 941 942 943 944 945 946 947 948 949 950

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || xhci->devs[slot_id]) {
		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
		return 0;
	}

	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
	if (!xhci->devs[slot_id])
		return 0;
	dev = xhci->devs[slot_id];

951 952
	/* Allocate the (output) device context that will be used in the HC. */
	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
953 954
	if (!dev->out_ctx)
		goto fail;
955

956
	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
957
			(unsigned long long)dev->out_ctx->dma);
958 959

	/* Allocate the (input) device context for address device command */
960
	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
961 962
	if (!dev->in_ctx)
		goto fail;
963

964
	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
965
			(unsigned long long)dev->in_ctx->dma);
966

967 968 969
	/* Initialize the cancellation list and watchdog timers for each ep */
	for (i = 0; i < 31; i++) {
		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
970
		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
971
		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
972
	}
973

974
	/* Allocate endpoint 0 ring */
975
	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
976
	if (!dev->eps[0].ring)
977 978
		goto fail;

979 980 981 982 983 984 985 986
	/* Allocate pointers to the ring cache */
	dev->ring_cache = kzalloc(
			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
			flags);
	if (!dev->ring_cache)
		goto fail;
	dev->num_rings_cached = 0;

987
	init_completion(&dev->cmd_completion);
988
	INIT_LIST_HEAD(&dev->cmd_list);
989
	dev->udev = udev;
990

991
	/* Point to output device context in dcbaa. */
M
Matt Evans 已提交
992
	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
993
	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
M
Matt Evans 已提交
994 995
		 slot_id,
		 &xhci->dcbaa->dev_context_ptrs[slot_id],
996
		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
997 998 999 1000 1001 1002 1003

	return 1;
fail:
	xhci_free_virt_device(xhci, slot_id);
	return 0;
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
		struct usb_device *udev)
{
	struct xhci_virt_device *virt_dev;
	struct xhci_ep_ctx	*ep0_ctx;
	struct xhci_ring	*ep_ring;

	virt_dev = xhci->devs[udev->slot_id];
	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
	ep_ring = virt_dev->eps[0].ring;
	/*
	 * FIXME we don't keep track of the dequeue pointer very well after a
	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
	 * host to our enqueue pointer.  This should only be called after a
	 * configured device has reset, so all control transfers should have
	 * been completed or cancelled before the reset.
	 */
M
Matt Evans 已提交
1021 1022 1023
	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
							ep_ring->enqueue)
				   | ep_ring->cycle_state);
1024 1025
}

1026 1027 1028 1029 1030 1031 1032 1033 1034
/*
 * The xHCI roothub may have ports of differing speeds in any order in the port
 * status registers.  xhci->port_array provides an array of the port speed for
 * each offset into the port status registers.
 *
 * The xHCI hardware wants to know the roothub port number that the USB device
 * is attached to (or the roothub port its ancestor hub is attached to).  All we
 * know is the index of that port under either the USB 2.0 or the USB 3.0
 * roothub, but that doesn't give us the real index into the HW port status
1035
 * registers. Call xhci_find_raw_port_number() to get real index.
1036 1037 1038 1039 1040
 */
static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
		struct usb_device *udev)
{
	struct usb_device *top_dev;
1041 1042 1043 1044 1045 1046
	struct usb_hcd *hcd;

	if (udev->speed == USB_SPEED_SUPER)
		hcd = xhci->shared_hcd;
	else
		hcd = xhci->main_hcd;
1047 1048 1049 1050 1051

	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
			top_dev = top_dev->parent)
		/* Found device below root hub */;

1052
	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1053 1054
}

1055 1056 1057 1058 1059
/* Setup an xHCI virtual device for a Set Address command */
int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
{
	struct xhci_virt_device *dev;
	struct xhci_ep_ctx	*ep0_ctx;
1060
	struct xhci_slot_ctx    *slot_ctx;
1061
	u32			port_num;
1062
	u32			max_packets;
1063
	struct usb_device *top_dev;
1064 1065 1066 1067 1068 1069 1070 1071

	dev = xhci->devs[udev->slot_id];
	/* Slot ID 0 is reserved */
	if (udev->slot_id == 0 || !dev) {
		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
				udev->slot_id);
		return -EINVAL;
	}
1072 1073
	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1074 1075

	/* 3) Only the control endpoint is valid - one endpoint context */
1076
	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1077 1078
	switch (udev->speed) {
	case USB_SPEED_SUPER:
1079
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1080
		max_packets = MAX_PACKET(512);
1081 1082
		break;
	case USB_SPEED_HIGH:
1083
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1084
		max_packets = MAX_PACKET(64);
1085
		break;
1086
	/* USB core guesses at a 64-byte max packet first for FS devices */
1087
	case USB_SPEED_FULL:
1088
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1089
		max_packets = MAX_PACKET(64);
1090 1091
		break;
	case USB_SPEED_LOW:
1092
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1093
		max_packets = MAX_PACKET(8);
1094
		break;
1095
	case USB_SPEED_WIRELESS:
1096 1097 1098 1099 1100
		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
		return -EINVAL;
		break;
	default:
		/* Speed was set earlier, this shouldn't happen. */
1101
		return -EINVAL;
1102 1103
	}
	/* Find the root hub port this device is under */
1104 1105 1106
	port_num = xhci_find_real_port_number(xhci, udev);
	if (!port_num)
		return -EINVAL;
1107
	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1108
	/* Set the port number in the virtual_device to the faked port number */
1109 1110 1111
	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
			top_dev = top_dev->parent)
		/* Found device below root hub */;
1112
	dev->fake_port = top_dev->portnum;
1113
	dev->real_port = port_num;
1114
	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1115
	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1116

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	/* Find the right bandwidth table that this device will be a part of.
	 * If this is a full speed device attached directly to a root port (or a
	 * decendent of one), it counts as a primary bandwidth domain, not a
	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
	 * will never be created for the HS root hub.
	 */
	if (!udev->tt || !udev->tt->hub->parent) {
		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
	} else {
		struct xhci_root_port_bw_info *rh_bw;
		struct xhci_tt_bw_info *tt_bw;

		rh_bw = &xhci->rh_bw[port_num - 1];
		/* Find the right TT. */
		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
			if (tt_bw->slot_id != udev->tt->hub->slot_id)
				continue;

			if (!dev->udev->tt->multi ||
					(udev->tt->multi &&
					 tt_bw->ttport == dev->udev->ttport)) {
				dev->bw_table = &tt_bw->bw_table;
				dev->tt_info = tt_bw;
				break;
			}
		}
		if (!dev->tt_info)
			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
	}

S
Sarah Sharp 已提交
1147 1148
	/* Is this a LS/FS device under an external HS hub? */
	if (udev->tt && udev->tt->hub->parent) {
M
Matt Evans 已提交
1149 1150
		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
						(udev->ttport << 8));
1151
		if (udev->tt->multi)
M
Matt Evans 已提交
1152
			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1153
	}
1154
	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1155 1156 1157 1158
	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);

	/* Step 4 - ring already allocated */
	/* Step 5 */
M
Matt Evans 已提交
1159
	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1160

1161
	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1162 1163
	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
					 max_packets);
1164

M
Matt Evans 已提交
1165 1166
	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
				   dev->eps[0].ring->cycle_state);
1167 1168 1169 1170 1171 1172

	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */

	return 0;
}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
/*
 * Convert interval expressed as 2^(bInterval - 1) == interval into
 * straight exponent value 2^n == interval.
 *
 */
static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	unsigned int interval;

	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
	if (interval != ep->desc.bInterval - 1)
		dev_warn(&udev->dev,
1186
			 "ep %#x - rounding interval to %d %sframes\n",
1187
			 ep->desc.bEndpointAddress,
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
			 1 << interval,
			 udev->speed == USB_SPEED_FULL ? "" : "micro");

	if (udev->speed == USB_SPEED_FULL) {
		/*
		 * Full speed isoc endpoints specify interval in frames,
		 * not microframes. We are using microframes everywhere,
		 * so adjust accordingly.
		 */
		interval += 3;	/* 1 frame = 2^3 uframes */
	}
1199 1200 1201 1202 1203

	return interval;
}

/*
1204
 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1205 1206
 * microframes, rounded down to nearest power of 2.
 */
1207 1208 1209
static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
		struct usb_host_endpoint *ep, unsigned int desc_interval,
		unsigned int min_exponent, unsigned int max_exponent)
1210 1211 1212
{
	unsigned int interval;

1213 1214 1215
	interval = fls(desc_interval) - 1;
	interval = clamp_val(interval, min_exponent, max_exponent);
	if ((1 << interval) != desc_interval)
1216 1217 1218 1219
		dev_warn(&udev->dev,
			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
			 ep->desc.bEndpointAddress,
			 1 << interval,
1220
			 desc_interval);
1221 1222 1223 1224

	return interval;
}

1225 1226 1227
static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
1228 1229
	if (ep->desc.bInterval == 0)
		return 0;
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	return xhci_microframes_to_exponent(udev, ep,
			ep->desc.bInterval, 0, 15);
}


static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	return xhci_microframes_to_exponent(udev, ep,
			ep->desc.bInterval * 8, 3, 10);
}

1242 1243 1244 1245 1246 1247 1248 1249
/* Return the polling or NAK interval.
 *
 * The polling interval is expressed in "microframes".  If xHCI's Interval field
 * is set to N, it will service the endpoint every 2^(Interval)*125us.
 *
 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
 * is set to 0.
 */
1250
static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1251 1252 1253 1254 1255 1256 1257 1258
		struct usb_host_endpoint *ep)
{
	unsigned int interval = 0;

	switch (udev->speed) {
	case USB_SPEED_HIGH:
		/* Max NAK rate */
		if (usb_endpoint_xfer_control(&ep->desc) ||
1259
		    usb_endpoint_xfer_bulk(&ep->desc)) {
1260
			interval = xhci_parse_microframe_interval(udev, ep);
1261 1262
			break;
		}
1263
		/* Fall through - SS and HS isoc/int have same decoding */
1264

1265 1266
	case USB_SPEED_SUPER:
		if (usb_endpoint_xfer_int(&ep->desc) ||
1267 1268
		    usb_endpoint_xfer_isoc(&ep->desc)) {
			interval = xhci_parse_exponent_interval(udev, ep);
1269 1270
		}
		break;
1271

1272
	case USB_SPEED_FULL:
1273
		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1274 1275 1276 1277
			interval = xhci_parse_exponent_interval(udev, ep);
			break;
		}
		/*
1278
		 * Fall through for interrupt endpoint interval decoding
1279 1280 1281 1282
		 * since it uses the same rules as low speed interrupt
		 * endpoints.
		 */

1283 1284
	case USB_SPEED_LOW:
		if (usb_endpoint_xfer_int(&ep->desc) ||
1285 1286 1287
		    usb_endpoint_xfer_isoc(&ep->desc)) {

			interval = xhci_parse_frame_interval(udev, ep);
1288 1289
		}
		break;
1290

1291 1292 1293 1294 1295 1296
	default:
		BUG();
	}
	return EP_INTERVAL(interval);
}

1297
/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1298 1299 1300 1301
 * High speed endpoint descriptors can define "the number of additional
 * transaction opportunities per microframe", but that goes in the Max Burst
 * endpoint context field.
 */
1302
static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1303 1304
		struct usb_host_endpoint *ep)
{
1305 1306
	if (udev->speed != USB_SPEED_SUPER ||
			!usb_endpoint_xfer_isoc(&ep->desc))
1307
		return 0;
1308
	return ep->ss_ep_comp.bmAttributes;
1309 1310
}

1311
static u32 xhci_get_endpoint_type(struct usb_device *udev,
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
		struct usb_host_endpoint *ep)
{
	int in;
	u32 type;

	in = usb_endpoint_dir_in(&ep->desc);
	if (usb_endpoint_xfer_control(&ep->desc)) {
		type = EP_TYPE(CTRL_EP);
	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
		if (in)
			type = EP_TYPE(BULK_IN_EP);
		else
			type = EP_TYPE(BULK_OUT_EP);
	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
		if (in)
			type = EP_TYPE(ISOC_IN_EP);
		else
			type = EP_TYPE(ISOC_OUT_EP);
	} else if (usb_endpoint_xfer_int(&ep->desc)) {
		if (in)
			type = EP_TYPE(INT_IN_EP);
		else
			type = EP_TYPE(INT_OUT_EP);
	} else {
1336
		type = 0;
1337 1338 1339 1340
	}
	return type;
}

1341 1342 1343 1344
/* Return the maximum endpoint service interval time (ESIT) payload.
 * Basically, this is the maxpacket size, multiplied by the burst size
 * and mult size.
 */
1345
static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
		struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	int max_burst;
	int max_packet;

	/* Only applies for interrupt or isochronous endpoints */
	if (usb_endpoint_xfer_control(&ep->desc) ||
			usb_endpoint_xfer_bulk(&ep->desc))
		return 0;

1357
	if (udev->speed == USB_SPEED_SUPER)
1358
		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1359

1360 1361
	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1362 1363 1364 1365
	/* A 0 in max burst means 1 transfer per ESIT */
	return max_packet * (max_burst + 1);
}

1366 1367 1368
/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
 * Drivers will have to call usb_alloc_streams() to do that.
 */
1369 1370 1371
int xhci_endpoint_init(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_device *udev,
1372 1373
		struct usb_host_endpoint *ep,
		gfp_t mem_flags)
1374 1375 1376 1377 1378 1379
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;
	struct xhci_ring *ep_ring;
	unsigned int max_packet;
	unsigned int max_burst;
A
Andiry Xu 已提交
1380
	enum xhci_ring_type type;
1381
	u32 max_esit_payload;
1382
	u32 endpoint_type;
1383 1384

	ep_index = xhci_get_endpoint_index(&ep->desc);
1385
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1386

1387 1388 1389 1390 1391
	endpoint_type = xhci_get_endpoint_type(udev, ep);
	if (!endpoint_type)
		return -EINVAL;
	ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);

A
Andiry Xu 已提交
1392
	type = usb_endpoint_type(&ep->desc);
1393
	/* Set up the endpoint ring */
A
Andiry Xu 已提交
1394
	virt_dev->eps[ep_index].new_ring =
1395
		xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1396 1397 1398 1399 1400 1401 1402 1403
	if (!virt_dev->eps[ep_index].new_ring) {
		/* Attempt to use the ring cache */
		if (virt_dev->num_rings_cached == 0)
			return -ENOMEM;
		virt_dev->eps[ep_index].new_ring =
			virt_dev->ring_cache[virt_dev->num_rings_cached];
		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
		virt_dev->num_rings_cached--;
1404
		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1405
					1, type);
1406
	}
1407
	virt_dev->eps[ep_index].skip = false;
1408
	ep_ring = virt_dev->eps[ep_index].new_ring;
M
Matt Evans 已提交
1409
	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1410

M
Matt Evans 已提交
1411 1412
	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1413 1414 1415

	/* FIXME dig Mult and streams info out of ep companion desc */

1416
	/* Allow 3 retries for everything but isoc;
1417
	 * CErr shall be set to 0 for Isoch endpoints.
1418
	 */
1419
	if (!usb_endpoint_xfer_isoc(&ep->desc))
1420
		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1421
	else
1422
		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1423 1424

	/* Set the max packet size and max burst */
1425 1426
	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
	max_burst = 0;
1427 1428
	switch (udev->speed) {
	case USB_SPEED_SUPER:
S
Sarah Sharp 已提交
1429
		/* dig out max burst from ep companion desc */
1430
		max_burst = ep->ss_ep_comp.bMaxBurst;
1431 1432
		break;
	case USB_SPEED_HIGH:
1433 1434 1435
		/* Some devices get this wrong */
		if (usb_endpoint_xfer_bulk(&ep->desc))
			max_packet = 512;
1436 1437 1438 1439 1440
		/* bits 11:12 specify the number of additional transaction
		 * opportunities per microframe (USB 2.0, section 9.6.6)
		 */
		if (usb_endpoint_xfer_isoc(&ep->desc) ||
				usb_endpoint_xfer_int(&ep->desc)) {
1441
			max_burst = (usb_endpoint_maxp(&ep->desc)
M
Matt Evans 已提交
1442
				     & 0x1800) >> 11;
1443
		}
1444
		break;
1445 1446 1447 1448 1449 1450
	case USB_SPEED_FULL:
	case USB_SPEED_LOW:
		break;
	default:
		BUG();
	}
1451 1452
	ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
			MAX_BURST(max_burst));
1453
	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
M
Matt Evans 已提交
1454
	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469

	/*
	 * XXX no idea how to calculate the average TRB buffer length for bulk
	 * endpoints, as the driver gives us no clue how big each scatter gather
	 * list entry (or buffer) is going to be.
	 *
	 * For isochronous and interrupt endpoints, we set it to the max
	 * available, until we have new API in the USB core to allow drivers to
	 * declare how much bandwidth they actually need.
	 *
	 * Normally, it would be calculated by taking the total of the buffer
	 * lengths in the TD and then dividing by the number of TRBs in a TD,
	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
	 * use Event Data TRBs, and we don't chain in a link TRB on short
	 * transfers, we're basically dividing by 1.
1470 1471 1472
	 *
	 * xHCI 1.0 specification indicates that the Average TRB Length should
	 * be set to 8 for control endpoints.
1473
	 */
1474 1475 1476 1477 1478
	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
	else
		ep_ctx->tx_info |=
			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1479

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
	/* FIXME Debug endpoint context */
	return 0;
}

void xhci_endpoint_zero(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_host_endpoint *ep)
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;

	ep_index = xhci_get_endpoint_index(&ep->desc);
1492
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1493 1494 1495

	ep_ctx->ep_info = 0;
	ep_ctx->ep_info2 = 0;
1496
	ep_ctx->deq = 0;
1497 1498 1499 1500 1501 1502
	ep_ctx->tx_info = 0;
	/* Don't free the endpoint ring until the set interface or configuration
	 * request succeeds.
	 */
}

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
{
	bw_info->ep_interval = 0;
	bw_info->mult = 0;
	bw_info->num_packets = 0;
	bw_info->max_packet_size = 0;
	bw_info->type = 0;
	bw_info->max_esit_payload = 0;
}

void xhci_update_bw_info(struct xhci_hcd *xhci,
		struct xhci_container_ctx *in_ctx,
		struct xhci_input_control_ctx *ctrl_ctx,
		struct xhci_virt_device *virt_dev)
{
	struct xhci_bw_info *bw_info;
	struct xhci_ep_ctx *ep_ctx;
	unsigned int ep_type;
	int i;

	for (i = 1; i < 31; ++i) {
		bw_info = &virt_dev->eps[i].bw_info;

		/* We can't tell what endpoint type is being dropped, but
		 * unconditionally clearing the bandwidth info for non-periodic
		 * endpoints should be harmless because the info will never be
		 * set in the first place.
		 */
		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
			/* Dropped endpoint */
			xhci_clear_endpoint_bw_info(bw_info);
			continue;
		}

		if (EP_IS_ADDED(ctrl_ctx, i)) {
			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));

			/* Ignore non-periodic endpoints */
			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
					ep_type != ISOC_IN_EP &&
					ep_type != INT_IN_EP)
				continue;

			/* Added or changed endpoint */
			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
					le32_to_cpu(ep_ctx->ep_info));
1550 1551 1552
			/* Number of packets and mult are zero-based in the
			 * input context, but we want one-based for the
			 * interval table.
1553
			 */
1554 1555
			bw_info->mult = CTX_TO_EP_MULT(
					le32_to_cpu(ep_ctx->ep_info)) + 1;
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
			bw_info->num_packets = CTX_TO_MAX_BURST(
					le32_to_cpu(ep_ctx->ep_info2)) + 1;
			bw_info->max_packet_size = MAX_PACKET_DECODED(
					le32_to_cpu(ep_ctx->ep_info2));
			bw_info->type = ep_type;
			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
					le32_to_cpu(ep_ctx->tx_info));
		}
	}
}

1567 1568 1569 1570 1571
/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.
 */
void xhci_endpoint_copy(struct xhci_hcd *xhci,
1572 1573 1574
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx,
		unsigned int ep_index)
1575 1576 1577 1578
{
	struct xhci_ep_ctx *out_ep_ctx;
	struct xhci_ep_ctx *in_ep_ctx;

1579 1580
	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592

	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
	in_ep_ctx->deq = out_ep_ctx->deq;
	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
}

/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.  Only the context entries field matters,
 * but we'll copy the whole thing anyway.
 */
1593 1594 1595
void xhci_slot_copy(struct xhci_hcd *xhci,
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx)
1596 1597 1598 1599
{
	struct xhci_slot_ctx *in_slot_ctx;
	struct xhci_slot_ctx *out_slot_ctx;

1600 1601
	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1602 1603 1604 1605 1606 1607 1608

	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
}

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
{
	int i;
	struct device *dev = xhci_to_hcd(xhci)->self.controller;
	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);

	if (!num_sp)
		return 0;

	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
	if (!xhci->scratchpad)
		goto fail_sp;

1625
	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1626
				     num_sp * sizeof(u64),
1627
				     &xhci->scratchpad->sp_dma, flags);
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	if (!xhci->scratchpad->sp_array)
		goto fail_sp2;

	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
	if (!xhci->scratchpad->sp_buffers)
		goto fail_sp3;

	xhci->scratchpad->sp_dma_buffers =
		kzalloc(sizeof(dma_addr_t) * num_sp, flags);

	if (!xhci->scratchpad->sp_dma_buffers)
		goto fail_sp4;

M
Matt Evans 已提交
1641
	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1642 1643
	for (i = 0; i < num_sp; i++) {
		dma_addr_t dma;
1644 1645
		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
				flags);
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
		if (!buf)
			goto fail_sp5;

		xhci->scratchpad->sp_array[i] = dma;
		xhci->scratchpad->sp_buffers[i] = buf;
		xhci->scratchpad->sp_dma_buffers[i] = dma;
	}

	return 0;

 fail_sp5:
	for (i = i - 1; i >= 0; i--) {
1658
		dma_free_coherent(dev, xhci->page_size,
1659 1660 1661 1662 1663 1664 1665 1666 1667
				    xhci->scratchpad->sp_buffers[i],
				    xhci->scratchpad->sp_dma_buffers[i]);
	}
	kfree(xhci->scratchpad->sp_dma_buffers);

 fail_sp4:
	kfree(xhci->scratchpad->sp_buffers);

 fail_sp3:
1668
	dma_free_coherent(dev, num_sp * sizeof(u64),
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);

 fail_sp2:
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;

 fail_sp:
	return -ENOMEM;
}

static void scratchpad_free(struct xhci_hcd *xhci)
{
	int num_sp;
	int i;
	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);

	if (!xhci->scratchpad)
		return;

	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

	for (i = 0; i < num_sp; i++) {
1692
		dma_free_coherent(&pdev->dev, xhci->page_size,
1693 1694 1695 1696 1697
				    xhci->scratchpad->sp_buffers[i],
				    xhci->scratchpad->sp_dma_buffers[i]);
	}
	kfree(xhci->scratchpad->sp_dma_buffers);
	kfree(xhci->scratchpad->sp_buffers);
1698
	dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1699 1700 1701 1702 1703 1704
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;
}

1705
struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1706 1707
		bool allocate_in_ctx, bool allocate_completion,
		gfp_t mem_flags)
1708 1709 1710 1711 1712 1713 1714
{
	struct xhci_command *command;

	command = kzalloc(sizeof(*command), mem_flags);
	if (!command)
		return NULL;

1715 1716 1717 1718 1719 1720 1721 1722
	if (allocate_in_ctx) {
		command->in_ctx =
			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
					mem_flags);
		if (!command->in_ctx) {
			kfree(command);
			return NULL;
		}
1723
	}
1724 1725 1726 1727 1728 1729

	if (allocate_completion) {
		command->completion =
			kzalloc(sizeof(struct completion), mem_flags);
		if (!command->completion) {
			xhci_free_container_ctx(xhci, command->in_ctx);
1730
			kfree(command);
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
			return NULL;
		}
		init_completion(command->completion);
	}

	command->status = 0;
	INIT_LIST_HEAD(&command->cmd_list);
	return command;
}

1741 1742
void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
{
A
Andiry Xu 已提交
1743 1744 1745
	if (urb_priv) {
		kfree(urb_priv->td[0]);
		kfree(urb_priv);
1746 1747 1748
	}
}

1749 1750 1751 1752 1753 1754 1755 1756 1757
void xhci_free_command(struct xhci_hcd *xhci,
		struct xhci_command *command)
{
	xhci_free_container_ctx(xhci,
			command->in_ctx);
	kfree(command->completion);
	kfree(command);
}

1758 1759
void xhci_mem_cleanup(struct xhci_hcd *xhci)
{
1760
	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
A
Andiry Xu 已提交
1761
	struct dev_info	*dev_info, *next;
1762
	struct xhci_cd  *cur_cd, *next_cd;
A
Andiry Xu 已提交
1763
	unsigned long	flags;
1764
	int size;
1765
	int i, j, num_ports;
1766 1767 1768 1769

	/* Free the Event Ring Segment Table and the actual Event Ring */
	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
	if (xhci->erst.entries)
1770
		dma_free_coherent(&pdev->dev, size,
1771 1772 1773 1774 1775 1776 1777 1778
				xhci->erst.entries, xhci->erst.erst_dma_addr);
	xhci->erst.entries = NULL;
	xhci_dbg(xhci, "Freed ERST\n");
	if (xhci->event_ring)
		xhci_ring_free(xhci, xhci->event_ring);
	xhci->event_ring = NULL;
	xhci_dbg(xhci, "Freed event ring\n");

1779 1780
	if (xhci->lpm_command)
		xhci_free_command(xhci, xhci->lpm_command);
1781
	xhci->cmd_ring_reserved_trbs = 0;
1782 1783 1784 1785
	if (xhci->cmd_ring)
		xhci_ring_free(xhci, xhci->cmd_ring);
	xhci->cmd_ring = NULL;
	xhci_dbg(xhci, "Freed command ring\n");
1786 1787 1788 1789 1790
	list_for_each_entry_safe(cur_cd, next_cd,
			&xhci->cancel_cmd_list, cancel_cmd_list) {
		list_del(&cur_cd->cancel_cmd_list);
		kfree(cur_cd);
	}
1791 1792 1793 1794

	for (i = 1; i < MAX_HC_SLOTS; ++i)
		xhci_free_virt_device(xhci, i);

1795 1796 1797 1798
	if (xhci->segment_pool)
		dma_pool_destroy(xhci->segment_pool);
	xhci->segment_pool = NULL;
	xhci_dbg(xhci, "Freed segment pool\n");
1799 1800 1801 1802 1803 1804

	if (xhci->device_pool)
		dma_pool_destroy(xhci->device_pool);
	xhci->device_pool = NULL;
	xhci_dbg(xhci, "Freed device context pool\n");

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	if (xhci->small_streams_pool)
		dma_pool_destroy(xhci->small_streams_pool);
	xhci->small_streams_pool = NULL;
	xhci_dbg(xhci, "Freed small stream array pool\n");

	if (xhci->medium_streams_pool)
		dma_pool_destroy(xhci->medium_streams_pool);
	xhci->medium_streams_pool = NULL;
	xhci_dbg(xhci, "Freed medium stream array pool\n");

1815
	if (xhci->dcbaa)
1816
		dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1817 1818
				xhci->dcbaa, xhci->dcbaa->dma);
	xhci->dcbaa = NULL;
1819

1820
	scratchpad_free(xhci);
1821

A
Andiry Xu 已提交
1822 1823 1824 1825 1826 1827 1828
	spin_lock_irqsave(&xhci->lock, flags);
	list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
		list_del(&dev_info->list);
		kfree(dev_info);
	}
	spin_unlock_irqrestore(&xhci->lock, flags);

1829 1830 1831
	if (!xhci->rh_bw)
		goto no_bw;

1832 1833 1834 1835 1836 1837 1838
	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
	for (i = 0; i < num_ports; i++) {
		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
			struct list_head *ep = &bwt->interval_bw[j].endpoints;
			while (!list_empty(ep))
				list_del_init(ep->next);
1839 1840 1841
		}
	}

1842 1843 1844 1845 1846 1847
	for (i = 0; i < num_ports; i++) {
		struct xhci_tt_bw_info *tt, *n;
		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
			list_del(&tt->tt_list);
			kfree(tt);
		}
1848 1849
	}

1850
no_bw:
1851 1852
	xhci->num_usb2_ports = 0;
	xhci->num_usb3_ports = 0;
1853
	xhci->num_active_eps = 0;
1854 1855 1856
	kfree(xhci->usb2_ports);
	kfree(xhci->usb3_ports);
	kfree(xhci->port_array);
1857
	kfree(xhci->rh_bw);
1858
	kfree(xhci->ext_caps);
1859

1860 1861
	xhci->page_size = 0;
	xhci->page_shift = 0;
1862
	xhci->bus_state[0].bus_suspended = 0;
1863
	xhci->bus_state[1].bus_suspended = 0;
1864 1865
}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
		struct xhci_segment *input_seg,
		union xhci_trb *start_trb,
		union xhci_trb *end_trb,
		dma_addr_t input_dma,
		struct xhci_segment *result_seg,
		char *test_name, int test_number)
{
	unsigned long long start_dma;
	unsigned long long end_dma;
	struct xhci_segment *seg;

	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);

	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
	if (seg != result_seg) {
		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
				test_name, test_number);
		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
				"input DMA 0x%llx\n",
				input_seg,
				(unsigned long long) input_dma);
		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
				"ending TRB %p (0x%llx DMA)\n",
				start_trb, start_dma,
				end_trb, end_dma);
		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
				result_seg, seg);
		return -1;
	}
	return 0;
}

/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
{
	struct {
		dma_addr_t		input_dma;
		struct xhci_segment	*result_seg;
	} simple_test_vector [] = {
		/* A zeroed DMA field should fail */
		{ 0, NULL },
		/* One TRB before the ring start should fail */
		{ xhci->event_ring->first_seg->dma - 16, NULL },
		/* One byte before the ring start should fail */
		{ xhci->event_ring->first_seg->dma - 1, NULL },
		/* Starting TRB should succeed */
		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
		/* Ending TRB should succeed */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
			xhci->event_ring->first_seg },
		/* One byte after the ring end should fail */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
		/* One TRB after the ring end should fail */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
		/* An address of all ones should fail */
		{ (dma_addr_t) (~0), NULL },
	};
	struct {
		struct xhci_segment	*input_seg;
		union xhci_trb		*start_trb;
		union xhci_trb		*end_trb;
		dma_addr_t		input_dma;
		struct xhci_segment	*result_seg;
	} complex_test_vector [] = {
		/* Test feeding a valid DMA address from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->event_ring->first_seg->trbs,
			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* Test feeding a valid end TRB from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->event_ring->first_seg->trbs,
			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* Test feeding a valid start and end TRB from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->cmd_ring->first_seg->trbs,
			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* TRB in this ring, but after this TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[0],
			.end_trb = &xhci->event_ring->first_seg->trbs[3],
			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but before this TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[3],
			.end_trb = &xhci->event_ring->first_seg->trbs[6],
			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but after this wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but before this wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
			.result_seg = NULL,
		},
		/* TRB not in this ring, and we have a wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
	};

	unsigned int num_tests;
	int i, ret;

1993
	num_tests = ARRAY_SIZE(simple_test_vector);
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	for (i = 0; i < num_tests; i++) {
		ret = xhci_test_trb_in_td(xhci,
				xhci->event_ring->first_seg,
				xhci->event_ring->first_seg->trbs,
				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
				simple_test_vector[i].input_dma,
				simple_test_vector[i].result_seg,
				"Simple", i);
		if (ret < 0)
			return ret;
	}

2006
	num_tests = ARRAY_SIZE(complex_test_vector);
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
	for (i = 0; i < num_tests; i++) {
		ret = xhci_test_trb_in_td(xhci,
				complex_test_vector[i].input_seg,
				complex_test_vector[i].start_trb,
				complex_test_vector[i].end_trb,
				complex_test_vector[i].input_dma,
				complex_test_vector[i].result_seg,
				"Complex", i);
		if (ret < 0)
			return ret;
	}
	xhci_dbg(xhci, "TRB math tests passed.\n");
	return 0;
}

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
{
	u64 temp;
	dma_addr_t deq;

	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
			xhci->event_ring->dequeue);
	if (deq == 0 && !in_interrupt())
		xhci_warn(xhci, "WARN something wrong with SW event ring "
				"dequeue ptr.\n");
	/* Update HC event ring dequeue pointer */
	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
	temp &= ERST_PTR_MASK;
	/* Don't clear the EHB bit (which is RW1C) because
	 * there might be more events to service.
	 */
	temp &= ~ERST_EHB;
	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
			"preserving EHB bit\n");
	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
			&xhci->ir_set->erst_dequeue);
}

2045
static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2046
		__le32 __iomem *addr, u8 major_revision, int max_caps)
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
{
	u32 temp, port_offset, port_count;
	int i;

	if (major_revision > 0x03) {
		xhci_warn(xhci, "Ignoring unknown port speed, "
				"Ext Cap %p, revision = 0x%x\n",
				addr, major_revision);
		/* Ignoring port protocol we can't understand. FIXME */
		return;
	}

	/* Port offset and count in the third dword, see section 7.2 */
	temp = xhci_readl(xhci, addr + 2);
	port_offset = XHCI_EXT_PORT_OFF(temp);
	port_count = XHCI_EXT_PORT_COUNT(temp);
	xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
			"count = %u, revision = 0x%x\n",
			addr, port_offset, port_count, major_revision);
	/* Port count includes the current port offset */
	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
		/* WTF? "Valid values are ‘1’ to MaxPorts" */
		return;
A
Andiry Xu 已提交
2070

2071 2072 2073 2074
	/* cache usb2 port capabilities */
	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
		xhci->ext_caps[xhci->num_ext_caps++] = temp;

A
Andiry Xu 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	/* Check the host's USB2 LPM capability */
	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
			(temp & XHCI_L1C)) {
		xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
		xhci->sw_lpm_support = 1;
	}

	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
		xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
		xhci->sw_lpm_support = 1;
		if (temp & XHCI_HLC) {
			xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
			xhci->hw_lpm_support = 1;
		}
	}

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	port_offset--;
	for (i = port_offset; i < (port_offset + port_count); i++) {
		/* Duplicate entry.  Ignore the port if the revisions differ. */
		if (xhci->port_array[i] != 0) {
			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
					" port %u\n", addr, i);
			xhci_warn(xhci, "Port was marked as USB %u, "
					"duplicated as USB %u\n",
					xhci->port_array[i], major_revision);
			/* Only adjust the roothub port counts if we haven't
			 * found a similar duplicate.
			 */
			if (xhci->port_array[i] != major_revision &&
2104
				xhci->port_array[i] != DUPLICATE_ENTRY) {
2105 2106 2107 2108
				if (xhci->port_array[i] == 0x03)
					xhci->num_usb3_ports--;
				else
					xhci->num_usb2_ports--;
2109
				xhci->port_array[i] = DUPLICATE_ENTRY;
2110 2111
			}
			/* FIXME: Should we disable the port? */
2112
			continue;
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
		}
		xhci->port_array[i] = major_revision;
		if (major_revision == 0x03)
			xhci->num_usb3_ports++;
		else
			xhci->num_usb2_ports++;
	}
	/* FIXME: Should we disable ports not in the Extended Capabilities? */
}

/*
 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
 * specify what speeds each port is supposed to be.  We can't count on the port
 * speed bits in the PORTSC register being correct until a device is connected,
 * but we need to set up the two fake roothubs with the correct number of USB
 * 3.0 and USB 2.0 ports at host controller initialization time.
 */
static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
{
2132 2133
	__le32 __iomem *addr, *tmp_addr;
	u32 offset, tmp_offset;
2134
	unsigned int num_ports;
2135
	int i, j, port_index;
2136
	int cap_count = 0;
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150

	addr = &xhci->cap_regs->hcc_params;
	offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
	if (offset == 0) {
		xhci_err(xhci, "No Extended Capability registers, "
				"unable to set up roothub.\n");
		return -ENODEV;
	}

	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
	if (!xhci->port_array)
		return -ENOMEM;

2151 2152 2153
	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
	if (!xhci->rh_bw)
		return -ENOMEM;
2154 2155 2156
	for (i = 0; i < num_ports; i++) {
		struct xhci_interval_bw_table *bw_table;

2157
		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2158 2159 2160 2161
		bw_table = &xhci->rh_bw[i].bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
	}
2162

2163 2164 2165 2166 2167 2168
	/*
	 * For whatever reason, the first capability offset is from the
	 * capability register base, not from the HCCPARAMS register.
	 * See section 5.3.6 for offset calculation.
	 */
	addr = &xhci->cap_regs->hc_capbase + offset;
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186

	tmp_addr = addr;
	tmp_offset = offset;

	/* count extended protocol capability entries for later caching */
	do {
		u32 cap_id;
		cap_id = xhci_readl(xhci, tmp_addr);
		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
			cap_count++;
		tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
		tmp_addr += tmp_offset;
	} while (tmp_offset);

	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
	if (!xhci->ext_caps)
		return -ENOMEM;

2187 2188 2189 2190 2191 2192
	while (1) {
		u32 cap_id;

		cap_id = xhci_readl(xhci, addr);
		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
			xhci_add_in_port(xhci, num_ports, addr,
2193 2194
					(u8) XHCI_EXT_PORT_MAJOR(cap_id),
					cap_count);
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
		offset = XHCI_EXT_CAPS_NEXT(cap_id);
		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
				== num_ports)
			break;
		/*
		 * Once you're into the Extended Capabilities, the offset is
		 * always relative to the register holding the offset.
		 */
		addr += offset;
	}

	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
		xhci_warn(xhci, "No ports on the roothubs?\n");
		return -ENODEV;
	}
	xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
			xhci->num_usb2_ports, xhci->num_usb3_ports);
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225

	/* Place limits on the number of roothub ports so that the hub
	 * descriptors aren't longer than the USB core will allocate.
	 */
	if (xhci->num_usb3_ports > 15) {
		xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
		xhci->num_usb3_ports = 15;
	}
	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
		xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
				USB_MAXCHILDREN);
		xhci->num_usb2_ports = USB_MAXCHILDREN;
	}

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
	/*
	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
	 * Not sure how the USB core will handle a hub with no ports...
	 */
	if (xhci->num_usb2_ports) {
		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
				xhci->num_usb2_ports, flags);
		if (!xhci->usb2_ports)
			return -ENOMEM;

		port_index = 0;
2237 2238 2239
		for (i = 0; i < num_ports; i++) {
			if (xhci->port_array[i] == 0x03 ||
					xhci->port_array[i] == 0 ||
2240
					xhci->port_array[i] == DUPLICATE_ENTRY)
2241 2242 2243 2244 2245 2246 2247 2248 2249
				continue;

			xhci->usb2_ports[port_index] =
				&xhci->op_regs->port_status_base +
				NUM_PORT_REGS*i;
			xhci_dbg(xhci, "USB 2.0 port at index %u, "
					"addr = %p\n", i,
					xhci->usb2_ports[port_index]);
			port_index++;
2250 2251
			if (port_index == xhci->num_usb2_ports)
				break;
2252
		}
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
	}
	if (xhci->num_usb3_ports) {
		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
				xhci->num_usb3_ports, flags);
		if (!xhci->usb3_ports)
			return -ENOMEM;

		port_index = 0;
		for (i = 0; i < num_ports; i++)
			if (xhci->port_array[i] == 0x03) {
				xhci->usb3_ports[port_index] =
					&xhci->op_regs->port_status_base +
					NUM_PORT_REGS*i;
				xhci_dbg(xhci, "USB 3.0 port at index %u, "
						"addr = %p\n", i,
						xhci->usb3_ports[port_index]);
				port_index++;
2270 2271
				if (port_index == xhci->num_usb3_ports)
					break;
2272 2273 2274 2275
			}
	}
	return 0;
}
2276

2277 2278
int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
{
2279 2280
	dma_addr_t	dma;
	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2281
	unsigned int	val, val2;
2282
	u64		val_64;
2283
	struct xhci_segment	*seg;
2284
	u32 page_size, temp;
2285 2286
	int i;

2287 2288 2289
	INIT_LIST_HEAD(&xhci->lpm_failed_devs);
	INIT_LIST_HEAD(&xhci->cancel_cmd_list);

2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
	for (i = 0; i < 16; i++) {
		if ((0x1 & page_size) != 0)
			break;
		page_size = page_size >> 1;
	}
	if (i < 16)
		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
	else
		xhci_warn(xhci, "WARN: no supported page size\n");
	/* Use 4K pages, since that's common and the minimum the HC supports */
	xhci->page_shift = 12;
	xhci->page_size = 1 << xhci->page_shift;
	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);

	/*
	 * Program the Number of Device Slots Enabled field in the CONFIG
	 * register with the max value of slots the HC can handle.
	 */
	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
			(unsigned int) val);
	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
	val |= (val2 & ~HCS_SLOTS_MASK);
	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
			(unsigned int) val);
	xhci_writel(xhci, val, &xhci->op_regs->config_reg);

2319 2320 2321 2322
	/*
	 * Section 5.4.8 - doorbell array must be
	 * "physically contiguous and 64-byte (cache line) aligned".
	 */
2323 2324
	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
			GFP_KERNEL);
2325 2326 2327 2328
	if (!xhci->dcbaa)
		goto fail;
	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
	xhci->dcbaa->dma = dma;
2329 2330
	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2331
	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2332

2333 2334 2335 2336 2337 2338 2339
	/*
	 * Initialize the ring segment pool.  The ring must be a contiguous
	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
	 * however, the command ring segment needs 64-byte aligned segments,
	 * so we pick the greater alignment need.
	 */
	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2340
			TRB_SEGMENT_SIZE, 64, xhci->page_size);
2341

2342 2343
	/* See Table 46 and Note on Figure 55 */
	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2344
			2112, 64, xhci->page_size);
2345
	if (!xhci->segment_pool || !xhci->device_pool)
2346 2347
		goto fail;

2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
	/* Linear stream context arrays don't have any boundary restrictions,
	 * and only need to be 16-byte aligned.
	 */
	xhci->small_streams_pool =
		dma_pool_create("xHCI 256 byte stream ctx arrays",
			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
	xhci->medium_streams_pool =
		dma_pool_create("xHCI 1KB stream ctx arrays",
			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2358
	 * will be allocated with dma_alloc_coherent()
2359 2360 2361 2362 2363
	 */

	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
		goto fail;

2364
	/* Set up the command ring to have one segments for now. */
2365
	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2366 2367
	if (!xhci->cmd_ring)
		goto fail;
2368 2369 2370
	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2371 2372

	/* Set the address in the Command Ring Control register */
2373 2374 2375
	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2376
		xhci->cmd_ring->cycle_state;
2377 2378
	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2379 2380
	xhci_dbg_cmd_ptrs(xhci);

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
	if (!xhci->lpm_command)
		goto fail;

	/* Reserve one command ring TRB for disabling LPM.
	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
	 * disabling LPM, we only need to reserve one TRB for all devices.
	 */
	xhci->cmd_ring_reserved_trbs++;

2391 2392 2393 2394
	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
	val &= DBOFF_MASK;
	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
			" from cap regs base addr\n", val);
2395
	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2396 2397 2398
	xhci_dbg_regs(xhci);
	xhci_print_run_regs(xhci);
	/* Set ir_set to interrupt register set 0 */
2399
	xhci->ir_set = &xhci->run_regs->ir_set[0];
2400 2401 2402 2403 2404 2405

	/*
	 * Event ring setup: Allocate a normal ring, but also setup
	 * the event ring segment table (ERST).  Section 4.9.3.
	 */
	xhci_dbg(xhci, "// Allocating event ring\n");
2406
	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2407
						flags);
2408 2409
	if (!xhci->event_ring)
		goto fail;
2410 2411
	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
		goto fail;
2412

2413 2414 2415
	xhci->erst.entries = dma_alloc_coherent(dev,
			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
			GFP_KERNEL);
2416 2417
	if (!xhci->erst.entries)
		goto fail;
2418 2419
	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
			(unsigned long long)dma);
2420 2421 2422 2423

	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
	xhci->erst.num_entries = ERST_NUM_SEGS;
	xhci->erst.erst_dma_addr = dma;
2424
	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2425
			xhci->erst.num_entries,
2426 2427
			xhci->erst.entries,
			(unsigned long long)xhci->erst.erst_dma_addr);
2428 2429 2430 2431

	/* set ring base address and size for each segment table entry */
	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
M
Matt Evans 已提交
2432 2433
		entry->seg_addr = cpu_to_le64(seg->dma);
		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
		entry->rsvd = 0;
		seg = seg->next;
	}

	/* set ERST count with the number of entries in the segment table */
	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
	val &= ERST_SIZE_MASK;
	val |= ERST_NUM_SEGS;
	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
			val);
	xhci_writel(xhci, val, &xhci->ir_set->erst_size);

	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
	/* set the segment table base address */
2448 2449
	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
			(unsigned long long)xhci->erst.erst_dma_addr);
2450 2451 2452 2453
	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
	val_64 &= ERST_PTR_MASK;
	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2454 2455

	/* Set the event ring dequeue address */
2456
	xhci_set_hc_event_deq(xhci);
2457
	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2458
	xhci_print_ir_set(xhci, 0);
2459 2460 2461 2462 2463 2464

	/*
	 * XXX: Might need to set the Interrupter Moderation Register to
	 * something other than the default (~1ms minimum between interrupts).
	 * See section 5.5.1.2.
	 */
2465 2466
	init_completion(&xhci->addr_dev);
	for (i = 0; i < MAX_HC_SLOTS; ++i)
2467
		xhci->devs[i] = NULL;
2468
	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2469
		xhci->bus_state[0].resume_done[i] = 0;
2470 2471
		xhci->bus_state[1].resume_done[i] = 0;
	}
2472

2473 2474
	if (scratchpad_alloc(xhci, flags))
		goto fail;
2475 2476
	if (xhci_setup_port_arrays(xhci, flags))
		goto fail;
2477

2478 2479 2480 2481 2482 2483 2484 2485 2486
	/* Enable USB 3.0 device notifications for function remote wake, which
	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
	 * U3 (device suspend).
	 */
	temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
	temp &= ~DEV_NOTE_MASK;
	temp |= DEV_NOTE_FWAKE;
	xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);

2487
	return 0;
2488

2489 2490
fail:
	xhci_warn(xhci, "Couldn't initialize memory\n");
2491 2492
	xhci_halt(xhci);
	xhci_reset(xhci);
2493 2494 2495
	xhci_mem_cleanup(xhci);
	return -ENOMEM;
}