workqueue.c 103.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/hashtable.h>
45

46
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
47

T
Tejun Heo 已提交
48
enum {
49 50
	/*
	 * worker_pool flags
51
	 *
52
	 * A bound pool is either associated or disassociated with its CPU.
53 54 55 56 57 58
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
59
	 * be executing on any CPU.  The pool behaves as an unbound one.
60 61
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
62 63
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
64
	 */
65
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
66
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
67
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
68
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
69

T
Tejun Heo 已提交
70 71 72 73
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
74
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
75
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
76
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
77

78
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
79
				  WORKER_CPU_INTENSIVE,
80

81
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
82

T
Tejun Heo 已提交
83
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
84

85 86 87
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

88 89 90
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
91 92 93 94 95 96 97 98
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
99
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
100
};
L
Linus Torvalds 已提交
101 102

/*
T
Tejun Heo 已提交
103 104
 * Structure fields follow one of the following exclusion rules.
 *
105 106
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
107
 *
108 109 110
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
111
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
112
 *
113 114 115 116
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
117
 *
118 119
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
120
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
121 122
 */

123
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
124

125
struct worker_pool {
126
	spinlock_t		lock;		/* the pool lock */
127
	int			cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
128
	int			id;		/* I: pool ID */
129
	unsigned int		flags;		/* X: flags */
130 131 132

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
133 134

	/* nr_idle includes the ones off idle_list for rebinding */
135 136 137 138 139 140
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

141 142 143 144
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

145
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
146
	struct ida		worker_ida;	/* L: for worker IDs */
147 148 149 150 151 152 153

	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
154 155
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
156
/*
157 158 159 160
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
161
 */
162
struct pool_workqueue {
163
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
164
	struct workqueue_struct *wq;		/* I: the owning workqueue */
165 166 167 168
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
169
	int			nr_active;	/* L: nr of active works */
170
	int			max_active;	/* L: max active works */
171
	struct list_head	delayed_works;	/* L: delayed works */
172
	struct list_head	pwqs_node;	/* I: node on wq->pwqs */
173
	struct list_head	mayday_node;	/* W: node on wq->maydays */
174
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
175

176 177 178 179 180 181 182 183 184
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

L
Linus Torvalds 已提交
185 186 187 188 189
/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
190
	unsigned int		flags;		/* W: WQ_* flags */
191
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
192
	struct list_head	pwqs;		/* I: all pwqs of this wq */
T
Tejun Heo 已提交
193
	struct list_head	list;		/* W: list of all workqueues */
194 195 196 197

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
198
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
199 200 201 202
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

203
	struct list_head	maydays;	/* W: pwqs requesting rescue */
204 205
	struct worker		*rescuer;	/* I: rescue worker */

206
	int			nr_drainers;	/* W: drain in progress */
207
	int			saved_max_active; /* W: saved pwq max_active */
208
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
209
	struct lockdep_map	lockdep_map;
210
#endif
211
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
212 213
};

214 215
static struct kmem_cache *pwq_cache;

216 217
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
218
struct workqueue_struct *system_highpri_wq __read_mostly;
219
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
220
struct workqueue_struct *system_long_wq __read_mostly;
221
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
222
struct workqueue_struct *system_unbound_wq __read_mostly;
223
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
224
struct workqueue_struct *system_freezable_wq __read_mostly;
225
EXPORT_SYMBOL_GPL(system_freezable_wq);
226

227 228 229
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

230
#define for_each_std_worker_pool(pool, cpu)				\
T
Tejun Heo 已提交
231 232
	for ((pool) = &std_worker_pools(cpu)[0];			\
	     (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
233

234 235
#define for_each_busy_worker(worker, i, pool)				\
	hash_for_each(pool->busy_hash, i, worker, hentry)
236

237 238
static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				unsigned int sw)
239 240 241 242 243 244 245 246 247 248
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
249
	return WORK_CPU_END;
250 251
}

252 253 254
/*
 * CPU iterators
 *
255
 * An extra cpu number is defined using an invalid cpu number
256
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
257 258
 * specific CPU.  The following iterators are similar to for_each_*_cpu()
 * iterators but also considers the unbound CPU.
259
 *
260 261
 * for_each_wq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_wq_cpu()	: online CPUs + WORK_CPU_UNBOUND
262
 */
263 264
#define for_each_wq_cpu(cpu)						\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3);		\
265
	     (cpu) < WORK_CPU_END;					\
266
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
267

268 269
#define for_each_online_wq_cpu(cpu)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3);		\
270
	     (cpu) < WORK_CPU_END;					\
271
	     (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
272

T
Tejun Heo 已提交
273 274 275 276 277 278 279 280
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
 * @id: integer used for iteration
 */
#define for_each_pool(pool, id)						\
	idr_for_each_entry(&worker_pool_idr, pool, id)

281 282 283 284 285 286 287
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
 */
#define for_each_pwq(pwq, wq)						\
	list_for_each_entry((pwq), &(wq)->pwqs, pwqs_node)
288

289 290 291 292
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

293 294 295 296 297
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
333
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
369
	.debug_hint	= work_debug_hint,
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

405 406
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
407
static LIST_HEAD(workqueues);
408
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
409

410
/*
411 412
 * The CPU and unbound standard worker pools.  The unbound ones have
 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
413
 */
414 415
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_std_worker_pools);
T
Tejun Heo 已提交
416
static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
417

T
Tejun Heo 已提交
418 419 420 421
/* idr of all pools */
static DEFINE_MUTEX(worker_pool_idr_mutex);
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
422
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
423

T
Tejun Heo 已提交
424
static struct worker_pool *std_worker_pools(int cpu)
425
{
426
	if (cpu != WORK_CPU_UNBOUND)
T
Tejun Heo 已提交
427
		return per_cpu(cpu_std_worker_pools, cpu);
428
	else
T
Tejun Heo 已提交
429
		return unbound_std_worker_pools;
430 431
}

T
Tejun Heo 已提交
432 433
static int std_worker_pool_pri(struct worker_pool *pool)
{
T
Tejun Heo 已提交
434
	return pool - std_worker_pools(pool->cpu);
T
Tejun Heo 已提交
435 436
}

T
Tejun Heo 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

	mutex_lock(&worker_pool_idr_mutex);
	idr_pre_get(&worker_pool_idr, GFP_KERNEL);
	ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	mutex_unlock(&worker_pool_idr_mutex);

	return ret;
}

450 451 452 453 454 455 456 457 458
/*
 * Lookup worker_pool by id.  The idr currently is built during boot and
 * never modified.  Don't worry about locking for now.
 */
static struct worker_pool *worker_pool_by_id(int pool_id)
{
	return idr_find(&worker_pool_idr, pool_id);
}

459 460
static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
{
T
Tejun Heo 已提交
461
	struct worker_pool *pools = std_worker_pools(cpu);
462

T
Tejun Heo 已提交
463
	return &pools[highpri];
464 465
}

466
static struct pool_workqueue *get_pwq(int cpu, struct workqueue_struct *wq)
467
{
468
	if (!(wq->flags & WQ_UNBOUND)) {
469
		if (likely(cpu < nr_cpu_ids))
470 471 472 473 474
			return per_cpu_ptr(wq->cpu_pwqs, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND)) {
		return list_first_entry(&wq->pwqs, struct pool_workqueue,
					pwqs_node);
	}
475
	return NULL;
476 477
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
493

494
/*
495 496
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
497
 * is cleared and the high bits contain OFFQ flags and pool ID.
498
 *
499 500
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
501 502
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
503
 *
504
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
505
 * corresponding to a work.  Pool is available once the work has been
506
 * queued anywhere after initialization until it is sync canceled.  pwq is
507
 * available only while the work item is queued.
508
 *
509 510 511 512
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
513
 */
514 515
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
516
{
517
	WARN_ON_ONCE(!work_pending(work));
518 519
	atomic_long_set(&work->data, data | flags | work_static(work));
}
520

521
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
522 523
			 unsigned long extra_flags)
{
524 525
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
526 527
}

528 529 530 531 532 533 534
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

535 536
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
537
{
538 539 540 541 542 543 544
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
545
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
546
}
547

548
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
549
{
550 551
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
552 553
}

554
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
555
{
556
	unsigned long data = atomic_long_read(&work->data);
557

558
	if (data & WORK_STRUCT_PWQ)
559 560 561
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
562 563
}

564 565 566 567 568 569 570
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
571
{
572
	unsigned long data = atomic_long_read(&work->data);
573 574
	struct worker_pool *pool;
	int pool_id;
575

576 577
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
578
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
579

580 581
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
582 583
		return NULL;

584 585 586 587 588 589 590 591 592 593 594 595 596 597
	pool = worker_pool_by_id(pool_id);
	WARN_ON_ONCE(!pool);
	return pool;
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
598 599
	unsigned long data = atomic_long_read(&work->data);

600 601
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
602
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
603

604
	return data >> WORK_OFFQ_POOL_SHIFT;
605 606
}

607 608
static void mark_work_canceling(struct work_struct *work)
{
609
	unsigned long pool_id = get_work_pool_id(work);
610

611 612
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
613 614 615 616 617 618
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

619
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
620 621
}

622
/*
623 624
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
625
 * they're being called with pool->lock held.
626 627
 */

628
static bool __need_more_worker(struct worker_pool *pool)
629
{
630
	return !atomic_read(&pool->nr_running);
631 632
}

633
/*
634 635
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
636 637
 *
 * Note that, because unbound workers never contribute to nr_running, this
638
 * function will always return %true for unbound pools as long as the
639
 * worklist isn't empty.
640
 */
641
static bool need_more_worker(struct worker_pool *pool)
642
{
643
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
644
}
645

646
/* Can I start working?  Called from busy but !running workers. */
647
static bool may_start_working(struct worker_pool *pool)
648
{
649
	return pool->nr_idle;
650 651 652
}

/* Do I need to keep working?  Called from currently running workers. */
653
static bool keep_working(struct worker_pool *pool)
654
{
655 656
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
657 658 659
}

/* Do we need a new worker?  Called from manager. */
660
static bool need_to_create_worker(struct worker_pool *pool)
661
{
662
	return need_more_worker(pool) && !may_start_working(pool);
663
}
664

665
/* Do I need to be the manager? */
666
static bool need_to_manage_workers(struct worker_pool *pool)
667
{
668
	return need_to_create_worker(pool) ||
669
		(pool->flags & POOL_MANAGE_WORKERS);
670 671 672
}

/* Do we have too many workers and should some go away? */
673
static bool too_many_workers(struct worker_pool *pool)
674
{
675
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
676 677
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
678

679 680 681 682 683 684 685
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

686
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
687 688
}

689
/*
690 691 692
 * Wake up functions.
 */

693
/* Return the first worker.  Safe with preemption disabled */
694
static struct worker *first_worker(struct worker_pool *pool)
695
{
696
	if (unlikely(list_empty(&pool->idle_list)))
697 698
		return NULL;

699
	return list_first_entry(&pool->idle_list, struct worker, entry);
700 701 702 703
}

/**
 * wake_up_worker - wake up an idle worker
704
 * @pool: worker pool to wake worker from
705
 *
706
 * Wake up the first idle worker of @pool.
707 708
 *
 * CONTEXT:
709
 * spin_lock_irq(pool->lock).
710
 */
711
static void wake_up_worker(struct worker_pool *pool)
712
{
713
	struct worker *worker = first_worker(pool);
714 715 716 717 718

	if (likely(worker))
		wake_up_process(worker->task);
}

719
/**
720 721 722 723 724 725 726 727 728 729
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
730
void wq_worker_waking_up(struct task_struct *task, int cpu)
731 732 733
{
	struct worker *worker = kthread_data(task);

734
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
735
		WARN_ON_ONCE(worker->pool->cpu != cpu);
736
		atomic_inc(&worker->pool->nr_running);
737
	}
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
755
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
756 757
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
758
	struct worker_pool *pool;
759

760 761 762 763 764
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
765
	if (worker->flags & WORKER_NOT_RUNNING)
766 767
		return NULL;

768 769
	pool = worker->pool;

770
	/* this can only happen on the local cpu */
771 772
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
773 774 775 776 777 778

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
779 780 781
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
782
	 * manipulating idle_list, so dereferencing idle_list without pool
783
	 * lock is safe.
784
	 */
785 786
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
787
		to_wakeup = first_worker(pool);
788 789 790 791 792
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
793
 * @worker: self
794 795 796
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
797 798 799
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
800
 *
801
 * CONTEXT:
802
 * spin_lock_irq(pool->lock)
803 804 805 806
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
807
	struct worker_pool *pool = worker->pool;
808

809 810
	WARN_ON_ONCE(worker->task != current);

811 812 813 814 815 816 817 818
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
819
			if (atomic_dec_and_test(&pool->nr_running) &&
820
			    !list_empty(&pool->worklist))
821
				wake_up_worker(pool);
822
		} else
823
			atomic_dec(&pool->nr_running);
824 825
	}

826 827 828 829
	worker->flags |= flags;
}

/**
830
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
831
 * @worker: self
832 833
 * @flags: flags to clear
 *
834
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
835
 *
836
 * CONTEXT:
837
 * spin_lock_irq(pool->lock)
838 839 840
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
841
	struct worker_pool *pool = worker->pool;
842 843
	unsigned int oflags = worker->flags;

844 845
	WARN_ON_ONCE(worker->task != current);

846
	worker->flags &= ~flags;
847

848 849 850 851 852
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
853 854
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
855
			atomic_inc(&pool->nr_running);
856 857
}

858 859
/**
 * find_worker_executing_work - find worker which is executing a work
860
 * @pool: pool of interest
861 862
 * @work: work to find worker for
 *
863 864
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
884 885
 *
 * CONTEXT:
886
 * spin_lock_irq(pool->lock).
887 888 889 890
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
891
 */
892
static struct worker *find_worker_executing_work(struct worker_pool *pool,
893
						 struct work_struct *work)
894
{
895 896
	struct worker *worker;

897
	hash_for_each_possible(pool->busy_hash, worker, hentry,
898 899 900
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
901 902 903
			return worker;

	return NULL;
904 905
}

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
921
 * spin_lock_irq(pool->lock).
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

947
static void pwq_activate_delayed_work(struct work_struct *work)
948
{
949
	struct pool_workqueue *pwq = get_work_pwq(work);
950 951

	trace_workqueue_activate_work(work);
952
	move_linked_works(work, &pwq->pool->worklist, NULL);
953
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
954
	pwq->nr_active++;
955 956
}

957
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
958
{
959
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
960 961
						    struct work_struct, entry);

962
	pwq_activate_delayed_work(work);
963 964
}

965
/**
966 967
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
968 969 970
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
971
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
972 973
 *
 * CONTEXT:
974
 * spin_lock_irq(pool->lock).
975
 */
976
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
977 978 979 980 981
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

982
	pwq->nr_in_flight[color]--;
983

984 985
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
986
		/* one down, submit a delayed one */
987 988
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
989 990 991
	}

	/* is flush in progress and are we at the flushing tip? */
992
	if (likely(pwq->flush_color != color))
993 994 995
		return;

	/* are there still in-flight works? */
996
	if (pwq->nr_in_flight[color])
997 998
		return;

999 1000
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1001 1002

	/*
1003
	 * If this was the last pwq, wake up the first flusher.  It
1004 1005
	 * will handle the rest.
	 */
1006 1007
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
1008 1009
}

1010
/**
1011
 * try_to_grab_pending - steal work item from worklist and disable irq
1012 1013
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1014
 * @flags: place to store irq state
1015 1016 1017 1018 1019 1020 1021
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1022 1023
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1024
 *
1025
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1026 1027 1028
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1029 1030 1031 1032
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1033
 * This function is safe to call from any context including IRQ handler.
1034
 */
1035 1036
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1037
{
1038
	struct worker_pool *pool;
1039
	struct pool_workqueue *pwq;
1040

1041 1042
	local_irq_save(*flags);

1043 1044 1045 1046
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1047 1048 1049 1050 1051
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1052 1053 1054 1055 1056
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1057 1058 1059 1060 1061 1062 1063
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1064 1065
	pool = get_work_pool(work);
	if (!pool)
1066
		goto fail;
1067

1068
	spin_lock(&pool->lock);
1069
	/*
1070 1071 1072 1073 1074
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1075 1076
	 * item is currently queued on that pool.
	 */
1077 1078
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1079 1080 1081 1082 1083
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1084
		 * on the delayed_list, will confuse pwq->nr_active
1085 1086 1087 1088
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1089
			pwq_activate_delayed_work(work);
1090 1091

		list_del_init(&work->entry);
1092
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1093

1094
		/* work->data points to pwq iff queued, point to pool */
1095 1096 1097 1098
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1099
	}
1100
	spin_unlock(&pool->lock);
1101 1102 1103 1104 1105
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1106
	return -EAGAIN;
1107 1108
}

T
Tejun Heo 已提交
1109
/**
1110
 * insert_work - insert a work into a pool
1111
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1112 1113 1114 1115
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1116
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1117
 * work_struct flags.
T
Tejun Heo 已提交
1118 1119
 *
 * CONTEXT:
1120
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1121
 */
1122 1123
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1124
{
1125
	struct worker_pool *pool = pwq->pool;
1126

T
Tejun Heo 已提交
1127
	/* we own @work, set data and link */
1128
	set_work_pwq(work, pwq, extra_flags);
1129
	list_add_tail(&work->entry, head);
1130 1131 1132 1133 1134 1135 1136 1137

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1138 1139
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1140 1141
}

1142 1143
/*
 * Test whether @work is being queued from another work executing on the
1144
 * same workqueue.
1145 1146 1147
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1148 1149 1150 1151 1152 1153 1154
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1155
	return worker && worker->current_pwq->wq == wq;
1156 1157
}

1158
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1159 1160
			 struct work_struct *work)
{
1161
	struct pool_workqueue *pwq;
1162
	struct list_head *worklist;
1163
	unsigned int work_flags;
1164
	unsigned int req_cpu = cpu;
1165 1166 1167 1168 1169 1170 1171 1172

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1173

1174
	debug_work_activate(work);
1175

1176
	/* if dying, only works from the same workqueue are allowed */
1177
	if (unlikely(wq->flags & WQ_DRAINING) &&
1178
	    WARN_ON_ONCE(!is_chained_work(wq)))
1179 1180
		return;

1181
	/* determine the pwq to use */
1182
	if (!(wq->flags & WQ_UNBOUND)) {
1183
		struct worker_pool *last_pool;
1184

1185
		if (cpu == WORK_CPU_UNBOUND)
1186 1187
			cpu = raw_smp_processor_id();

1188
		/*
1189 1190 1191 1192
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1193
		 */
1194
		pwq = get_pwq(cpu, wq);
1195
		last_pool = get_work_pool(work);
1196

1197
		if (last_pool && last_pool != pwq->pool) {
1198 1199
			struct worker *worker;

1200
			spin_lock(&last_pool->lock);
1201

1202
			worker = find_worker_executing_work(last_pool, work);
1203

1204 1205
			if (worker && worker->current_pwq->wq == wq) {
				pwq = get_pwq(last_pool->cpu, wq);
1206
			} else {
1207
				/* meh... not running there, queue here */
1208
				spin_unlock(&last_pool->lock);
1209
				spin_lock(&pwq->pool->lock);
1210
			}
1211
		} else {
1212
			spin_lock(&pwq->pool->lock);
1213
		}
1214
	} else {
1215 1216
		pwq = get_pwq(WORK_CPU_UNBOUND, wq);
		spin_lock(&pwq->pool->lock);
1217 1218
	}

1219 1220
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1221

1222
	if (WARN_ON(!list_empty(&work->entry))) {
1223
		spin_unlock(&pwq->pool->lock);
1224 1225
		return;
	}
1226

1227 1228
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1229

1230
	if (likely(pwq->nr_active < pwq->max_active)) {
1231
		trace_workqueue_activate_work(work);
1232 1233
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1234 1235
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1236
		worklist = &pwq->delayed_works;
1237
	}
1238

1239
	insert_work(pwq, work, worklist, work_flags);
1240

1241
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1242 1243
}

1244
/**
1245 1246
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1247 1248 1249
 * @wq: workqueue to use
 * @work: work to queue
 *
1250
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1251
 *
1252 1253
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1254
 */
1255 1256
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1257
{
1258
	bool ret = false;
1259
	unsigned long flags;
1260

1261
	local_irq_save(flags);
1262

1263
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1264
		__queue_work(cpu, wq, work);
1265
		ret = true;
1266
	}
1267

1268
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1269 1270
	return ret;
}
1271
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1272

1273
/**
1274
 * queue_work - queue work on a workqueue
1275 1276 1277
 * @wq: workqueue to use
 * @work: work to queue
 *
1278
 * Returns %false if @work was already on a queue, %true otherwise.
1279
 *
1280 1281
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1282
 */
1283
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1284
{
1285
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1286
}
1287
EXPORT_SYMBOL_GPL(queue_work);
1288

1289
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1290
{
1291
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1292

1293
	/* should have been called from irqsafe timer with irq already off */
1294
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1295
}
1296
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1297

1298 1299
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1300
{
1301 1302 1303 1304 1305
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1306 1307
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1308

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1320
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1321

1322
	dwork->wq = wq;
1323
	dwork->cpu = cpu;
1324 1325 1326 1327 1328 1329
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1330 1331
}

1332 1333 1334 1335
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1336
 * @dwork: work to queue
1337 1338
 * @delay: number of jiffies to wait before queueing
 *
1339 1340 1341
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1342
 */
1343 1344
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1345
{
1346
	struct work_struct *work = &dwork->work;
1347
	bool ret = false;
1348
	unsigned long flags;
1349

1350 1351
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1352

1353
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1354
		__queue_delayed_work(cpu, wq, dwork, delay);
1355
		ret = true;
1356
	}
1357

1358
	local_irq_restore(flags);
1359 1360
	return ret;
}
1361
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1362

1363 1364 1365 1366 1367 1368
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1369
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1370
 */
1371
bool queue_delayed_work(struct workqueue_struct *wq,
1372 1373
			struct delayed_work *dwork, unsigned long delay)
{
1374
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1375 1376
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1377

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1393
 * This function is safe to call from any context including IRQ handler.
1394 1395 1396 1397 1398 1399 1400
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1401

1402 1403 1404
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1405

1406 1407 1408
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1409
	}
1410 1411

	/* -ENOENT from try_to_grab_pending() becomes %true */
1412 1413
	return ret;
}
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1430

T
Tejun Heo 已提交
1431 1432 1433 1434 1435 1436 1437 1438
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1439
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1440 1441
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1442
{
1443
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1444

1445 1446 1447 1448
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1449

1450 1451
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1452
	pool->nr_idle++;
1453
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1454 1455

	/* idle_list is LIFO */
1456
	list_add(&worker->entry, &pool->idle_list);
1457

1458 1459
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1460

1461
	/*
1462
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1463
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1464 1465
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1466
	 */
1467
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1468
		     pool->nr_workers == pool->nr_idle &&
1469
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1479
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1480 1481 1482
 */
static void worker_leave_idle(struct worker *worker)
{
1483
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1484

1485 1486
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1487
	worker_clr_flags(worker, WORKER_IDLE);
1488
	pool->nr_idle--;
T
Tejun Heo 已提交
1489 1490 1491
	list_del_init(&worker->entry);
}

1492
/**
1493 1494 1495 1496
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1497 1498 1499 1500 1501 1502
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1503
 * This function is to be used by unbound workers and rescuers to bind
1504 1505 1506
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1507
 * verbatim as it's best effort and blocking and pool may be
1508 1509
 * [dis]associated in the meantime.
 *
1510
 * This function tries set_cpus_allowed() and locks pool and verifies the
1511
 * binding against %POOL_DISASSOCIATED which is set during
1512 1513 1514
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1515 1516
 *
 * CONTEXT:
1517
 * Might sleep.  Called without any lock but returns with pool->lock
1518 1519 1520
 * held.
 *
 * RETURNS:
1521
 * %true if the associated pool is online (@worker is successfully
1522 1523
 * bound), %false if offline.
 */
1524
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1525
__acquires(&pool->lock)
1526 1527
{
	while (true) {
1528
		/*
1529 1530 1531
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1532
		 * against POOL_DISASSOCIATED.
1533
		 */
1534
		if (!(pool->flags & POOL_DISASSOCIATED))
1535
			set_cpus_allowed_ptr(current, get_cpu_mask(pool->cpu));
1536

1537
		spin_lock_irq(&pool->lock);
1538
		if (pool->flags & POOL_DISASSOCIATED)
1539
			return false;
1540
		if (task_cpu(current) == pool->cpu &&
1541
		    cpumask_equal(&current->cpus_allowed,
1542
				  get_cpu_mask(pool->cpu)))
1543
			return true;
1544
		spin_unlock_irq(&pool->lock);
1545

1546 1547 1548 1549 1550 1551
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1552
		cpu_relax();
1553
		cond_resched();
1554 1555 1556
	}
}

1557
/*
1558
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1559
 * list_empty(@worker->entry) before leaving idle and call this function.
1560 1561 1562
 */
static void idle_worker_rebind(struct worker *worker)
{
1563
	/* CPU may go down again inbetween, clear UNBOUND only on success */
1564
	if (worker_maybe_bind_and_lock(worker->pool))
1565
		worker_clr_flags(worker, WORKER_UNBOUND);
1566

1567 1568
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1569
	spin_unlock_irq(&worker->pool->lock);
1570 1571
}

1572
/*
1573
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1574 1575 1576
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1577
 */
1578
static void busy_worker_rebind_fn(struct work_struct *work)
1579 1580 1581
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1582
	if (worker_maybe_bind_and_lock(worker->pool))
1583
		worker_clr_flags(worker, WORKER_UNBOUND);
1584

1585
	spin_unlock_irq(&worker->pool->lock);
1586 1587
}

1588
/**
1589 1590
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1591
 *
1592
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1593 1594
 * is different for idle and busy ones.
 *
1595 1596 1597 1598
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1599
 *
1600 1601 1602 1603
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1604
 *
1605 1606 1607 1608
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1609
 */
1610
static void rebind_workers(struct worker_pool *pool)
1611
{
1612
	struct worker *worker, *n;
1613 1614
	int i;

1615 1616
	lockdep_assert_held(&pool->assoc_mutex);
	lockdep_assert_held(&pool->lock);
1617

1618
	/* dequeue and kick idle ones */
1619 1620 1621 1622 1623 1624
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1625

1626 1627 1628 1629 1630 1631
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1632

1633
	/* rebind busy workers */
1634
	for_each_busy_worker(worker, i, pool) {
1635 1636
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1637

1638 1639 1640
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1641

1642
		debug_work_activate(rebind_work);
1643

1644 1645
		/*
		 * wq doesn't really matter but let's keep @worker->pool
1646
		 * and @pwq->pool consistent for sanity.
1647 1648 1649 1650 1651 1652
		 */
		if (std_worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;

1653
		insert_work(get_pwq(pool->cpu, wq), rebind_work,
1654 1655
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1656
	}
1657 1658
}

T
Tejun Heo 已提交
1659 1660 1661 1662 1663
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1664 1665
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1666
		INIT_LIST_HEAD(&worker->scheduled);
1667
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1668 1669
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1670
	}
T
Tejun Heo 已提交
1671 1672 1673 1674 1675
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1676
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1677
 *
1678
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1688
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1689
{
1690
	const char *pri = std_worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1691
	struct worker *worker = NULL;
1692
	int id = -1;
T
Tejun Heo 已提交
1693

1694
	spin_lock_irq(&pool->lock);
1695
	while (ida_get_new(&pool->worker_ida, &id)) {
1696
		spin_unlock_irq(&pool->lock);
1697
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1698
			goto fail;
1699
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1700
	}
1701
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1702 1703 1704 1705 1706

	worker = alloc_worker();
	if (!worker)
		goto fail;

1707
	worker->pool = pool;
T
Tejun Heo 已提交
1708 1709
	worker->id = id;

1710
	if (pool->cpu != WORK_CPU_UNBOUND)
1711
		worker->task = kthread_create_on_node(worker_thread,
1712
					worker, cpu_to_node(pool->cpu),
1713
					"kworker/%d:%d%s", pool->cpu, id, pri);
1714 1715
	else
		worker->task = kthread_create(worker_thread, worker,
1716
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1717 1718 1719
	if (IS_ERR(worker->task))
		goto fail;

1720
	if (std_worker_pool_pri(pool))
1721 1722
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1723
	/*
1724
	 * Determine CPU binding of the new worker depending on
1725
	 * %POOL_DISASSOCIATED.  The caller is responsible for ensuring the
1726 1727 1728 1729 1730
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1731
	 */
1732
	if (!(pool->flags & POOL_DISASSOCIATED)) {
1733
		kthread_bind(worker->task, pool->cpu);
1734
	} else {
1735
		worker->task->flags |= PF_THREAD_BOUND;
1736
		worker->flags |= WORKER_UNBOUND;
1737
	}
T
Tejun Heo 已提交
1738 1739 1740 1741

	return worker;
fail:
	if (id >= 0) {
1742
		spin_lock_irq(&pool->lock);
1743
		ida_remove(&pool->worker_ida, id);
1744
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1754
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1755 1756
 *
 * CONTEXT:
1757
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1758 1759 1760
 */
static void start_worker(struct worker *worker)
{
1761
	worker->flags |= WORKER_STARTED;
1762
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1763
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1764 1765 1766 1767 1768 1769 1770
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1771
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1772 1773
 *
 * CONTEXT:
1774
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1775 1776 1777
 */
static void destroy_worker(struct worker *worker)
{
1778
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1779 1780 1781
	int id = worker->id;

	/* sanity check frenzy */
1782 1783 1784
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1785

T
Tejun Heo 已提交
1786
	if (worker->flags & WORKER_STARTED)
1787
		pool->nr_workers--;
T
Tejun Heo 已提交
1788
	if (worker->flags & WORKER_IDLE)
1789
		pool->nr_idle--;
T
Tejun Heo 已提交
1790 1791

	list_del_init(&worker->entry);
1792
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1793

1794
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1795

T
Tejun Heo 已提交
1796 1797 1798
	kthread_stop(worker->task);
	kfree(worker);

1799
	spin_lock_irq(&pool->lock);
1800
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1801 1802
}

1803
static void idle_worker_timeout(unsigned long __pool)
1804
{
1805
	struct worker_pool *pool = (void *)__pool;
1806

1807
	spin_lock_irq(&pool->lock);
1808

1809
	if (too_many_workers(pool)) {
1810 1811 1812 1813
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1814
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1815 1816 1817
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1818
			mod_timer(&pool->idle_timer, expires);
1819 1820
		else {
			/* it's been idle for too long, wake up manager */
1821
			pool->flags |= POOL_MANAGE_WORKERS;
1822
			wake_up_worker(pool);
1823
		}
1824 1825
	}

1826
	spin_unlock_irq(&pool->lock);
1827
}
1828

1829
static void send_mayday(struct work_struct *work)
1830
{
1831 1832
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1833 1834

	lockdep_assert_held(&workqueue_lock);
1835 1836

	if (!(wq->flags & WQ_RESCUER))
1837
		return;
1838 1839

	/* mayday mayday mayday */
1840 1841
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1842
		wake_up_process(wq->rescuer->task);
1843
	}
1844 1845
}

1846
static void pool_mayday_timeout(unsigned long __pool)
1847
{
1848
	struct worker_pool *pool = (void *)__pool;
1849 1850
	struct work_struct *work;

1851 1852
	spin_lock_irq(&workqueue_lock);		/* for wq->maydays */
	spin_lock(&pool->lock);
1853

1854
	if (need_to_create_worker(pool)) {
1855 1856 1857 1858 1859 1860
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1861
		list_for_each_entry(work, &pool->worklist, entry)
1862
			send_mayday(work);
L
Linus Torvalds 已提交
1863
	}
1864

1865 1866
	spin_unlock(&pool->lock);
	spin_unlock_irq(&workqueue_lock);
1867

1868
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1869 1870
}

1871 1872
/**
 * maybe_create_worker - create a new worker if necessary
1873
 * @pool: pool to create a new worker for
1874
 *
1875
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1876 1877
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1878
 * sent to all rescuers with works scheduled on @pool to resolve
1879 1880 1881 1882 1883 1884
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
1885
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1886 1887 1888 1889
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1890
 * false if no action was taken and pool->lock stayed locked, true
1891 1892
 * otherwise.
 */
1893
static bool maybe_create_worker(struct worker_pool *pool)
1894 1895
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1896
{
1897
	if (!need_to_create_worker(pool))
1898 1899
		return false;
restart:
1900
	spin_unlock_irq(&pool->lock);
1901

1902
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1903
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1904 1905 1906 1907

	while (true) {
		struct worker *worker;

1908
		worker = create_worker(pool);
1909
		if (worker) {
1910
			del_timer_sync(&pool->mayday_timer);
1911
			spin_lock_irq(&pool->lock);
1912
			start_worker(worker);
1913 1914
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1915 1916 1917
			return true;
		}

1918
		if (!need_to_create_worker(pool))
1919
			break;
L
Linus Torvalds 已提交
1920

1921 1922
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1923

1924
		if (!need_to_create_worker(pool))
1925 1926 1927
			break;
	}

1928
	del_timer_sync(&pool->mayday_timer);
1929
	spin_lock_irq(&pool->lock);
1930
	if (need_to_create_worker(pool))
1931 1932 1933 1934 1935 1936
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1937
 * @pool: pool to destroy workers for
1938
 *
1939
 * Destroy @pool workers which have been idle for longer than
1940 1941 1942
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1943
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1944 1945 1946
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1947
 * false if no action was taken and pool->lock stayed locked, true
1948 1949
 * otherwise.
 */
1950
static bool maybe_destroy_workers(struct worker_pool *pool)
1951 1952
{
	bool ret = false;
L
Linus Torvalds 已提交
1953

1954
	while (too_many_workers(pool)) {
1955 1956
		struct worker *worker;
		unsigned long expires;
1957

1958
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1959
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1960

1961
		if (time_before(jiffies, expires)) {
1962
			mod_timer(&pool->idle_timer, expires);
1963
			break;
1964
		}
L
Linus Torvalds 已提交
1965

1966 1967
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
1968
	}
1969

1970
	return ret;
1971 1972
}

1973
/**
1974 1975
 * manage_workers - manage worker pool
 * @worker: self
1976
 *
1977
 * Assume the manager role and manage the worker pool @worker belongs
1978
 * to.  At any given time, there can be only zero or one manager per
1979
 * pool.  The exclusion is handled automatically by this function.
1980 1981 1982 1983
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1984 1985
 *
 * CONTEXT:
1986
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1987 1988 1989
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
1990 1991
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
1992
 */
1993
static bool manage_workers(struct worker *worker)
1994
{
1995
	struct worker_pool *pool = worker->pool;
1996
	bool ret = false;
1997

1998
	if (pool->flags & POOL_MANAGING_WORKERS)
1999
		return ret;
2000

2001
	pool->flags |= POOL_MANAGING_WORKERS;
2002

2003 2004 2005 2006 2007 2008
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2009
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2010 2011
	 * manager against CPU hotplug.
	 *
2012
	 * assoc_mutex would always be free unless CPU hotplug is in
2013
	 * progress.  trylock first without dropping @pool->lock.
2014
	 */
2015
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2016
		spin_unlock_irq(&pool->lock);
2017
		mutex_lock(&pool->assoc_mutex);
2018 2019
		/*
		 * CPU hotplug could have happened while we were waiting
2020
		 * for assoc_mutex.  Hotplug itself can't handle us
2021
		 * because manager isn't either on idle or busy list, and
2022
		 * @pool's state and ours could have deviated.
2023
		 *
2024
		 * As hotplug is now excluded via assoc_mutex, we can
2025
		 * simply try to bind.  It will succeed or fail depending
2026
		 * on @pool's current state.  Try it and adjust
2027 2028
		 * %WORKER_UNBOUND accordingly.
		 */
2029
		if (worker_maybe_bind_and_lock(pool))
2030 2031 2032
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2033

2034 2035
		ret = true;
	}
2036

2037
	pool->flags &= ~POOL_MANAGE_WORKERS;
2038 2039

	/*
2040 2041
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2042
	 */
2043 2044
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2045

2046
	pool->flags &= ~POOL_MANAGING_WORKERS;
2047
	mutex_unlock(&pool->assoc_mutex);
2048
	return ret;
2049 2050
}

2051 2052
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2053
 * @worker: self
2054 2055 2056 2057 2058 2059 2060 2061 2062
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2063
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2064
 */
T
Tejun Heo 已提交
2065
static void process_one_work(struct worker *worker, struct work_struct *work)
2066 2067
__releases(&pool->lock)
__acquires(&pool->lock)
2068
{
2069
	struct pool_workqueue *pwq = get_work_pwq(work);
2070
	struct worker_pool *pool = worker->pool;
2071
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2072
	int work_color;
2073
	struct worker *collision;
2074 2075 2076 2077 2078 2079 2080 2081
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2082 2083 2084
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2085
#endif
2086 2087 2088
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2089
	 * unbound or a disassociated pool.
2090
	 */
2091
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2092
		     !(pool->flags & POOL_DISASSOCIATED) &&
2093
		     raw_smp_processor_id() != pool->cpu);
2094

2095 2096 2097 2098 2099 2100
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2101
	collision = find_worker_executing_work(pool, work);
2102 2103 2104 2105 2106
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2107
	/* claim and dequeue */
2108
	debug_work_deactivate(work);
2109
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2110
	worker->current_work = work;
2111
	worker->current_func = work->func;
2112
	worker->current_pwq = pwq;
2113
	work_color = get_work_color(work);
2114

2115 2116
	list_del_init(&work->entry);

2117 2118 2119 2120 2121 2122 2123
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2124
	/*
2125
	 * Unbound pool isn't concurrency managed and work items should be
2126 2127
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2128 2129
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2130

2131
	/*
2132
	 * Record the last pool and clear PENDING which should be the last
2133
	 * update to @work.  Also, do this inside @pool->lock so that
2134 2135
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2136
	 */
2137
	set_work_pool_and_clear_pending(work, pool->id);
2138

2139
	spin_unlock_irq(&pool->lock);
2140

2141
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2142
	lock_map_acquire(&lockdep_map);
2143
	trace_workqueue_execute_start(work);
2144
	worker->current_func(work);
2145 2146 2147 2148 2149
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2150
	lock_map_release(&lockdep_map);
2151
	lock_map_release(&pwq->wq->lockdep_map);
2152 2153

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2154 2155
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2156 2157
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2158 2159 2160 2161
		debug_show_held_locks(current);
		dump_stack();
	}

2162
	spin_lock_irq(&pool->lock);
2163

2164 2165 2166 2167
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2168
	/* we're done with it, release */
2169
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2170
	worker->current_work = NULL;
2171
	worker->current_func = NULL;
2172 2173
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2174 2175
}

2176 2177 2178 2179 2180 2181 2182 2183 2184
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2185
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2186 2187 2188
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2189
{
2190 2191
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2192
						struct work_struct, entry);
T
Tejun Heo 已提交
2193
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2194 2195 2196
	}
}

T
Tejun Heo 已提交
2197 2198
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2199
 * @__worker: self
T
Tejun Heo 已提交
2200
 *
2201 2202
 * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
 * of these per each cpu.  These workers process all works regardless of
2203 2204 2205
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2206
 */
T
Tejun Heo 已提交
2207
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2208
{
T
Tejun Heo 已提交
2209
	struct worker *worker = __worker;
2210
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2211

2212 2213
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2214
woke_up:
2215
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2216

2217 2218
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2219
		spin_unlock_irq(&pool->lock);
2220

2221
		/* if DIE is set, destruction is requested */
2222 2223 2224 2225 2226
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2227
		/* otherwise, rebind */
2228 2229
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2230
	}
2231

T
Tejun Heo 已提交
2232
	worker_leave_idle(worker);
2233
recheck:
2234
	/* no more worker necessary? */
2235
	if (!need_more_worker(pool))
2236 2237 2238
		goto sleep;

	/* do we need to manage? */
2239
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2240 2241
		goto recheck;

T
Tejun Heo 已提交
2242 2243 2244 2245 2246
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2247
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2248

2249 2250 2251 2252 2253 2254 2255 2256
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2257
		struct work_struct *work =
2258
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2259 2260 2261 2262 2263 2264
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2265
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2266 2267 2268
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2269
		}
2270
	} while (keep_working(pool));
2271 2272

	worker_set_flags(worker, WORKER_PREP, false);
2273
sleep:
2274
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2275
		goto recheck;
2276

T
Tejun Heo 已提交
2277
	/*
2278 2279 2280 2281 2282
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2283 2284 2285
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2286
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2287 2288
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2289 2290
}

2291 2292
/**
 * rescuer_thread - the rescuer thread function
2293
 * @__rescuer: self
2294 2295 2296 2297
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
2298
 * Regular work processing on a pool may block trying to create a new
2299 2300 2301 2302 2303
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2304 2305
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2306 2307 2308 2309
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2310
static int rescuer_thread(void *__rescuer)
2311
{
2312 2313
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2314 2315 2316
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2317 2318 2319 2320 2321 2322

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2323 2324 2325
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2326 2327
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2328
		rescuer->task->flags &= ~PF_WQ_WORKER;
2329
		return 0;
2330
	}
2331

2332 2333 2334 2335 2336 2337
	/* see whether any pwq is asking for help */
	spin_lock_irq(&workqueue_lock);

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2338
		struct worker_pool *pool = pwq->pool;
2339 2340 2341
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2342 2343 2344
		list_del_init(&pwq->mayday_node);

		spin_unlock_irq(&workqueue_lock);
2345 2346

		/* migrate to the target cpu if possible */
2347
		worker_maybe_bind_and_lock(pool);
2348
		rescuer->pool = pool;
2349 2350 2351 2352 2353

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2354
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2355
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2356
			if (get_work_pwq(work) == pwq)
2357 2358 2359
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2360 2361

		/*
2362
		 * Leave this pool.  If keep_working() is %true, notify a
2363 2364 2365
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2366 2367
		if (keep_working(pool))
			wake_up_worker(pool);
2368

2369
		rescuer->pool = NULL;
2370 2371
		spin_unlock(&pool->lock);
		spin_lock(&workqueue_lock);
2372 2373
	}

2374 2375
	spin_unlock_irq(&workqueue_lock);

2376 2377
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2378 2379
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2380 2381
}

O
Oleg Nesterov 已提交
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2393 2394
/**
 * insert_wq_barrier - insert a barrier work
2395
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2396
 * @barr: wq_barrier to insert
2397 2398
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2399
 *
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2412
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2413 2414
 *
 * CONTEXT:
2415
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2416
 */
2417
static void insert_wq_barrier(struct pool_workqueue *pwq,
2418 2419
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2420
{
2421 2422 2423
	struct list_head *head;
	unsigned int linked = 0;

2424
	/*
2425
	 * debugobject calls are safe here even with pool->lock locked
2426 2427 2428 2429
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2430
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2431
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2432
	init_completion(&barr->done);
2433

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2449
	debug_work_activate(&barr->work);
2450
	insert_work(pwq, &barr->work, head,
2451
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2452 2453
}

2454
/**
2455
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2456 2457 2458 2459
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2460
 * Prepare pwqs for workqueue flushing.
2461
 *
2462 2463 2464 2465 2466
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2467 2468 2469 2470 2471 2472 2473
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2474
 * If @work_color is non-negative, all pwqs should have the same
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2485
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2486
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2487
{
2488
	bool wait = false;
2489
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2490

2491
	if (flush_color >= 0) {
2492
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2493
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2494
	}
2495

2496
	for_each_pwq(pwq, wq) {
2497
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2498

2499
		spin_lock_irq(&pool->lock);
2500

2501
		if (flush_color >= 0) {
2502
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2503

2504 2505 2506
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2507 2508 2509
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2510

2511
		if (work_color >= 0) {
2512
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2513
			pwq->work_color = work_color;
2514
		}
L
Linus Torvalds 已提交
2515

2516
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2517
	}
2518

2519
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2520
		complete(&wq->first_flusher->done);
2521

2522
	return wait;
L
Linus Torvalds 已提交
2523 2524
}

2525
/**
L
Linus Torvalds 已提交
2526
 * flush_workqueue - ensure that any scheduled work has run to completion.
2527
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2528 2529 2530 2531
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2532 2533
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2534
 */
2535
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2536
{
2537 2538 2539 2540 2541 2542
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2543

2544 2545
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2560
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2561 2562 2563 2564 2565
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2566
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2567 2568 2569

			wq->first_flusher = &this_flusher;

2570
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2571 2572 2573 2574 2575 2576 2577 2578
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2579
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2580
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2581
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2607 2608 2609 2610
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2611 2612
	wq->first_flusher = NULL;

2613 2614
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2627 2628
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2648
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2649 2650 2651
		}

		if (list_empty(&wq->flusher_queue)) {
2652
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2653 2654 2655 2656 2657
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2658
		 * the new first flusher and arm pwqs.
2659
		 */
2660 2661
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2662 2663 2664 2665

		list_del_init(&next->list);
		wq->first_flusher = next;

2666
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2678
}
2679
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2680

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2695
	struct pool_workqueue *pwq;
2696 2697 2698 2699 2700 2701

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
2702
	spin_lock_irq(&workqueue_lock);
2703 2704
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
2705
	spin_unlock_irq(&workqueue_lock);
2706 2707 2708
reflush:
	flush_workqueue(wq);

2709
	for_each_pwq(pwq, wq) {
2710
		bool drained;
2711

2712 2713 2714
		spin_lock_irq(&pwq->pool->lock);
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
		spin_unlock_irq(&pwq->pool->lock);
2715 2716

		if (drained)
2717 2718 2719 2720
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2721 2722
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2723 2724 2725
		goto reflush;
	}

2726
	spin_lock_irq(&workqueue_lock);
2727 2728
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
2729
	spin_unlock_irq(&workqueue_lock);
2730 2731 2732
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2733
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2734
{
2735
	struct worker *worker = NULL;
2736
	struct worker_pool *pool;
2737
	struct pool_workqueue *pwq;
2738 2739

	might_sleep();
2740 2741
	pool = get_work_pool(work);
	if (!pool)
2742
		return false;
2743

2744
	spin_lock_irq(&pool->lock);
2745
	/* see the comment in try_to_grab_pending() with the same code */
2746 2747 2748
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2749
			goto already_gone;
2750
	} else {
2751
		worker = find_worker_executing_work(pool, work);
2752
		if (!worker)
T
Tejun Heo 已提交
2753
			goto already_gone;
2754
		pwq = worker->current_pwq;
2755
	}
2756

2757
	insert_wq_barrier(pwq, barr, work, worker);
2758
	spin_unlock_irq(&pool->lock);
2759

2760 2761 2762 2763 2764 2765
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2766 2767
	if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&pwq->wq->lockdep_map);
2768
	else
2769 2770
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2771

2772
	return true;
T
Tejun Heo 已提交
2773
already_gone:
2774
	spin_unlock_irq(&pool->lock);
2775
	return false;
2776
}
2777 2778 2779 2780 2781

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2782 2783
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2784 2785 2786 2787 2788 2789 2790 2791 2792
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2793 2794 2795
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2796
	if (start_flush_work(work, &barr)) {
2797 2798 2799
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2800
	} else {
2801
		return false;
2802 2803
	}
}
2804
EXPORT_SYMBOL_GPL(flush_work);
2805

2806
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2807
{
2808
	unsigned long flags;
2809 2810 2811
	int ret;

	do {
2812 2813 2814 2815 2816 2817
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2818
			flush_work(work);
2819 2820
	} while (unlikely(ret < 0));

2821 2822 2823 2824
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2825
	flush_work(work);
2826
	clear_work_data(work);
2827 2828 2829
	return ret;
}

2830
/**
2831 2832
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2833
 *
2834 2835 2836 2837
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2838
 *
2839 2840
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2841
 *
2842
 * The caller must ensure that the workqueue on which @work was last
2843
 * queued can't be destroyed before this function returns.
2844 2845 2846
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2847
 */
2848
bool cancel_work_sync(struct work_struct *work)
2849
{
2850
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2851
}
2852
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2853

2854
/**
2855 2856
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2857
 *
2858 2859 2860
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2861
 *
2862 2863 2864
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2865
 */
2866 2867
bool flush_delayed_work(struct delayed_work *dwork)
{
2868
	local_irq_disable();
2869
	if (del_timer_sync(&dwork->timer))
2870
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2871
	local_irq_enable();
2872 2873 2874 2875
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2876
/**
2877 2878
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2879
 *
2880 2881 2882 2883 2884
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2885
 *
2886
 * This function is safe to call from any context including IRQ handler.
2887
 */
2888
bool cancel_delayed_work(struct delayed_work *dwork)
2889
{
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2900 2901
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2902
	local_irq_restore(flags);
2903
	return ret;
2904
}
2905
EXPORT_SYMBOL(cancel_delayed_work);
2906

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2917
{
2918
	return __cancel_work_timer(&dwork->work, true);
2919
}
2920
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2921

2922
/**
2923 2924 2925 2926 2927 2928
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2929
bool schedule_work_on(int cpu, struct work_struct *work)
2930
{
2931
	return queue_work_on(cpu, system_wq, work);
2932 2933 2934
}
EXPORT_SYMBOL(schedule_work_on);

2935 2936 2937 2938
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
2939 2940
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
2941 2942 2943 2944
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
2945
 */
2946
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
2947
{
2948
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
2949
}
2950
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
2951

2952 2953 2954
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
2955
 * @dwork: job to be done
2956 2957 2958 2959 2960
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
2961 2962
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
2963
{
2964
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
2965
}
2966
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
2967

2968 2969
/**
 * schedule_delayed_work - put work task in global workqueue after delay
2970 2971
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
2972 2973 2974 2975
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
2976
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
2977
{
2978
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
2979
}
2980
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
2981

2982
/**
2983
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2984 2985
 * @func: the function to call
 *
2986 2987
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2988
 * schedule_on_each_cpu() is very slow.
2989 2990 2991
 *
 * RETURNS:
 * 0 on success, -errno on failure.
2992
 */
2993
int schedule_on_each_cpu(work_func_t func)
2994 2995
{
	int cpu;
2996
	struct work_struct __percpu *works;
2997

2998 2999
	works = alloc_percpu(struct work_struct);
	if (!works)
3000
		return -ENOMEM;
3001

3002 3003
	get_online_cpus();

3004
	for_each_online_cpu(cpu) {
3005 3006 3007
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3008
		schedule_work_on(cpu, work);
3009
	}
3010 3011 3012 3013

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3014
	put_online_cpus();
3015
	free_percpu(works);
3016 3017 3018
	return 0;
}

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3043 3044
void flush_scheduled_work(void)
{
3045
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3046
}
3047
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3048

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3061
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3062 3063
{
	if (!in_interrupt()) {
3064
		fn(&ew->work);
3065 3066 3067
		return 0;
	}

3068
	INIT_WORK(&ew->work, fn);
3069 3070 3071 3072 3073 3074
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3075 3076
int keventd_up(void)
{
3077
	return system_wq != NULL;
L
Linus Torvalds 已提交
3078 3079
}

3080
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3081
{
3082
	bool highpri = wq->flags & WQ_HIGHPRI;
3083 3084 3085
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
3086 3087
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3088 3089 3090 3091
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
			struct pool_workqueue *pwq = get_pwq(cpu, wq);
3092

3093
			pwq->pool = get_std_worker_pool(cpu, highpri);
3094 3095 3096 3097 3098 3099 3100 3101 3102
			list_add_tail(&pwq->pwqs_node, &wq->pwqs);
		}
	} else {
		struct pool_workqueue *pwq;

		pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
		if (!pwq)
			return -ENOMEM;

3103
		pwq->pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
3104 3105 3106 3107
		list_add_tail(&pwq->pwqs_node, &wq->pwqs);
	}

	return 0;
T
Tejun Heo 已提交
3108 3109
}

3110
static void free_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3111
{
3112
	if (!(wq->flags & WQ_UNBOUND))
3113 3114 3115 3116
		free_percpu(wq->cpu_pwqs);
	else if (!list_empty(&wq->pwqs))
		kmem_cache_free(pwq_cache, list_first_entry(&wq->pwqs,
					struct pool_workqueue, pwqs_node));
T
Tejun Heo 已提交
3117 3118
}

3119 3120
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3121
{
3122 3123 3124
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3125 3126
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3127

3128
	return clamp_val(max_active, 1, lim);
3129 3130
}

3131
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3132 3133 3134
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3135
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3136
{
3137
	va_list args, args1;
L
Linus Torvalds 已提交
3138
	struct workqueue_struct *wq;
3139
	struct pool_workqueue *pwq;
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3154

3155 3156 3157 3158 3159 3160 3161
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3162
	max_active = max_active ?: WQ_DFL_ACTIVE;
3163
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3164

3165
	/* init wq */
3166
	wq->flags = flags;
3167
	wq->saved_max_active = max_active;
3168
	mutex_init(&wq->flush_mutex);
3169
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3170
	INIT_LIST_HEAD(&wq->pwqs);
3171 3172
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3173
	INIT_LIST_HEAD(&wq->maydays);
3174

3175
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3176
	INIT_LIST_HEAD(&wq->list);
3177

3178
	if (alloc_and_link_pwqs(wq) < 0)
3179 3180
		goto err;

3181
	for_each_pwq(pwq, wq) {
3182 3183 3184 3185 3186
		BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
		pwq->wq = wq;
		pwq->flush_color = -1;
		pwq->max_active = max_active;
		INIT_LIST_HEAD(&pwq->delayed_works);
3187
		INIT_LIST_HEAD(&pwq->mayday_node);
3188
	}
T
Tejun Heo 已提交
3189

3190 3191 3192 3193 3194 3195 3196
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3197 3198
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3199
					       wq->name);
3200 3201 3202 3203 3204
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3205 3206
	}

3207 3208 3209 3210 3211
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
3212
	spin_lock_irq(&workqueue_lock);
3213

3214
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3215 3216
		for_each_pwq(pwq, wq)
			pwq->max_active = 0;
3217

T
Tejun Heo 已提交
3218
	list_add(&wq->list, &workqueues);
3219

3220
	spin_unlock_irq(&workqueue_lock);
T
Tejun Heo 已提交
3221

3222
	return wq;
T
Tejun Heo 已提交
3223 3224
err:
	if (wq) {
3225
		free_pwqs(wq);
3226
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3227 3228 3229
		kfree(wq);
	}
	return NULL;
3230
}
3231
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3232

3233 3234 3235 3236 3237 3238 3239 3240
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3241
	struct pool_workqueue *pwq;
3242

3243 3244
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3245

3246
	/* sanity checks */
3247
	for_each_pwq(pwq, wq) {
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			if (WARN_ON(pwq->nr_in_flight[i]))
				return;
		if (WARN_ON(pwq->nr_active) ||
		    WARN_ON(!list_empty(&pwq->delayed_works)))
			return;
	}

3258 3259 3260 3261
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3262
	spin_lock_irq(&workqueue_lock);
3263
	list_del(&wq->list);
3264
	spin_unlock_irq(&workqueue_lock);
3265

3266 3267
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3268
		kfree(wq->rescuer);
3269 3270
	}

3271
	free_pwqs(wq);
3272 3273 3274 3275
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3276
/**
3277 3278
 * pwq_set_max_active - adjust max_active of a pwq
 * @pwq: target pool_workqueue
3279 3280
 * @max_active: new max_active value.
 *
3281
 * Set @pwq->max_active to @max_active and activate delayed works if
3282 3283 3284
 * increased.
 *
 * CONTEXT:
3285
 * spin_lock_irq(pool->lock).
3286
 */
3287
static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3288
{
3289
	pwq->max_active = max_active;
3290

3291 3292 3293
	while (!list_empty(&pwq->delayed_works) &&
	       pwq->nr_active < pwq->max_active)
		pwq_activate_first_delayed(pwq);
3294 3295
}

3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
3308
	struct pool_workqueue *pwq;
3309

3310
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3311

3312
	spin_lock_irq(&workqueue_lock);
3313 3314 3315

	wq->saved_max_active = max_active;

3316
	for_each_pwq(pwq, wq) {
3317
		struct worker_pool *pool = pwq->pool;
3318

3319
		spin_lock(&pool->lock);
3320

3321
		if (!(wq->flags & WQ_FREEZABLE) ||
3322
		    !(pool->flags & POOL_FREEZING))
3323
			pwq_set_max_active(pwq, max_active);
3324

3325
		spin_unlock(&pool->lock);
3326
	}
3327

3328
	spin_unlock_irq(&workqueue_lock);
3329
}
3330
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3331

3332
/**
3333 3334 3335
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3336
 *
3337 3338 3339
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3340
 *
3341 3342
 * RETURNS:
 * %true if congested, %false otherwise.
3343
 */
3344
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3345
{
3346
	struct pool_workqueue *pwq = get_pwq(cpu, wq);
3347

3348
	return !list_empty(&pwq->delayed_works);
L
Linus Torvalds 已提交
3349
}
3350
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3351

3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3364
{
3365
	struct worker_pool *pool = get_work_pool(work);
3366 3367
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3368

3369 3370
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
3371

3372 3373 3374 3375 3376 3377
	if (pool) {
		spin_lock_irqsave(&pool->lock, flags);
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
		spin_unlock_irqrestore(&pool->lock, flags);
	}
L
Linus Torvalds 已提交
3378

3379
	return ret;
L
Linus Torvalds 已提交
3380
}
3381
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3382

3383 3384 3385
/*
 * CPU hotplug.
 *
3386
 * There are two challenges in supporting CPU hotplug.  Firstly, there
3387
 * are a lot of assumptions on strong associations among work, pwq and
3388
 * pool which make migrating pending and scheduled works very
3389
 * difficult to implement without impacting hot paths.  Secondly,
3390
 * worker pools serve mix of short, long and very long running works making
3391 3392
 * blocked draining impractical.
 *
3393
 * This is solved by allowing the pools to be disassociated from the CPU
3394 3395
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3396
 */
L
Linus Torvalds 已提交
3397

3398
static void wq_unbind_fn(struct work_struct *work)
3399
{
3400
	int cpu = smp_processor_id();
3401
	struct worker_pool *pool;
3402 3403
	struct worker *worker;
	int i;
3404

3405
	for_each_std_worker_pool(pool, cpu) {
3406
		WARN_ON_ONCE(cpu != smp_processor_id());
3407

3408 3409
		mutex_lock(&pool->assoc_mutex);
		spin_lock_irq(&pool->lock);
3410

3411 3412 3413 3414 3415 3416 3417
		/*
		 * We've claimed all manager positions.  Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
3418
		list_for_each_entry(worker, &pool->idle_list, entry)
3419
			worker->flags |= WORKER_UNBOUND;
3420

3421
		for_each_busy_worker(worker, i, pool)
3422
			worker->flags |= WORKER_UNBOUND;
3423

3424
		pool->flags |= POOL_DISASSOCIATED;
3425

3426 3427 3428
		spin_unlock_irq(&pool->lock);
		mutex_unlock(&pool->assoc_mutex);
	}
3429

3430
	/*
3431
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3432 3433
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3434 3435
	 */
	schedule();
3436

3437
	/*
3438 3439
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
3440 3441 3442
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
3443 3444 3445 3446
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3447
	 */
3448
	for_each_std_worker_pool(pool, cpu)
3449
		atomic_set(&pool->nr_running, 0);
3450 3451
}

T
Tejun Heo 已提交
3452 3453 3454 3455
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3456
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3457 3458
					       unsigned long action,
					       void *hcpu)
3459
{
3460
	int cpu = (unsigned long)hcpu;
3461
	struct worker_pool *pool;
3462

T
Tejun Heo 已提交
3463
	switch (action & ~CPU_TASKS_FROZEN) {
3464
	case CPU_UP_PREPARE:
3465
		for_each_std_worker_pool(pool, cpu) {
3466 3467 3468 3469 3470 3471 3472 3473 3474
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

3475
			spin_lock_irq(&pool->lock);
3476
			start_worker(worker);
3477
			spin_unlock_irq(&pool->lock);
3478
		}
T
Tejun Heo 已提交
3479
		break;
3480

3481 3482
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3483
		for_each_std_worker_pool(pool, cpu) {
3484 3485 3486
			mutex_lock(&pool->assoc_mutex);
			spin_lock_irq(&pool->lock);

3487
			pool->flags &= ~POOL_DISASSOCIATED;
3488 3489 3490 3491 3492
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
			mutex_unlock(&pool->assoc_mutex);
		}
3493
		break;
3494
	}
3495 3496 3497 3498 3499 3500 3501
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3502
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3503 3504 3505
						 unsigned long action,
						 void *hcpu)
{
3506
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
3507 3508
	struct work_struct unbind_work;

3509 3510
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3511
		/* unbinding should happen on the local CPU */
3512
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3513
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3514 3515
		flush_work(&unbind_work);
		break;
3516 3517 3518 3519
	}
	return NOTIFY_OK;
}

3520
#ifdef CONFIG_SMP
3521

3522
struct work_for_cpu {
3523
	struct work_struct work;
3524 3525 3526 3527 3528
	long (*fn)(void *);
	void *arg;
	long ret;
};

3529
static void work_for_cpu_fn(struct work_struct *work)
3530
{
3531 3532
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3533 3534 3535 3536 3537 3538 3539 3540 3541
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3542 3543
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3544
 * The caller must not hold any locks which would prevent @fn from completing.
3545
 */
3546
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
3547
{
3548
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3549

3550 3551 3552
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3553 3554 3555 3556 3557
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3558 3559 3560 3561 3562
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3563 3564
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
3565
 * pool->worklist.
3566 3567
 *
 * CONTEXT:
3568
 * Grabs and releases workqueue_lock and pool->lock's.
3569 3570 3571
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
3572
	struct worker_pool *pool;
3573 3574
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
T
Tejun Heo 已提交
3575
	int id;
3576

3577
	spin_lock_irq(&workqueue_lock);
3578

3579
	WARN_ON_ONCE(workqueue_freezing);
3580 3581
	workqueue_freezing = true;

3582
	/* set FREEZING */
T
Tejun Heo 已提交
3583 3584 3585 3586
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
3587 3588
		spin_unlock(&pool->lock);
	}
3589

3590 3591 3592 3593
	/* suppress further executions by setting max_active to zero */
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
3594

3595 3596 3597 3598
		for_each_pwq(pwq, wq) {
			spin_lock(&pwq->pool->lock);
			pwq->max_active = 0;
			spin_unlock(&pwq->pool->lock);
3599
		}
3600 3601
	}

3602
	spin_unlock_irq(&workqueue_lock);
3603 3604 3605
}

/**
3606
 * freeze_workqueues_busy - are freezable workqueues still busy?
3607 3608 3609 3610 3611 3612 3613 3614
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3615 3616
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3617 3618 3619 3620
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
3621 3622
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
3623

3624
	spin_lock_irq(&workqueue_lock);
3625

3626
	WARN_ON_ONCE(!workqueue_freezing);
3627

3628 3629 3630
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
3631 3632 3633 3634
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
3635
		for_each_pwq(pwq, wq) {
3636
			WARN_ON_ONCE(pwq->nr_active < 0);
3637
			if (pwq->nr_active) {
3638 3639 3640 3641 3642 3643
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
3644
	spin_unlock_irq(&workqueue_lock);
3645 3646 3647 3648 3649 3650 3651
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3652
 * frozen works are transferred to their respective pool worklists.
3653 3654
 *
 * CONTEXT:
3655
 * Grabs and releases workqueue_lock and pool->lock's.
3656 3657 3658
 */
void thaw_workqueues(void)
{
3659 3660 3661 3662
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
	int id;
3663

3664
	spin_lock_irq(&workqueue_lock);
3665 3666 3667 3668

	if (!workqueue_freezing)
		goto out_unlock;

3669 3670 3671 3672 3673 3674 3675
	/* clear FREEZING */
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
		spin_unlock(&pool->lock);
	}
3676

3677 3678 3679 3680
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
3681

3682 3683 3684 3685
		for_each_pwq(pwq, wq) {
			spin_lock(&pwq->pool->lock);
			pwq_set_max_active(pwq, wq->saved_max_active);
			spin_unlock(&pwq->pool->lock);
3686
		}
3687 3688
	}

3689 3690 3691 3692 3693 3694 3695
	/* kick workers */
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		wake_up_worker(pool);
		spin_unlock(&pool->lock);
	}

3696 3697
	workqueue_freezing = false;
out_unlock:
3698
	spin_unlock_irq(&workqueue_lock);
3699 3700 3701
}
#endif /* CONFIG_FREEZER */

3702
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3703
{
3704
	int cpu;
T
Tejun Heo 已提交
3705

3706 3707
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3708
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
3709

3710 3711 3712 3713
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

3714
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3715
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3716

3717 3718
	/* initialize CPU pools */
	for_each_wq_cpu(cpu) {
3719
		struct worker_pool *pool;
3720

3721
		for_each_std_worker_pool(pool, cpu) {
3722
			spin_lock_init(&pool->lock);
3723
			pool->cpu = cpu;
3724
			pool->flags |= POOL_DISASSOCIATED;
3725 3726
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3727
			hash_init(pool->busy_hash);
3728

3729 3730 3731
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3732

3733
			setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3734 3735
				    (unsigned long)pool);

3736
			mutex_init(&pool->assoc_mutex);
3737
			ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3738 3739 3740

			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
3741
		}
3742 3743
	}

3744
	/* create the initial worker */
3745
	for_each_online_wq_cpu(cpu) {
3746
		struct worker_pool *pool;
3747

3748
		for_each_std_worker_pool(pool, cpu) {
3749 3750
			struct worker *worker;

3751 3752 3753
			if (cpu != WORK_CPU_UNBOUND)
				pool->flags &= ~POOL_DISASSOCIATED;

3754
			worker = create_worker(pool);
3755
			BUG_ON(!worker);
3756
			spin_lock_irq(&pool->lock);
3757
			start_worker(worker);
3758
			spin_unlock_irq(&pool->lock);
3759
		}
3760 3761
	}

3762
	system_wq = alloc_workqueue("events", 0, 0);
3763
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3764
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3765 3766
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3767 3768
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3769
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3770
	       !system_unbound_wq || !system_freezable_wq);
3771
	return 0;
L
Linus Torvalds 已提交
3772
}
3773
early_initcall(init_workqueues);