workqueue.c 145.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72

T
Tejun Heo 已提交
73 74 75
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80

81 82
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
83

84
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85

86
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
100
	 * all cpus.  Give MIN_NICE.
101
	 */
102 103
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 105

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
106
};
L
Linus Torvalds 已提交
107 108

/*
T
Tejun Heo 已提交
109 110
 * Structure fields follow one of the following exclusion rules.
 *
111 112
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
113
 *
114 115 116
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
117
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
118
 *
119 120 121 122
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
123
 *
124
 * A: pool->attach_mutex protected.
125
 *
126
 * PL: wq_pool_mutex protected.
127
 *
128
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129
 *
130 131 132 133 134
 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 *
 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 *      sched-RCU for reads.
 *
135 136
 * WQ: wq->mutex protected.
 *
137
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
138 139
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
140 141
 */

142
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
143

144
struct worker_pool {
145
	spinlock_t		lock;		/* the pool lock */
146
	int			cpu;		/* I: the associated cpu */
147
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
148
	int			id;		/* I: pool ID */
149
	unsigned int		flags;		/* X: flags */
150 151 152

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
153 154

	/* nr_idle includes the ones off idle_list for rebinding */
155 156 157 158 159 160
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

161
	/* a workers is either on busy_hash or idle_list, or the manager */
162 163 164
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

165
	/* see manage_workers() for details on the two manager mutexes */
166
	struct mutex		manager_arb;	/* manager arbitration */
167
	struct worker		*manager;	/* L: purely informational */
168 169
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
170
	struct completion	*detach_completion; /* all workers detached */
171

172
	struct ida		worker_ida;	/* worker IDs for task name */
173

T
Tejun Heo 已提交
174
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
175 176
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
177

178 179 180 181 182 183
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
184 185 186 187 188 189

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
190 191
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
192
/*
193 194 195 196
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
197
 */
198
struct pool_workqueue {
199
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
200
	struct workqueue_struct *wq;		/* I: the owning workqueue */
201 202
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
203
	int			refcnt;		/* L: reference count */
204 205
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
206
	int			nr_active;	/* L: nr of active works */
207
	int			max_active;	/* L: max active works */
208
	struct list_head	delayed_works;	/* L: delayed works */
209
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
210
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
211 212 213 214 215

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
216
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
217 218 219
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
220
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
221

222 223 224 225
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
226 227
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
228 229 230
	struct completion	done;		/* flush completion */
};

231 232
struct wq_device;

L
Linus Torvalds 已提交
233
/*
234 235
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
236 237
 */
struct workqueue_struct {
238
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
239
	struct list_head	list;		/* PR: list of all workqueues */
240

241 242 243
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
244
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
245 246 247
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
248

249
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
250 251
	struct worker		*rescuer;	/* I: rescue worker */

252
	int			nr_drainers;	/* WQ: drain in progress */
253
	int			saved_max_active; /* WQ: saved pwq max_active */
254

255 256
	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
257

258 259 260
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
261
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
262
	struct lockdep_map	lockdep_map;
263
#endif
264
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
265

266 267 268 269 270 271 272
	/*
	 * Destruction of workqueue_struct is sched-RCU protected to allow
	 * walking the workqueues list without grabbing wq_pool_mutex.
	 * This is used to dump all workqueues from sysrq.
	 */
	struct rcu_head		rcu;

273 274 275
	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
276
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
277 278
};

279 280
static struct kmem_cache *pwq_cache;

281 282 283
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

284 285 286
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

287
/* see the comment above the definition of WQ_POWER_EFFICIENT */
288
static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
289 290
module_param_named(power_efficient, wq_power_efficient, bool, 0444);

291 292
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

293 294 295
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

296
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
297
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
298

299
static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
300
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
301

302
static cpumask_var_t wq_unbound_cpumask; /* PL: low level cpumask for all unbound wqs */
303

304 305 306 307
/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

308
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
309

310
/* PL: hash of all unbound pools keyed by pool->attrs */
311 312
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

313
/* I: attributes used when instantiating standard unbound pools on demand */
314 315
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

316 317 318
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

319
struct workqueue_struct *system_wq __read_mostly;
320
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
321
struct workqueue_struct *system_highpri_wq __read_mostly;
322
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
323
struct workqueue_struct *system_long_wq __read_mostly;
324
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
325
struct workqueue_struct *system_unbound_wq __read_mostly;
326
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
327
struct workqueue_struct *system_freezable_wq __read_mostly;
328
EXPORT_SYMBOL_GPL(system_freezable_wq);
329 330 331 332
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
333

334
static int worker_thread(void *__worker);
335
static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
336

337 338 339
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

340
#define assert_rcu_or_pool_mutex()					\
341 342 343
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "sched RCU or wq_pool_mutex should be held")
344

345
#define assert_rcu_or_wq_mutex(wq)					\
346 347 348
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq->mutex),			\
			 "sched RCU or wq->mutex should be held")
349

350
#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
351 352 353 354
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq->mutex) &&		\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
355

356 357 358
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
359
	     (pool)++)
360

T
Tejun Heo 已提交
361 362 363
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
364
 * @pi: integer used for iteration
365
 *
366 367 368
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
369 370 371
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
372
 */
373 374
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
375
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
376
		else
T
Tejun Heo 已提交
377

378 379 380 381 382
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
383
 * This must be called with @pool->attach_mutex.
384 385 386 387
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
388 389
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
390
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
391 392
		else

393 394 395 396
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
397
 *
398
 * This must be called either with wq->mutex held or sched RCU read locked.
399 400
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
401 402 403
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
404 405
 */
#define for_each_pwq(pwq, wq)						\
406
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
407
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
408
		else
409

410 411 412 413
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

414 415 416 417 418
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
454
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
490
	.debug_hint	= work_debug_hint,
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

521 522 523 524 525 526 527
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

528 529 530 531 532
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

533 534 535 536 537 538 539
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
540 541 542 543
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

544
	lockdep_assert_held(&wq_pool_mutex);
545

546 547
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
548
	if (ret >= 0) {
T
Tejun Heo 已提交
549
		pool->id = ret;
550 551
		return 0;
	}
552
	return ret;
553 554
}

555 556 557 558 559
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
560 561
 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 * read locked.
562 563
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
564 565
 *
 * Return: The unbound pool_workqueue for @node.
566 567 568 569
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
570
	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
571 572 573
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
589

590
/*
591 592
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
593
 * is cleared and the high bits contain OFFQ flags and pool ID.
594
 *
595 596
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
597 598
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
599
 *
600
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
601
 * corresponding to a work.  Pool is available once the work has been
602
 * queued anywhere after initialization until it is sync canceled.  pwq is
603
 * available only while the work item is queued.
604
 *
605 606 607 608
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
609
 */
610 611
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
612
{
613
	WARN_ON_ONCE(!work_pending(work));
614 615
	atomic_long_set(&work->data, data | flags | work_static(work));
}
616

617
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
618 619
			 unsigned long extra_flags)
{
620 621
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
622 623
}

624 625 626 627 628 629 630
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

631 632
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
633
{
634 635 636 637 638 639 640
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
641
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
642
}
643

644
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
645
{
646 647
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
648 649
}

650
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
651
{
652
	unsigned long data = atomic_long_read(&work->data);
653

654
	if (data & WORK_STRUCT_PWQ)
655 656 657
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
658 659
}

660 661 662 663
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
664 665 666
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
667 668 669 670 671
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
672 673
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
674 675
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
676
{
677
	unsigned long data = atomic_long_read(&work->data);
678
	int pool_id;
679

680
	assert_rcu_or_pool_mutex();
681

682 683
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
684
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
685

686 687
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
688 689
		return NULL;

690
	return idr_find(&worker_pool_idr, pool_id);
691 692 693 694 695 696
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
697
 * Return: The worker_pool ID @work was last associated with.
698 699 700 701
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
702 703
	unsigned long data = atomic_long_read(&work->data);

704 705
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
706
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
707

708
	return data >> WORK_OFFQ_POOL_SHIFT;
709 710
}

711 712
static void mark_work_canceling(struct work_struct *work)
{
713
	unsigned long pool_id = get_work_pool_id(work);
714

715 716
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
717 718 719 720 721 722
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

723
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
724 725
}

726
/*
727 728
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
729
 * they're being called with pool->lock held.
730 731
 */

732
static bool __need_more_worker(struct worker_pool *pool)
733
{
734
	return !atomic_read(&pool->nr_running);
735 736
}

737
/*
738 739
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
740 741
 *
 * Note that, because unbound workers never contribute to nr_running, this
742
 * function will always return %true for unbound pools as long as the
743
 * worklist isn't empty.
744
 */
745
static bool need_more_worker(struct worker_pool *pool)
746
{
747
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
748
}
749

750
/* Can I start working?  Called from busy but !running workers. */
751
static bool may_start_working(struct worker_pool *pool)
752
{
753
	return pool->nr_idle;
754 755 756
}

/* Do I need to keep working?  Called from currently running workers. */
757
static bool keep_working(struct worker_pool *pool)
758
{
759 760
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
761 762 763
}

/* Do we need a new worker?  Called from manager. */
764
static bool need_to_create_worker(struct worker_pool *pool)
765
{
766
	return need_more_worker(pool) && !may_start_working(pool);
767
}
768

769
/* Do we have too many workers and should some go away? */
770
static bool too_many_workers(struct worker_pool *pool)
771
{
772
	bool managing = mutex_is_locked(&pool->manager_arb);
773 774
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
775 776

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
777 778
}

779
/*
780 781 782
 * Wake up functions.
 */

783 784
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
785
{
786
	if (unlikely(list_empty(&pool->idle_list)))
787 788
		return NULL;

789
	return list_first_entry(&pool->idle_list, struct worker, entry);
790 791 792 793
}

/**
 * wake_up_worker - wake up an idle worker
794
 * @pool: worker pool to wake worker from
795
 *
796
 * Wake up the first idle worker of @pool.
797 798
 *
 * CONTEXT:
799
 * spin_lock_irq(pool->lock).
800
 */
801
static void wake_up_worker(struct worker_pool *pool)
802
{
803
	struct worker *worker = first_idle_worker(pool);
804 805 806 807 808

	if (likely(worker))
		wake_up_process(worker->task);
}

809
/**
810 811 812 813 814 815 816 817 818 819
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
820
void wq_worker_waking_up(struct task_struct *task, int cpu)
821 822 823
{
	struct worker *worker = kthread_data(task);

824
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
825
		WARN_ON_ONCE(worker->pool->cpu != cpu);
826
		atomic_inc(&worker->pool->nr_running);
827
	}
828 829 830 831 832 833 834 835 836 837 838 839 840 841
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
842
 * Return:
843 844
 * Worker task on @cpu to wake up, %NULL if none.
 */
845
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
846 847
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
848
	struct worker_pool *pool;
849

850 851 852 853 854
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
855
	if (worker->flags & WORKER_NOT_RUNNING)
856 857
		return NULL;

858 859
	pool = worker->pool;

860
	/* this can only happen on the local cpu */
861
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
862
		return NULL;
863 864 865 866 867 868

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
869 870 871
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
872
	 * manipulating idle_list, so dereferencing idle_list without pool
873
	 * lock is safe.
874
	 */
875 876
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
877
		to_wakeup = first_idle_worker(pool);
878 879 880 881 882
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
883
 * @worker: self
884 885
 * @flags: flags to set
 *
886
 * Set @flags in @worker->flags and adjust nr_running accordingly.
887
 *
888
 * CONTEXT:
889
 * spin_lock_irq(pool->lock)
890
 */
891
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
892
{
893
	struct worker_pool *pool = worker->pool;
894

895 896
	WARN_ON_ONCE(worker->task != current);

897
	/* If transitioning into NOT_RUNNING, adjust nr_running. */
898 899
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
900
		atomic_dec(&pool->nr_running);
901 902
	}

903 904 905 906
	worker->flags |= flags;
}

/**
907
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
908
 * @worker: self
909 910
 * @flags: flags to clear
 *
911
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
912
 *
913
 * CONTEXT:
914
 * spin_lock_irq(pool->lock)
915 916 917
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
918
	struct worker_pool *pool = worker->pool;
919 920
	unsigned int oflags = worker->flags;

921 922
	WARN_ON_ONCE(worker->task != current);

923
	worker->flags &= ~flags;
924

925 926 927 928 929
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
930 931
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
932
			atomic_inc(&pool->nr_running);
933 934
}

935 936
/**
 * find_worker_executing_work - find worker which is executing a work
937
 * @pool: pool of interest
938 939
 * @work: work to find worker for
 *
940 941
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
942 943 944 945 946 947 948 949 950 951 952 953
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
954 955 956 957 958 959
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
960 961
 *
 * CONTEXT:
962
 * spin_lock_irq(pool->lock).
963
 *
964 965
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
966
 * otherwise.
967
 */
968
static struct worker *find_worker_executing_work(struct worker_pool *pool,
969
						 struct work_struct *work)
970
{
971 972
	struct worker *worker;

973
	hash_for_each_possible(pool->busy_hash, worker, hentry,
974 975 976
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
977 978 979
			return worker;

	return NULL;
980 981
}

982 983 984 985
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
986
 * @nextp: out parameter for nested worklist walking
987 988 989 990 991 992 993 994 995 996
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
997
 * spin_lock_irq(pool->lock).
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1081
static void pwq_activate_delayed_work(struct work_struct *work)
1082
{
1083
	struct pool_workqueue *pwq = get_work_pwq(work);
1084 1085

	trace_workqueue_activate_work(work);
1086
	move_linked_works(work, &pwq->pool->worklist, NULL);
1087
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1088
	pwq->nr_active++;
1089 1090
}

1091
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1092
{
1093
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1094 1095
						    struct work_struct, entry);

1096
	pwq_activate_delayed_work(work);
1097 1098
}

1099
/**
1100 1101
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1102 1103 1104
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1105
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1106 1107
 *
 * CONTEXT:
1108
 * spin_lock_irq(pool->lock).
1109
 */
1110
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1111
{
T
Tejun Heo 已提交
1112
	/* uncolored work items don't participate in flushing or nr_active */
1113
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1114
		goto out_put;
1115

1116
	pwq->nr_in_flight[color]--;
1117

1118 1119
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1120
		/* one down, submit a delayed one */
1121 1122
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1123 1124 1125
	}

	/* is flush in progress and are we at the flushing tip? */
1126
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1127
		goto out_put;
1128 1129

	/* are there still in-flight works? */
1130
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1131
		goto out_put;
1132

1133 1134
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1135 1136

	/*
1137
	 * If this was the last pwq, wake up the first flusher.  It
1138 1139
	 * will handle the rest.
	 */
1140 1141
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1142 1143
out_put:
	put_pwq(pwq);
1144 1145
}

1146
/**
1147
 * try_to_grab_pending - steal work item from worklist and disable irq
1148 1149
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1150
 * @flags: place to store irq state
1151 1152
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1153
 * stable state - idle, on timer or on worklist.
1154
 *
1155
 * Return:
1156 1157 1158
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1159 1160
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1161
 *
1162
 * Note:
1163
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1164 1165 1166
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1167 1168 1169 1170
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1171
 * This function is safe to call from any context including IRQ handler.
1172
 */
1173 1174
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1175
{
1176
	struct worker_pool *pool;
1177
	struct pool_workqueue *pwq;
1178

1179 1180
	local_irq_save(*flags);

1181 1182 1183 1184
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1185 1186 1187 1188 1189
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1190 1191 1192 1193 1194
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1195 1196 1197 1198 1199 1200 1201
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1202 1203
	pool = get_work_pool(work);
	if (!pool)
1204
		goto fail;
1205

1206
	spin_lock(&pool->lock);
1207
	/*
1208 1209 1210 1211 1212
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1213 1214
	 * item is currently queued on that pool.
	 */
1215 1216
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1217 1218 1219 1220 1221
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1222
		 * on the delayed_list, will confuse pwq->nr_active
1223 1224 1225 1226
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1227
			pwq_activate_delayed_work(work);
1228 1229

		list_del_init(&work->entry);
1230
		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1231

1232
		/* work->data points to pwq iff queued, point to pool */
1233 1234 1235 1236
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1237
	}
1238
	spin_unlock(&pool->lock);
1239 1240 1241 1242 1243
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1244
	return -EAGAIN;
1245 1246
}

T
Tejun Heo 已提交
1247
/**
1248
 * insert_work - insert a work into a pool
1249
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1250 1251 1252 1253
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1254
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1255
 * work_struct flags.
T
Tejun Heo 已提交
1256 1257
 *
 * CONTEXT:
1258
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1259
 */
1260 1261
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1262
{
1263
	struct worker_pool *pool = pwq->pool;
1264

T
Tejun Heo 已提交
1265
	/* we own @work, set data and link */
1266
	set_work_pwq(work, pwq, extra_flags);
1267
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1268
	get_pwq(pwq);
1269 1270

	/*
1271 1272 1273
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1274 1275 1276
	 */
	smp_mb();

1277 1278
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1279 1280
}

1281 1282
/*
 * Test whether @work is being queued from another work executing on the
1283
 * same workqueue.
1284 1285 1286
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1287 1288 1289 1290 1291 1292 1293
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1294
	return worker && worker->current_pwq->wq == wq;
1295 1296
}

1297
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1298 1299
			 struct work_struct *work)
{
1300
	struct pool_workqueue *pwq;
1301
	struct worker_pool *last_pool;
1302
	struct list_head *worklist;
1303
	unsigned int work_flags;
1304
	unsigned int req_cpu = cpu;
1305 1306 1307 1308 1309 1310 1311 1312

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1313

1314
	debug_work_activate(work);
1315

1316
	/* if draining, only works from the same workqueue are allowed */
1317
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1318
	    WARN_ON_ONCE(!is_chained_work(wq)))
1319
		return;
1320
retry:
1321 1322 1323
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1324
	/* pwq which will be used unless @work is executing elsewhere */
1325
	if (!(wq->flags & WQ_UNBOUND))
1326
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1327 1328
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1329

1330 1331 1332 1333 1334 1335 1336 1337
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1338

1339
		spin_lock(&last_pool->lock);
1340

1341
		worker = find_worker_executing_work(last_pool, work);
1342

1343 1344
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1345
		} else {
1346 1347
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1348
			spin_lock(&pwq->pool->lock);
1349
		}
1350
	} else {
1351
		spin_lock(&pwq->pool->lock);
1352 1353
	}

1354 1355 1356 1357
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1358 1359
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1373 1374
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1375

1376
	if (WARN_ON(!list_empty(&work->entry))) {
1377
		spin_unlock(&pwq->pool->lock);
1378 1379
		return;
	}
1380

1381 1382
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1383

1384
	if (likely(pwq->nr_active < pwq->max_active)) {
1385
		trace_workqueue_activate_work(work);
1386 1387
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1388 1389
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1390
		worklist = &pwq->delayed_works;
1391
	}
1392

1393
	insert_work(pwq, work, worklist, work_flags);
1394

1395
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1396 1397
}

1398
/**
1399 1400
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1401 1402 1403
 * @wq: workqueue to use
 * @work: work to queue
 *
1404 1405
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1406 1407
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1408
 */
1409 1410
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1411
{
1412
	bool ret = false;
1413
	unsigned long flags;
1414

1415
	local_irq_save(flags);
1416

1417
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1418
		__queue_work(cpu, wq, work);
1419
		ret = true;
1420
	}
1421

1422
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1423 1424
	return ret;
}
1425
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1426

1427
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1428
{
1429
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1430

1431
	/* should have been called from irqsafe timer with irq already off */
1432
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1433
}
1434
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1435

1436 1437
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1438
{
1439 1440 1441 1442 1443
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1444 1445
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1446

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1458
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1459

1460
	dwork->wq = wq;
1461
	dwork->cpu = cpu;
1462 1463 1464 1465 1466 1467
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1468 1469
}

1470 1471 1472 1473
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1474
 * @dwork: work to queue
1475 1476
 * @delay: number of jiffies to wait before queueing
 *
1477
 * Return: %false if @work was already on a queue, %true otherwise.  If
1478 1479
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1480
 */
1481 1482
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1483
{
1484
	struct work_struct *work = &dwork->work;
1485
	bool ret = false;
1486
	unsigned long flags;
1487

1488 1489
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1490

1491
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1492
		__queue_delayed_work(cpu, wq, dwork, delay);
1493
		ret = true;
1494
	}
1495

1496
	local_irq_restore(flags);
1497 1498
	return ret;
}
1499
EXPORT_SYMBOL(queue_delayed_work_on);
1500

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1513
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1514 1515
 * pending and its timer was modified.
 *
1516
 * This function is safe to call from any context including IRQ handler.
1517 1518 1519 1520 1521 1522 1523
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1524

1525 1526 1527
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1528

1529 1530 1531
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1532
	}
1533 1534

	/* -ENOENT from try_to_grab_pending() becomes %true */
1535 1536
	return ret;
}
1537 1538
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1539 1540 1541 1542 1543 1544 1545 1546
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1547
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1548 1549
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1550
{
1551
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1552

1553 1554 1555 1556
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1557

1558
	/* can't use worker_set_flags(), also called from create_worker() */
1559
	worker->flags |= WORKER_IDLE;
1560
	pool->nr_idle++;
1561
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1562 1563

	/* idle_list is LIFO */
1564
	list_add(&worker->entry, &pool->idle_list);
1565

1566 1567
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1568

1569
	/*
1570
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1571
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1572 1573
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1574
	 */
1575
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1576
		     pool->nr_workers == pool->nr_idle &&
1577
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1587
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1588 1589 1590
 */
static void worker_leave_idle(struct worker *worker)
{
1591
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1592

1593 1594
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1595
	worker_clr_flags(worker, WORKER_IDLE);
1596
	pool->nr_idle--;
T
Tejun Heo 已提交
1597 1598 1599
	list_del_init(&worker->entry);
}

1600
static struct worker *alloc_worker(int node)
T
Tejun Heo 已提交
1601 1602 1603
{
	struct worker *worker;

1604
	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
T
Tejun Heo 已提交
1605 1606
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1607
		INIT_LIST_HEAD(&worker->scheduled);
1608
		INIT_LIST_HEAD(&worker->node);
1609 1610
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1611
	}
T
Tejun Heo 已提交
1612 1613 1614
	return worker;
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1648 1649 1650 1651 1652
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1653 1654 1655
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1656 1657 1658 1659 1660 1661
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1662
	mutex_lock(&pool->attach_mutex);
1663 1664
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1665
		detach_completion = pool->detach_completion;
1666
	mutex_unlock(&pool->attach_mutex);
1667

1668 1669 1670
	/* clear leftover flags without pool->lock after it is detached */
	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);

1671 1672 1673 1674
	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1675 1676
/**
 * create_worker - create a new workqueue worker
1677
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1678
 *
1679
 * Create and start a new worker which is attached to @pool.
T
Tejun Heo 已提交
1680 1681 1682 1683
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1684
 * Return:
T
Tejun Heo 已提交
1685 1686
 * Pointer to the newly created worker.
 */
1687
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1688 1689
{
	struct worker *worker = NULL;
1690
	int id = -1;
1691
	char id_buf[16];
T
Tejun Heo 已提交
1692

1693 1694
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1695 1696
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1697

1698
	worker = alloc_worker(pool->node);
T
Tejun Heo 已提交
1699 1700 1701
	if (!worker)
		goto fail;

1702
	worker->pool = pool;
T
Tejun Heo 已提交
1703 1704
	worker->id = id;

1705
	if (pool->cpu >= 0)
1706 1707
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1708
	else
1709 1710
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1711
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1712
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1713 1714 1715
	if (IS_ERR(worker->task))
		goto fail;

1716
	set_user_nice(worker->task, pool->attrs->nice);
1717
	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1718

1719
	/* successful, attach the worker to the pool */
1720
	worker_attach_to_pool(worker, pool);
1721

1722 1723 1724 1725 1726 1727 1728
	/* start the newly created worker */
	spin_lock_irq(&pool->lock);
	worker->pool->nr_workers++;
	worker_enter_idle(worker);
	wake_up_process(worker->task);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1729
	return worker;
1730

T
Tejun Heo 已提交
1731
fail:
1732
	if (id >= 0)
1733
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1734 1735 1736 1737 1738 1739 1740 1741
	kfree(worker);
	return NULL;
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1742 1743
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1744 1745
 *
 * CONTEXT:
1746
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1747 1748 1749
 */
static void destroy_worker(struct worker *worker)
{
1750
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1751

1752 1753
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1754
	/* sanity check frenzy */
1755
	if (WARN_ON(worker->current_work) ||
1756 1757
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1758
		return;
T
Tejun Heo 已提交
1759

1760 1761
	pool->nr_workers--;
	pool->nr_idle--;
1762

T
Tejun Heo 已提交
1763
	list_del_init(&worker->entry);
1764
	worker->flags |= WORKER_DIE;
1765
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1766 1767
}

1768
static void idle_worker_timeout(unsigned long __pool)
1769
{
1770
	struct worker_pool *pool = (void *)__pool;
1771

1772
	spin_lock_irq(&pool->lock);
1773

1774
	while (too_many_workers(pool)) {
1775 1776 1777 1778
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1779
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1780 1781
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1782
		if (time_before(jiffies, expires)) {
1783
			mod_timer(&pool->idle_timer, expires);
1784
			break;
1785
		}
1786 1787

		destroy_worker(worker);
1788 1789
	}

1790
	spin_unlock_irq(&pool->lock);
1791
}
1792

1793
static void send_mayday(struct work_struct *work)
1794
{
1795 1796
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1797

1798
	lockdep_assert_held(&wq_mayday_lock);
1799

1800
	if (!wq->rescuer)
1801
		return;
1802 1803

	/* mayday mayday mayday */
1804
	if (list_empty(&pwq->mayday_node)) {
1805 1806 1807 1808 1809 1810
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1811
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1812
		wake_up_process(wq->rescuer->task);
1813
	}
1814 1815
}

1816
static void pool_mayday_timeout(unsigned long __pool)
1817
{
1818
	struct worker_pool *pool = (void *)__pool;
1819 1820
	struct work_struct *work;

1821 1822
	spin_lock_irq(&pool->lock);
	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1823

1824
	if (need_to_create_worker(pool)) {
1825 1826 1827 1828 1829 1830
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1831
		list_for_each_entry(work, &pool->worklist, entry)
1832
			send_mayday(work);
L
Linus Torvalds 已提交
1833
	}
1834

1835 1836
	spin_unlock(&wq_mayday_lock);
	spin_unlock_irq(&pool->lock);
1837

1838
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1839 1840
}

1841 1842
/**
 * maybe_create_worker - create a new worker if necessary
1843
 * @pool: pool to create a new worker for
1844
 *
1845
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1846 1847
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1848
 * sent to all rescuers with works scheduled on @pool to resolve
1849 1850
 * possible allocation deadlock.
 *
1851 1852
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1853 1854
 *
 * LOCKING:
1855
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1856 1857 1858
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 */
1859
static void maybe_create_worker(struct worker_pool *pool)
1860 1861
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1862
{
1863
restart:
1864
	spin_unlock_irq(&pool->lock);
1865

1866
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1867
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1868 1869

	while (true) {
1870
		if (create_worker(pool) || !need_to_create_worker(pool))
1871
			break;
L
Linus Torvalds 已提交
1872

1873
		schedule_timeout_interruptible(CREATE_COOLDOWN);
1874

1875
		if (!need_to_create_worker(pool))
1876 1877 1878
			break;
	}

1879
	del_timer_sync(&pool->mayday_timer);
1880
	spin_lock_irq(&pool->lock);
1881 1882 1883 1884 1885
	/*
	 * This is necessary even after a new worker was just successfully
	 * created as @pool->lock was dropped and the new worker might have
	 * already become busy.
	 */
1886
	if (need_to_create_worker(pool))
1887 1888 1889
		goto restart;
}

1890
/**
1891 1892
 * manage_workers - manage worker pool
 * @worker: self
1893
 *
1894
 * Assume the manager role and manage the worker pool @worker belongs
1895
 * to.  At any given time, there can be only zero or one manager per
1896
 * pool.  The exclusion is handled automatically by this function.
1897 1898 1899 1900
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1901 1902
 *
 * CONTEXT:
1903
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1904 1905
 * multiple times.  Does GFP_KERNEL allocations.
 *
1906
 * Return:
1907 1908 1909 1910
 * %false if the pool doesn't need management and the caller can safely
 * start processing works, %true if management function was performed and
 * the conditions that the caller verified before calling the function may
 * no longer be true.
1911
 */
1912
static bool manage_workers(struct worker *worker)
1913
{
1914
	struct worker_pool *pool = worker->pool;
1915

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
1926
	if (!mutex_trylock(&pool->manager_arb))
1927
		return false;
1928
	pool->manager = worker;
1929

1930
	maybe_create_worker(pool);
1931

1932
	pool->manager = NULL;
1933
	mutex_unlock(&pool->manager_arb);
1934
	return true;
1935 1936
}

1937 1938
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
1939
 * @worker: self
1940 1941 1942 1943 1944 1945 1946 1947 1948
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
1949
 * spin_lock_irq(pool->lock) which is released and regrabbed.
1950
 */
T
Tejun Heo 已提交
1951
static void process_one_work(struct worker *worker, struct work_struct *work)
1952 1953
__releases(&pool->lock)
__acquires(&pool->lock)
1954
{
1955
	struct pool_workqueue *pwq = get_work_pwq(work);
1956
	struct worker_pool *pool = worker->pool;
1957
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1958
	int work_color;
1959
	struct worker *collision;
1960 1961 1962 1963 1964 1965 1966 1967
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
1968 1969 1970
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1971
#endif
1972
	/* ensure we're on the correct CPU */
1973
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1974
		     raw_smp_processor_id() != pool->cpu);
1975

1976 1977 1978 1979 1980 1981
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
1982
	collision = find_worker_executing_work(pool, work);
1983 1984 1985 1986 1987
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

1988
	/* claim and dequeue */
1989
	debug_work_deactivate(work);
1990
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
1991
	worker->current_work = work;
1992
	worker->current_func = work->func;
1993
	worker->current_pwq = pwq;
1994
	work_color = get_work_color(work);
1995

1996 1997
	list_del_init(&work->entry);

1998
	/*
1999 2000 2001 2002
	 * CPU intensive works don't participate in concurrency management.
	 * They're the scheduler's responsibility.  This takes @worker out
	 * of concurrency management and the next code block will chain
	 * execution of the pending work items.
2003 2004
	 */
	if (unlikely(cpu_intensive))
2005
		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2006

2007
	/*
2008 2009 2010 2011
	 * Wake up another worker if necessary.  The condition is always
	 * false for normal per-cpu workers since nr_running would always
	 * be >= 1 at this point.  This is used to chain execution of the
	 * pending work items for WORKER_NOT_RUNNING workers such as the
2012
	 * UNBOUND and CPU_INTENSIVE ones.
2013
	 */
2014
	if (need_more_worker(pool))
2015
		wake_up_worker(pool);
2016

2017
	/*
2018
	 * Record the last pool and clear PENDING which should be the last
2019
	 * update to @work.  Also, do this inside @pool->lock so that
2020 2021
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2022
	 */
2023
	set_work_pool_and_clear_pending(work, pool->id);
2024

2025
	spin_unlock_irq(&pool->lock);
2026

2027
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2028
	lock_map_acquire(&lockdep_map);
2029
	trace_workqueue_execute_start(work);
2030
	worker->current_func(work);
2031 2032 2033 2034 2035
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2036
	lock_map_release(&lockdep_map);
2037
	lock_map_release(&pwq->wq->lockdep_map);
2038 2039

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2040 2041
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2042 2043
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2044 2045 2046 2047
		debug_show_held_locks(current);
		dump_stack();
	}

2048 2049 2050 2051 2052
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
2053 2054
	 * stop_machine. At the same time, report a quiescent RCU state so
	 * the same condition doesn't freeze RCU.
2055
	 */
2056
	cond_resched_rcu_qs();
2057

2058
	spin_lock_irq(&pool->lock);
2059

2060 2061 2062 2063
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2064
	/* we're done with it, release */
2065
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2066
	worker->current_work = NULL;
2067
	worker->current_func = NULL;
2068
	worker->current_pwq = NULL;
2069
	worker->desc_valid = false;
2070
	pwq_dec_nr_in_flight(pwq, work_color);
2071 2072
}

2073 2074 2075 2076 2077 2078 2079 2080 2081
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2082
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2083 2084 2085
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2086
{
2087 2088
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2089
						struct work_struct, entry);
T
Tejun Heo 已提交
2090
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2091 2092 2093
	}
}

T
Tejun Heo 已提交
2094 2095
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2096
 * @__worker: self
T
Tejun Heo 已提交
2097
 *
2098 2099 2100 2101 2102
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2103 2104
 *
 * Return: 0
T
Tejun Heo 已提交
2105
 */
T
Tejun Heo 已提交
2106
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2107
{
T
Tejun Heo 已提交
2108
	struct worker *worker = __worker;
2109
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2110

2111 2112
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2113
woke_up:
2114
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2115

2116 2117
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2118
		spin_unlock_irq(&pool->lock);
2119 2120
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2121 2122

		set_task_comm(worker->task, "kworker/dying");
2123
		ida_simple_remove(&pool->worker_ida, worker->id);
2124 2125
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2126
		return 0;
T
Tejun Heo 已提交
2127
	}
2128

T
Tejun Heo 已提交
2129
	worker_leave_idle(worker);
2130
recheck:
2131
	/* no more worker necessary? */
2132
	if (!need_more_worker(pool))
2133 2134 2135
		goto sleep;

	/* do we need to manage? */
2136
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2137 2138
		goto recheck;

T
Tejun Heo 已提交
2139 2140 2141 2142 2143
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2144
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2145

2146
	/*
2147 2148 2149 2150 2151
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2152
	 */
2153
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2154 2155

	do {
T
Tejun Heo 已提交
2156
		struct work_struct *work =
2157
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2158 2159 2160 2161 2162 2163
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2164
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2165 2166 2167
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2168
		}
2169
	} while (keep_working(pool));
2170

2171
	worker_set_flags(worker, WORKER_PREP);
2172
sleep:
T
Tejun Heo 已提交
2173
	/*
2174 2175 2176 2177 2178
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2179 2180 2181
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2182
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2183 2184
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2185 2186
}

2187 2188
/**
 * rescuer_thread - the rescuer thread function
2189
 * @__rescuer: self
2190 2191
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2192
 * workqueue which has WQ_MEM_RECLAIM set.
2193
 *
2194
 * Regular work processing on a pool may block trying to create a new
2195 2196 2197 2198 2199
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2200 2201
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2202 2203 2204
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2205 2206
 *
 * Return: 0
2207
 */
2208
static int rescuer_thread(void *__rescuer)
2209
{
2210 2211
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2212
	struct list_head *scheduled = &rescuer->scheduled;
2213
	bool should_stop;
2214 2215

	set_user_nice(current, RESCUER_NICE_LEVEL);
2216 2217 2218 2219 2220 2221

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2222 2223 2224
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2225 2226 2227 2228 2229 2230 2231 2232 2233
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2234

2235
	/* see whether any pwq is asking for help */
2236
	spin_lock_irq(&wq_mayday_lock);
2237 2238 2239 2240

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2241
		struct worker_pool *pool = pwq->pool;
2242 2243 2244
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2245 2246
		list_del_init(&pwq->mayday_node);

2247
		spin_unlock_irq(&wq_mayday_lock);
2248

2249 2250 2251
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2252
		rescuer->pool = pool;
2253 2254 2255 2256 2257

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2258
		WARN_ON_ONCE(!list_empty(scheduled));
2259
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2260
			if (get_work_pwq(work) == pwq)
2261 2262
				move_linked_works(work, scheduled, &n);

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
		if (!list_empty(scheduled)) {
			process_scheduled_works(rescuer);

			/*
			 * The above execution of rescued work items could
			 * have created more to rescue through
			 * pwq_activate_first_delayed() or chained
			 * queueing.  Let's put @pwq back on mayday list so
			 * that such back-to-back work items, which may be
			 * being used to relieve memory pressure, don't
			 * incur MAYDAY_INTERVAL delay inbetween.
			 */
			if (need_to_create_worker(pool)) {
				spin_lock(&wq_mayday_lock);
				get_pwq(pwq);
				list_move_tail(&pwq->mayday_node, &wq->maydays);
				spin_unlock(&wq_mayday_lock);
			}
		}
2282

2283 2284
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
2285
		 * go away while we're still attached to it.
2286 2287 2288
		 */
		put_pwq(pwq);

2289
		/*
2290
		 * Leave this pool.  If need_more_worker() is %true, notify a
2291 2292 2293
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2294
		if (need_more_worker(pool))
2295
			wake_up_worker(pool);
2296

2297
		rescuer->pool = NULL;
2298 2299 2300 2301 2302
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&wq_mayday_lock);
2303 2304
	}

2305
	spin_unlock_irq(&wq_mayday_lock);
2306

2307 2308 2309 2310 2311 2312
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2313 2314
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2315 2316
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2317 2318
}

O
Oleg Nesterov 已提交
2319 2320 2321
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
2322
	struct task_struct	*task;	/* purely informational */
O
Oleg Nesterov 已提交
2323 2324 2325 2326 2327 2328 2329 2330
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2331 2332
/**
 * insert_wq_barrier - insert a barrier work
2333
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2334
 * @barr: wq_barrier to insert
2335 2336
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2337
 *
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2350
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2351 2352
 *
 * CONTEXT:
2353
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2354
 */
2355
static void insert_wq_barrier(struct pool_workqueue *pwq,
2356 2357
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2358
{
2359 2360 2361
	struct list_head *head;
	unsigned int linked = 0;

2362
	/*
2363
	 * debugobject calls are safe here even with pool->lock locked
2364 2365 2366 2367
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2368
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2369
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2370
	init_completion(&barr->done);
2371
	barr->task = current;
2372

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2388
	debug_work_activate(&barr->work);
2389
	insert_work(pwq, &barr->work, head,
2390
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2391 2392
}

2393
/**
2394
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2395 2396 2397 2398
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2399
 * Prepare pwqs for workqueue flushing.
2400
 *
2401 2402 2403 2404 2405
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2406 2407 2408 2409 2410 2411 2412
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2413
 * If @work_color is non-negative, all pwqs should have the same
2414 2415 2416 2417
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2418
 * mutex_lock(wq->mutex).
2419
 *
2420
 * Return:
2421 2422 2423
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2424
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2425
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2426
{
2427
	bool wait = false;
2428
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2429

2430
	if (flush_color >= 0) {
2431
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2432
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2433
	}
2434

2435
	for_each_pwq(pwq, wq) {
2436
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2437

2438
		spin_lock_irq(&pool->lock);
2439

2440
		if (flush_color >= 0) {
2441
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2442

2443 2444 2445
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2446 2447 2448
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2449

2450
		if (work_color >= 0) {
2451
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2452
			pwq->work_color = work_color;
2453
		}
L
Linus Torvalds 已提交
2454

2455
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2456
	}
2457

2458
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2459
		complete(&wq->first_flusher->done);
2460

2461
	return wait;
L
Linus Torvalds 已提交
2462 2463
}

2464
/**
L
Linus Torvalds 已提交
2465
 * flush_workqueue - ensure that any scheduled work has run to completion.
2466
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2467
 *
2468 2469
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2470
 */
2471
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2472
{
2473 2474 2475 2476 2477 2478
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2479

2480 2481
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2482

2483
	mutex_lock(&wq->mutex);
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2496
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2497 2498 2499 2500 2501
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2502
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2503 2504 2505

			wq->first_flusher = &this_flusher;

2506
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2507 2508 2509 2510 2511 2512 2513 2514
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2515
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2516
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2517
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2528
	mutex_unlock(&wq->mutex);
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2541
	mutex_lock(&wq->mutex);
2542

2543 2544 2545 2546
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2547 2548
	wq->first_flusher = NULL;

2549 2550
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2563 2564
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2584
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2585 2586 2587
		}

		if (list_empty(&wq->flusher_queue)) {
2588
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2589 2590 2591 2592 2593
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2594
		 * the new first flusher and arm pwqs.
2595
		 */
2596 2597
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2598 2599 2600 2601

		list_del_init(&next->list);
		wq->first_flusher = next;

2602
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2613
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2614
}
2615
EXPORT_SYMBOL(flush_workqueue);
L
Linus Torvalds 已提交
2616

2617 2618 2619 2620 2621 2622 2623
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
C
Chen Hanxiao 已提交
2624
 * repeatedly until it becomes empty.  The number of flushing is determined
2625 2626 2627 2628 2629 2630
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2631
	struct pool_workqueue *pwq;
2632 2633 2634 2635

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2636
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2637
	 */
2638
	mutex_lock(&wq->mutex);
2639
	if (!wq->nr_drainers++)
2640
		wq->flags |= __WQ_DRAINING;
2641
	mutex_unlock(&wq->mutex);
2642 2643 2644
reflush:
	flush_workqueue(wq);

2645
	mutex_lock(&wq->mutex);
2646

2647
	for_each_pwq(pwq, wq) {
2648
		bool drained;
2649

2650
		spin_lock_irq(&pwq->pool->lock);
2651
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2652
		spin_unlock_irq(&pwq->pool->lock);
2653 2654

		if (drained)
2655 2656 2657 2658
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2659
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2660
				wq->name, flush_cnt);
2661

2662
		mutex_unlock(&wq->mutex);
2663 2664 2665 2666
		goto reflush;
	}

	if (!--wq->nr_drainers)
2667
		wq->flags &= ~__WQ_DRAINING;
2668
	mutex_unlock(&wq->mutex);
2669 2670 2671
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2672
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2673
{
2674
	struct worker *worker = NULL;
2675
	struct worker_pool *pool;
2676
	struct pool_workqueue *pwq;
2677 2678

	might_sleep();
2679 2680

	local_irq_disable();
2681
	pool = get_work_pool(work);
2682 2683
	if (!pool) {
		local_irq_enable();
2684
		return false;
2685
	}
2686

2687
	spin_lock(&pool->lock);
2688
	/* see the comment in try_to_grab_pending() with the same code */
2689 2690 2691
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2692
			goto already_gone;
2693
	} else {
2694
		worker = find_worker_executing_work(pool, work);
2695
		if (!worker)
T
Tejun Heo 已提交
2696
			goto already_gone;
2697
		pwq = worker->current_pwq;
2698
	}
2699

2700
	insert_wq_barrier(pwq, barr, work, worker);
2701
	spin_unlock_irq(&pool->lock);
2702

2703 2704 2705 2706 2707 2708
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2709
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2710
		lock_map_acquire(&pwq->wq->lockdep_map);
2711
	else
2712 2713
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2714

2715
	return true;
T
Tejun Heo 已提交
2716
already_gone:
2717
	spin_unlock_irq(&pool->lock);
2718
	return false;
2719
}
2720 2721 2722 2723 2724

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2725 2726
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2727
 *
2728
 * Return:
2729 2730 2731 2732 2733
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2734 2735
	struct wq_barrier barr;

2736 2737 2738
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2739 2740 2741 2742 2743 2744 2745
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2746
}
2747
EXPORT_SYMBOL_GPL(flush_work);
2748

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
struct cwt_wait {
	wait_queue_t		wait;
	struct work_struct	*work;
};

static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);

	if (cwait->work != key)
		return 0;
	return autoremove_wake_function(wait, mode, sync, key);
}

2763
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2764
{
2765
	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2766
	unsigned long flags;
2767 2768 2769
	int ret;

	do {
2770 2771
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
		 * If someone else is already canceling, wait for it to
		 * finish.  flush_work() doesn't work for PREEMPT_NONE
		 * because we may get scheduled between @work's completion
		 * and the other canceling task resuming and clearing
		 * CANCELING - flush_work() will return false immediately
		 * as @work is no longer busy, try_to_grab_pending() will
		 * return -ENOENT as @work is still being canceled and the
		 * other canceling task won't be able to clear CANCELING as
		 * we're hogging the CPU.
		 *
		 * Let's wait for completion using a waitqueue.  As this
		 * may lead to the thundering herd problem, use a custom
		 * wake function which matches @work along with exclusive
		 * wait and wakeup.
2786
		 */
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
		if (unlikely(ret == -ENOENT)) {
			struct cwt_wait cwait;

			init_wait(&cwait.wait);
			cwait.wait.func = cwt_wakefn;
			cwait.work = work;

			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
						  TASK_UNINTERRUPTIBLE);
			if (work_is_canceling(work))
				schedule();
			finish_wait(&cancel_waitq, &cwait.wait);
		}
2800 2801
	} while (unlikely(ret < 0));

2802 2803 2804 2805
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2806
	flush_work(work);
2807
	clear_work_data(work);
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817

	/*
	 * Paired with prepare_to_wait() above so that either
	 * waitqueue_active() is visible here or !work_is_canceling() is
	 * visible there.
	 */
	smp_mb();
	if (waitqueue_active(&cancel_waitq))
		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);

2818 2819 2820
	return ret;
}

2821
/**
2822 2823
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2824
 *
2825 2826 2827 2828
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2829
 *
2830 2831
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2832
 *
2833
 * The caller must ensure that the workqueue on which @work was last
2834
 * queued can't be destroyed before this function returns.
2835
 *
2836
 * Return:
2837
 * %true if @work was pending, %false otherwise.
2838
 */
2839
bool cancel_work_sync(struct work_struct *work)
2840
{
2841
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2842
}
2843
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2844

2845
/**
2846 2847
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2848
 *
2849 2850 2851
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2852
 *
2853
 * Return:
2854 2855
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2856
 */
2857 2858
bool flush_delayed_work(struct delayed_work *dwork)
{
2859
	local_irq_disable();
2860
	if (del_timer_sync(&dwork->timer))
2861
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2862
	local_irq_enable();
2863 2864 2865 2866
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2867
/**
2868 2869
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2870
 *
2871 2872 2873 2874 2875 2876 2877 2878 2879
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2880
 *
2881
 * This function is safe to call from any context including IRQ handler.
2882
 */
2883
bool cancel_delayed_work(struct delayed_work *dwork)
2884
{
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2895 2896
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2897
	local_irq_restore(flags);
2898
	return ret;
2899
}
2900
EXPORT_SYMBOL(cancel_delayed_work);
2901

2902 2903 2904 2905 2906 2907
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2908
 * Return:
2909 2910 2911
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2912
{
2913
	return __cancel_work_timer(&dwork->work, true);
2914
}
2915
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2916

2917
/**
2918
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2919 2920
 * @func: the function to call
 *
2921 2922
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2923
 * schedule_on_each_cpu() is very slow.
2924
 *
2925
 * Return:
2926
 * 0 on success, -errno on failure.
2927
 */
2928
int schedule_on_each_cpu(work_func_t func)
2929 2930
{
	int cpu;
2931
	struct work_struct __percpu *works;
2932

2933 2934
	works = alloc_percpu(struct work_struct);
	if (!works)
2935
		return -ENOMEM;
2936

2937 2938
	get_online_cpus();

2939
	for_each_online_cpu(cpu) {
2940 2941 2942
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2943
		schedule_work_on(cpu, work);
2944
	}
2945 2946 2947 2948

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2949
	put_online_cpus();
2950
	free_percpu(works);
2951 2952 2953
	return 0;
}

2954 2955 2956 2957 2958 2959 2960 2961 2962
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
2963
 * Return:	0 - function was executed
2964 2965
 *		1 - function was scheduled for execution
 */
2966
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2967 2968
{
	if (!in_interrupt()) {
2969
		fn(&ew->work);
2970 2971 2972
		return 0;
	}

2973
	INIT_WORK(&ew->work, fn);
2974 2975 2976 2977 2978 2979
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

2980 2981 2982
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
2983
 *
2984
 * Undo alloc_workqueue_attrs().
2985
 */
2986
void free_workqueue_attrs(struct workqueue_attrs *attrs)
2987
{
2988 2989 2990 2991
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
2992 2993
}

2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3004
{
3005
	struct workqueue_attrs *attrs;
3006

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_copy(attrs->cpumask, cpu_possible_mask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
3018 3019
}

3020 3021
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
3022
{
3023 3024 3025 3026 3027 3028 3029 3030
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3031 3032
}

3033 3034
/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3035
{
3036
	u32 hash = 0;
3037

3038 3039 3040 3041
	hash = jhash_1word(attrs->nice, hash);
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
	return hash;
3042 3043
}

3044 3045 3046
/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
3047
{
3048 3049 3050 3051 3052
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
3053 3054
}

3055 3056 3057 3058
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
3059
 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3060 3061 3062 3063 3064 3065
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
 */
static int init_worker_pool(struct worker_pool *pool)
3066
{
3067 3068 3069 3070 3071 3072 3073 3074
	spin_lock_init(&pool->lock);
	pool->id = -1;
	pool->cpu = -1;
	pool->node = NUMA_NO_NODE;
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);
3075

3076 3077 3078
	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;
3079

3080 3081
	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);
3082

3083 3084 3085
	mutex_init(&pool->manager_arb);
	mutex_init(&pool->attach_mutex);
	INIT_LIST_HEAD(&pool->workers);
3086

3087 3088 3089
	ida_init(&pool->worker_ida);
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;
3090

3091 3092 3093 3094 3095
	/* shouldn't fail above this point */
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3096 3097
}

3098
static void rcu_free_wq(struct rcu_head *rcu)
3099
{
3100 3101
	struct workqueue_struct *wq =
		container_of(rcu, struct workqueue_struct, rcu);
3102

3103 3104
	if (!(wq->flags & WQ_UNBOUND))
		free_percpu(wq->cpu_pwqs);
3105
	else
3106
		free_workqueue_attrs(wq->unbound_attrs);
3107

3108 3109
	kfree(wq->rescuer);
	kfree(wq);
3110 3111
}

3112
static void rcu_free_pool(struct rcu_head *rcu)
3113
{
3114
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3115

3116 3117 3118
	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
3119 3120
}

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
 *
 * Should be called with wq_pool_mutex held.
 */
static void put_unbound_pool(struct worker_pool *pool)
3133
{
3134 3135
	DECLARE_COMPLETION_ONSTACK(detach_completion);
	struct worker *worker;
3136

3137
	lockdep_assert_held(&wq_pool_mutex);
3138

3139 3140
	if (--pool->refcnt)
		return;
3141

3142 3143 3144 3145
	/* sanity checks */
	if (WARN_ON(!(pool->cpu < 0)) ||
	    WARN_ON(!list_empty(&pool->worklist)))
		return;
3146

3147 3148 3149 3150
	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);
3151

3152 3153 3154 3155 3156 3157
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * attach_mutex.
	 */
	mutex_lock(&pool->manager_arb);
3158

3159 3160 3161 3162 3163
	spin_lock_irq(&pool->lock);
	while ((worker = first_idle_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3164

3165 3166 3167 3168
	mutex_lock(&pool->attach_mutex);
	if (!list_empty(&pool->workers))
		pool->detach_completion = &detach_completion;
	mutex_unlock(&pool->attach_mutex);
3169

3170 3171
	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);
3172

3173
	mutex_unlock(&pool->manager_arb);
3174

3175 3176 3177
	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);
3178

3179 3180
	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
3181 3182 3183
}

/**
3184 3185
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
3186
 *
3187 3188 3189 3190
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.
3191
 *
3192
 * Should be called with wq_pool_mutex held.
3193
 *
3194 3195
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3196
 */
3197
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3198
{
3199 3200 3201
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
	int node;
3202

3203
	lockdep_assert_held(&wq_pool_mutex);
3204

3205 3206 3207 3208 3209 3210 3211
	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			return pool;
		}
	}
3212

3213 3214 3215 3216 3217 3218 3219
	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
	copy_workqueue_attrs(pool->attrs, attrs);
3220 3221

	/*
3222 3223
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
3224
	 */
3225
	pool->attrs->no_numa = false;
3226

3227 3228 3229 3230 3231 3232 3233
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
3234 3235 3236 3237
			}
		}
	}

3238 3239
	if (worker_pool_assign_id(pool) < 0)
		goto fail;
3240

3241 3242 3243
	/* create and start the initial worker */
	if (!create_worker(pool))
		goto fail;
3244

3245 3246
	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3247

3248 3249 3250 3251 3252
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
3253 3254
}

3255
static void rcu_free_pwq(struct rcu_head *rcu)
T
Tejun Heo 已提交
3256
{
3257 3258
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
T
Tejun Heo 已提交
3259 3260
}

3261 3262 3263
/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
T
Tejun Heo 已提交
3264
 */
3265
static void pwq_unbound_release_workfn(struct work_struct *work)
T
Tejun Heo 已提交
3266
{
3267 3268 3269 3270 3271
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
	bool is_last;
T
Tejun Heo 已提交
3272

3273 3274
	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;
T
Tejun Heo 已提交
3275

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
	mutex_lock(&wq->mutex);
	list_del_rcu(&pwq->pwqs_node);
	is_last = list_empty(&wq->pwqs);
	mutex_unlock(&wq->mutex);

	mutex_lock(&wq_pool_mutex);
	put_unbound_pool(pool);
	mutex_unlock(&wq_pool_mutex);

	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
T
Tejun Heo 已提交
3286

3287
	/*
3288 3289
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Schedule RCU free.
3290
	 */
3291 3292
	if (is_last)
		call_rcu_sched(&wq->rcu, rcu_free_wq);
3293 3294
}

T
Tejun Heo 已提交
3295
/**
3296 3297
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
 * @pwq: target pool_workqueue
3298
 *
3299 3300 3301
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
T
Tejun Heo 已提交
3302
 */
3303
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3304
{
3305 3306
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;
3307

3308 3309
	/* for @wq->saved_max_active */
	lockdep_assert_held(&wq->mutex);
3310

3311 3312 3313
	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;
T
Tejun Heo 已提交
3314

3315
	spin_lock_irq(&pwq->pool->lock);
3316

3317 3318 3319 3320 3321 3322 3323
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
		pwq->max_active = wq->saved_max_active;
3324

3325 3326 3327
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3328

3329 3330 3331 3332 3333 3334 3335 3336
		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
	} else {
		pwq->max_active = 0;
	}
3337

3338
	spin_unlock_irq(&pwq->pool->lock);
3339 3340
}

3341 3342 3343
/* initialize newly alloced @pwq which is associated with @wq and @pool */
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3344
{
3345
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3346

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
	memset(pwq, 0, sizeof(*pwq));

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
	pwq->refcnt = 1;
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->pwqs_node);
	INIT_LIST_HEAD(&pwq->mayday_node);
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3357 3358
}

3359 3360
/* sync @pwq with the current state of its associated wq and link it */
static void link_pwq(struct pool_workqueue *pwq)
3361
{
3362
	struct workqueue_struct *wq = pwq->wq;
3363

3364
	lockdep_assert_held(&wq->mutex);
3365

3366 3367
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
3368 3369
		return;

3370 3371
	/* set the matching work_color */
	pwq->work_color = wq->work_color;
3372

3373 3374
	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);
3375

3376 3377 3378
	/* link in @pwq */
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
}
3379

3380 3381 3382 3383 3384 3385
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;
3386

3387
	lockdep_assert_held(&wq_pool_mutex);
3388

3389 3390 3391
	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;
3392

3393 3394 3395 3396 3397
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
	}
3398

3399 3400 3401
	init_pwq(pwq, wq, pool);
	return pwq;
}
3402 3403

/**
3404
 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3405
 * @attrs: the wq_attrs of the default pwq of the target workqueue
3406 3407 3408
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
3409
 *
3410 3411 3412
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
 * calculation.  The result is stored in @cpumask.
3413
 *
3414 3415 3416 3417
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
3418
 *
3419 3420 3421 3422 3423
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3424
 */
3425 3426
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
3427
{
3428 3429
	if (!wq_numa_enabled || attrs->no_numa)
		goto use_dfl;
3430

3431 3432 3433 3434
	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);
3435

3436 3437
	if (cpumask_empty(cpumask))
		goto use_dfl;
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3448 3449 3450 3451 3452 3453 3454
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

3455
	lockdep_assert_held(&wq_pool_mutex);
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3466 3467 3468 3469
/* context to store the prepared attrs & pwqs before applying */
struct apply_wqattrs_ctx {
	struct workqueue_struct	*wq;		/* target workqueue */
	struct workqueue_attrs	*attrs;		/* attrs to apply */
3470
	struct list_head	list;		/* queued for batching commit */
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
	struct pool_workqueue	*dfl_pwq;
	struct pool_workqueue	*pwq_tbl[];
};

/* free the resources after success or abort */
static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
{
	if (ctx) {
		int node;

		for_each_node(node)
			put_pwq_unlocked(ctx->pwq_tbl[node]);
		put_pwq_unlocked(ctx->dfl_pwq);

		free_workqueue_attrs(ctx->attrs);

		kfree(ctx);
	}
}

/* allocate the attrs and pwqs for later installation */
static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct *wq,
		      const struct workqueue_attrs *attrs)
3495
{
3496
	struct apply_wqattrs_ctx *ctx;
3497
	struct workqueue_attrs *new_attrs, *tmp_attrs;
3498
	int node;
3499

3500
	lockdep_assert_held(&wq_pool_mutex);
3501

3502 3503
	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
		      GFP_KERNEL);
3504

3505
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3506
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3507 3508
	if (!ctx || !new_attrs || !tmp_attrs)
		goto out_free;
3509

3510 3511 3512 3513 3514
	/*
	 * Calculate the attrs of the default pwq.
	 * If the user configured cpumask doesn't overlap with the
	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
	 */
3515
	copy_workqueue_attrs(new_attrs, attrs);
3516
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3517 3518
	if (unlikely(cpumask_empty(new_attrs->cpumask)))
		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3519

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
3532 3533 3534
	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!ctx->dfl_pwq)
		goto out_free;
3535 3536

	for_each_node(node) {
3537
		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3538 3539 3540
			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!ctx->pwq_tbl[node])
				goto out_free;
3541
		} else {
3542 3543
			ctx->dfl_pwq->refcnt++;
			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3544 3545 3546
		}
	}

3547 3548 3549
	/* save the user configured attrs and sanitize it. */
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3550
	ctx->attrs = new_attrs;
3551

3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
	ctx->wq = wq;
	free_workqueue_attrs(tmp_attrs);
	return ctx;

out_free:
	free_workqueue_attrs(tmp_attrs);
	free_workqueue_attrs(new_attrs);
	apply_wqattrs_cleanup(ctx);
	return NULL;
}

/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
{
	int node;
3567

3568
	/* all pwqs have been created successfully, let's install'em */
3569
	mutex_lock(&ctx->wq->mutex);
3570

3571
	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3572 3573

	/* save the previous pwq and install the new one */
3574
	for_each_node(node)
3575 3576
		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
							  ctx->pwq_tbl[node]);
3577 3578

	/* @dfl_pwq might not have been used, ensure it's linked */
3579 3580
	link_pwq(ctx->dfl_pwq);
	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3581

3582 3583
	mutex_unlock(&ctx->wq->mutex);
}
3584

3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
static void apply_wqattrs_lock(void)
{
	/* CPUs should stay stable across pwq creations and installations */
	get_online_cpus();
	mutex_lock(&wq_pool_mutex);
}

static void apply_wqattrs_unlock(void)
{
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
}

static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
3600 3601 3602
{
	struct apply_wqattrs_ctx *ctx;
	int ret = -ENOMEM;
3603

3604 3605 3606
	/* only unbound workqueues can change attributes */
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;
3607

3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

	ctx = apply_wqattrs_prepare(wq, attrs);

	/* the ctx has been prepared successfully, let's commit it */
	if (ctx) {
		apply_wqattrs_commit(ctx);
		ret = 0;
	}

	apply_wqattrs_cleanup(ctx);

	return ret;
3623 3624
}

3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
	int ret;

	apply_wqattrs_lock();
	ret = apply_workqueue_attrs_locked(wq, attrs);
	apply_wqattrs_unlock();

	return ret;
}

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

3686 3687
	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
	    wq->unbound_attrs->no_numa)
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
3703 3704 3705
	 * different from the default pwq's, we need to compare it to @pwq's
	 * and create a new one if they don't match.  If the target cpumask
	 * equals the default pwq's, the default pwq should be used.
3706
	 */
3707
	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3708
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3709
			return;
3710
	} else {
3711
		goto use_dfl_pwq;
3712 3713 3714 3715 3716
	}

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
3717 3718
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
3719
		goto use_dfl_pwq;
3720 3721
	}

3722
	/* Install the new pwq. */
3723 3724 3725 3726 3727
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
3728
	mutex_lock(&wq->mutex);
3729 3730 3731 3732 3733 3734 3735 3736 3737
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

3738
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3739
{
3740
	bool highpri = wq->flags & WQ_HIGHPRI;
3741
	int cpu, ret;
3742 3743

	if (!(wq->flags & WQ_UNBOUND)) {
3744 3745
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3746 3747 3748
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3749 3750
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3751
			struct worker_pool *cpu_pools =
3752
				per_cpu(cpu_worker_pools, cpu);
3753

3754 3755 3756
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
3757
			link_pwq(pwq);
3758
			mutex_unlock(&wq->mutex);
3759
		}
3760
		return 0;
3761 3762 3763 3764 3765 3766 3767
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
3768
	} else {
3769
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3770
	}
T
Tejun Heo 已提交
3771 3772
}

3773 3774
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3775
{
3776 3777 3778
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3779 3780
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3781

3782
	return clamp_val(max_active, 1, lim);
3783 3784
}

3785
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3786 3787 3788
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3789
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3790
{
3791
	size_t tbl_size = 0;
3792
	va_list args;
L
Linus Torvalds 已提交
3793
	struct workqueue_struct *wq;
3794
	struct pool_workqueue *pwq;
3795

3796 3797 3798 3799
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

3800
	/* allocate wq and format name */
3801
	if (flags & WQ_UNBOUND)
3802
		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3803 3804

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3805
	if (!wq)
3806
		return NULL;
3807

3808 3809 3810 3811 3812 3813
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

3814 3815
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3816
	va_end(args);
L
Linus Torvalds 已提交
3817

3818
	max_active = max_active ?: WQ_DFL_ACTIVE;
3819
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3820

3821
	/* init wq */
3822
	wq->flags = flags;
3823
	wq->saved_max_active = max_active;
3824
	mutex_init(&wq->mutex);
3825
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3826
	INIT_LIST_HEAD(&wq->pwqs);
3827 3828
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3829
	INIT_LIST_HEAD(&wq->maydays);
3830

3831
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3832
	INIT_LIST_HEAD(&wq->list);
3833

3834
	if (alloc_and_link_pwqs(wq) < 0)
3835
		goto err_free_wq;
T
Tejun Heo 已提交
3836

3837 3838 3839 3840 3841
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3842 3843
		struct worker *rescuer;

3844
		rescuer = alloc_worker(NUMA_NO_NODE);
3845
		if (!rescuer)
3846
			goto err_destroy;
3847

3848 3849
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3850
					       wq->name);
3851 3852 3853 3854
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
3855

3856
		wq->rescuer = rescuer;
3857
		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3858
		wake_up_process(rescuer->task);
3859 3860
	}

3861 3862 3863
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

3864
	/*
3865 3866 3867
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
3868
	 */
3869
	mutex_lock(&wq_pool_mutex);
3870

3871
	mutex_lock(&wq->mutex);
3872 3873
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3874
	mutex_unlock(&wq->mutex);
3875

3876
	list_add_tail_rcu(&wq->list, &workqueues);
3877

3878
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
3879

3880
	return wq;
3881 3882

err_free_wq:
3883
	free_workqueue_attrs(wq->unbound_attrs);
3884 3885 3886 3887
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
3888
	return NULL;
3889
}
3890
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3891

3892 3893 3894 3895 3896 3897 3898 3899
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3900
	struct pool_workqueue *pwq;
3901
	int node;
3902

3903 3904
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3905

3906
	/* sanity checks */
3907
	mutex_lock(&wq->mutex);
3908
	for_each_pwq(pwq, wq) {
3909 3910
		int i;

3911 3912
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
3913
				mutex_unlock(&wq->mutex);
3914
				return;
3915 3916 3917
			}
		}

3918
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
3919
		    WARN_ON(pwq->nr_active) ||
3920
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
3921
			mutex_unlock(&wq->mutex);
3922
			return;
3923
		}
3924
	}
3925
	mutex_unlock(&wq->mutex);
3926

3927 3928 3929 3930
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3931
	mutex_lock(&wq_pool_mutex);
3932
	list_del_rcu(&wq->list);
3933
	mutex_unlock(&wq_pool_mutex);
3934

3935 3936
	workqueue_sysfs_unregister(wq);

3937
	if (wq->rescuer)
3938 3939
		kthread_stop(wq->rescuer->task);

T
Tejun Heo 已提交
3940 3941 3942
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
3943
		 * schedule RCU free.
T
Tejun Heo 已提交
3944
		 */
3945
		call_rcu_sched(&wq->rcu, rcu_free_wq);
T
Tejun Heo 已提交
3946 3947 3948
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
3949 3950
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
3951
		 */
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
3964
		put_pwq_unlocked(pwq);
3965
	}
3966 3967 3968
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
3981
	struct pool_workqueue *pwq;
3982

3983 3984 3985 3986
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

3987
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3988

3989
	mutex_lock(&wq->mutex);
3990 3991 3992

	wq->saved_max_active = max_active;

3993 3994
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3995

3996
	mutex_unlock(&wq->mutex);
3997
}
3998
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3999

4000 4001 4002 4003 4004
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4005 4006
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4007 4008 4009 4010 4011
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4012
	return worker && worker->rescue_wq;
4013 4014
}

4015
/**
4016 4017 4018
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4019
 *
4020 4021 4022
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4023
 *
4024 4025 4026 4027 4028 4029
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4030
 * Return:
4031
 * %true if congested, %false otherwise.
4032
 */
4033
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4034
{
4035
	struct pool_workqueue *pwq;
4036 4037
	bool ret;

4038
	rcu_read_lock_sched();
4039

4040 4041 4042
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4043 4044 4045
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4046
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4047

4048
	ret = !list_empty(&pwq->delayed_works);
4049
	rcu_read_unlock_sched();
4050 4051

	return ret;
L
Linus Torvalds 已提交
4052
}
4053
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4054

4055 4056 4057 4058 4059 4060 4061 4062
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4063
 * Return:
4064 4065 4066
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4067
{
4068
	struct worker_pool *pool;
4069 4070
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4071

4072 4073
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4074

4075 4076
	local_irq_save(flags);
	pool = get_work_pool(work);
4077
	if (pool) {
4078
		spin_lock(&pool->lock);
4079 4080
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4081
		spin_unlock(&pool->lock);
4082
	}
4083
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4084

4085
	return ret;
L
Linus Torvalds 已提交
4086
}
4087
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4088

4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
static void pr_cont_pool_info(struct worker_pool *pool)
{
	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
	if (pool->node != NUMA_NO_NODE)
		pr_cont(" node=%d", pool->node);
	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
}

static void pr_cont_work(bool comma, struct work_struct *work)
{
	if (work->func == wq_barrier_func) {
		struct wq_barrier *barr;

		barr = container_of(work, struct wq_barrier, work);

		pr_cont("%s BAR(%d)", comma ? "," : "",
			task_pid_nr(barr->task));
	} else {
		pr_cont("%s %pf", comma ? "," : "", work->func);
	}
}

static void show_pwq(struct pool_workqueue *pwq)
{
	struct worker_pool *pool = pwq->pool;
	struct work_struct *work;
	struct worker *worker;
	bool has_in_flight = false, has_pending = false;
	int bkt;

	pr_info("  pwq %d:", pool->id);
	pr_cont_pool_info(pool);

	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");

	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
		if (worker->current_pwq == pwq) {
			has_in_flight = true;
			break;
		}
	}
	if (has_in_flight) {
		bool comma = false;

		pr_info("    in-flight:");
		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
			if (worker->current_pwq != pwq)
				continue;

			pr_cont("%s %d%s:%pf", comma ? "," : "",
				task_pid_nr(worker->task),
				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
				worker->current_func);
			list_for_each_entry(work, &worker->scheduled, entry)
				pr_cont_work(false, work);
			comma = true;
		}
		pr_cont("\n");
	}

	list_for_each_entry(work, &pool->worklist, entry) {
		if (get_work_pwq(work) == pwq) {
			has_pending = true;
			break;
		}
	}
	if (has_pending) {
		bool comma = false;

		pr_info("    pending:");
		list_for_each_entry(work, &pool->worklist, entry) {
			if (get_work_pwq(work) != pwq)
				continue;

			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}

	if (!list_empty(&pwq->delayed_works)) {
		bool comma = false;

		pr_info("    delayed:");
		list_for_each_entry(work, &pwq->delayed_works, entry) {
			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}
}

/**
 * show_workqueue_state - dump workqueue state
 *
 * Called from a sysrq handler and prints out all busy workqueues and
 * pools.
 */
void show_workqueue_state(void)
{
	struct workqueue_struct *wq;
	struct worker_pool *pool;
	unsigned long flags;
	int pi;

	rcu_read_lock_sched();

	pr_info("Showing busy workqueues and worker pools:\n");

	list_for_each_entry_rcu(wq, &workqueues, list) {
		struct pool_workqueue *pwq;
		bool idle = true;

		for_each_pwq(pwq, wq) {
			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
				idle = false;
				break;
			}
		}
		if (idle)
			continue;

		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);

		for_each_pwq(pwq, wq) {
			spin_lock_irqsave(&pwq->pool->lock, flags);
			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
				show_pwq(pwq);
			spin_unlock_irqrestore(&pwq->pool->lock, flags);
		}
	}

	for_each_pool(pool, pi) {
		struct worker *worker;
		bool first = true;

		spin_lock_irqsave(&pool->lock, flags);
		if (pool->nr_workers == pool->nr_idle)
			goto next_pool;

		pr_info("pool %d:", pool->id);
		pr_cont_pool_info(pool);
		pr_cont(" workers=%d", pool->nr_workers);
		if (pool->manager)
			pr_cont(" manager: %d",
				task_pid_nr(pool->manager->task));
		list_for_each_entry(worker, &pool->idle_list, entry) {
			pr_cont(" %s%d", first ? "idle: " : "",
				task_pid_nr(worker->task));
			first = false;
		}
		pr_cont("\n");
	next_pool:
		spin_unlock_irqrestore(&pool->lock, flags);
	}

	rcu_read_unlock_sched();
}

4326 4327 4328
/*
 * CPU hotplug.
 *
4329
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4330
 * are a lot of assumptions on strong associations among work, pwq and
4331
 * pool which make migrating pending and scheduled works very
4332
 * difficult to implement without impacting hot paths.  Secondly,
4333
 * worker pools serve mix of short, long and very long running works making
4334 4335
 * blocked draining impractical.
 *
4336
 * This is solved by allowing the pools to be disassociated from the CPU
4337 4338
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4339
 */
L
Linus Torvalds 已提交
4340

4341
static void wq_unbind_fn(struct work_struct *work)
4342
{
4343
	int cpu = smp_processor_id();
4344
	struct worker_pool *pool;
4345
	struct worker *worker;
4346

4347
	for_each_cpu_worker_pool(pool, cpu) {
4348
		mutex_lock(&pool->attach_mutex);
4349
		spin_lock_irq(&pool->lock);
4350

4351
		/*
4352
		 * We've blocked all attach/detach operations. Make all workers
4353 4354 4355 4356 4357
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4358
		for_each_pool_worker(worker, pool)
4359
			worker->flags |= WORKER_UNBOUND;
4360

4361
		pool->flags |= POOL_DISASSOCIATED;
4362

4363
		spin_unlock_irq(&pool->lock);
4364
		mutex_unlock(&pool->attach_mutex);
4365

4366 4367 4368 4369 4370 4371 4372
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4373

4374 4375 4376 4377 4378 4379 4380 4381
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4382
		atomic_set(&pool->nr_running, 0);
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4393 4394
}

T
Tejun Heo 已提交
4395 4396 4397 4398
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4399
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4400 4401 4402
 */
static void rebind_workers(struct worker_pool *pool)
{
4403
	struct worker *worker;
T
Tejun Heo 已提交
4404

4405
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4406

4407 4408 4409
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
4410
	 * wake-ups for concurrency management happen, restore CPU affinity
4411 4412 4413
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4414
	for_each_pool_worker(worker, pool)
4415 4416
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4417

4418
	spin_lock_irq(&pool->lock);
4419
	pool->flags &= ~POOL_DISASSOCIATED;
T
Tejun Heo 已提交
4420

4421
	for_each_pool_worker(worker, pool) {
4422
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4423 4424

		/*
4425 4426 4427 4428 4429 4430
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4431
		 */
4432 4433
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4434

4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4454
	}
4455 4456

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4457 4458
}

4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4474
	lockdep_assert_held(&pool->attach_mutex);
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4486
	for_each_pool_worker(worker, pool)
4487 4488 4489 4490
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4491 4492 4493 4494
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4495
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4496 4497
					       unsigned long action,
					       void *hcpu)
4498
{
4499
	int cpu = (unsigned long)hcpu;
4500
	struct worker_pool *pool;
4501
	struct workqueue_struct *wq;
4502
	int pi;
4503

T
Tejun Heo 已提交
4504
	switch (action & ~CPU_TASKS_FROZEN) {
4505
	case CPU_UP_PREPARE:
4506
		for_each_cpu_worker_pool(pool, cpu) {
4507 4508
			if (pool->nr_workers)
				continue;
4509
			if (!create_worker(pool))
4510
				return NOTIFY_BAD;
4511
		}
T
Tejun Heo 已提交
4512
		break;
4513

4514 4515
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4516
		mutex_lock(&wq_pool_mutex);
4517 4518

		for_each_pool(pool, pi) {
4519
			mutex_lock(&pool->attach_mutex);
4520

4521
			if (pool->cpu == cpu)
4522
				rebind_workers(pool);
4523
			else if (pool->cpu < 0)
4524
				restore_unbound_workers_cpumask(pool, cpu);
4525

4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
			mutex_unlock(&pool->attach_mutex);
		}

		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

		mutex_unlock(&wq_pool_mutex);
		break;
	}
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
						 unsigned long action,
						 void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;
	struct workqueue_struct *wq;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		/* unbinding per-cpu workers should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
		queue_work_on(cpu, system_highpri_wq, &unbind_work);

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
		flush_work(&unbind_work);
		destroy_work_on_stack(&unbind_work);
		break;
	}
	return NOTIFY_OK;
}

#ifdef CONFIG_SMP

struct work_for_cpu {
	struct work_struct work;
	long (*fn)(void *);
	void *arg;
	long ret;
};

static void work_for_cpu_fn(struct work_struct *work)
{
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
 * It is up to the caller to ensure that the cpu doesn't go offline.
 * The caller must not hold any locks which would prevent @fn from completing.
 *
 * Return: The value @fn returns.
 */
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
{
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };

	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
	destroy_work_on_stack(&wfc.work);
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their delayed_works list instead of
 * pool->worklist.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void freeze_workqueues_begin(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(workqueue_freezing);
	workqueue_freezing = true;

	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

	mutex_unlock(&wq_pool_mutex);
}

/**
 * freeze_workqueues_busy - are freezable workqueues still busy?
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex.
 *
 * Return:
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(!workqueue_freezing);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		rcu_read_lock_sched();
		for_each_pwq(pwq, wq) {
			WARN_ON_ONCE(pwq->nr_active < 0);
			if (pwq->nr_active) {
				busy = true;
				rcu_read_unlock_sched();
				goto out_unlock;
			}
		}
		rcu_read_unlock_sched();
	}
out_unlock:
	mutex_unlock(&wq_pool_mutex);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
 * frozen works are transferred to their respective pool worklists.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void thaw_workqueues(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	if (!workqueue_freezing)
		goto out_unlock;

	workqueue_freezing = false;

	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

out_unlock:
	mutex_unlock(&wq_pool_mutex);
}
#endif /* CONFIG_FREEZER */

4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
static int workqueue_apply_unbound_cpumask(void)
{
	LIST_HEAD(ctxs);
	int ret = 0;
	struct workqueue_struct *wq;
	struct apply_wqattrs_ctx *ctx, *n;

	lockdep_assert_held(&wq_pool_mutex);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_UNBOUND))
			continue;
		/* creating multiple pwqs breaks ordering guarantee */
		if (wq->flags & __WQ_ORDERED)
			continue;

		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
		if (!ctx) {
			ret = -ENOMEM;
			break;
		}

		list_add_tail(&ctx->list, &ctxs);
	}

	list_for_each_entry_safe(ctx, n, &ctxs, list) {
		if (!ret)
			apply_wqattrs_commit(ctx);
		apply_wqattrs_cleanup(ctx);
	}

	return ret;
}

/**
 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
 *  @cpumask: the cpumask to set
 *
 *  The low-level workqueues cpumask is a global cpumask that limits
 *  the affinity of all unbound workqueues.  This function check the @cpumask
 *  and apply it to all unbound workqueues and updates all pwqs of them.
 *
 *  Retun:	0	- Success
 *  		-EINVAL	- Invalid @cpumask
 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
 */
int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
{
	int ret = -EINVAL;
	cpumask_var_t saved_cpumask;

	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
		return -ENOMEM;

	cpumask_and(cpumask, cpumask, cpu_possible_mask);
	if (!cpumask_empty(cpumask)) {
4779
		apply_wqattrs_lock();
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791

		/* save the old wq_unbound_cpumask. */
		cpumask_copy(saved_cpumask, wq_unbound_cpumask);

		/* update wq_unbound_cpumask at first and apply it to wqs. */
		cpumask_copy(wq_unbound_cpumask, cpumask);
		ret = workqueue_apply_unbound_cpumask();

		/* restore the wq_unbound_cpumask when failed. */
		if (ret < 0)
			cpumask_copy(wq_unbound_cpumask, saved_cpumask);

4792
		apply_wqattrs_unlock();
4793 4794 4795 4796 4797 4798
	}

	free_cpumask_var(saved_cpumask);
	return ret;
}

4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
static DEVICE_ATTR_RO(per_cpu);

static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
static DEVICE_ATTR_RW(max_active);

static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
};
ATTRIBUTE_GROUPS(wq_sysfs);

static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	const char *delim = "";
	int node, written = 0;

	rcu_read_lock_sched();
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

4903 4904
	lockdep_assert_held(&wq_pool_mutex);

4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
4918 4919 4920
	int ret = -ENOMEM;

	apply_wqattrs_lock();
4921 4922 4923

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
4924
		goto out_unlock;
4925 4926 4927

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
4928
		ret = apply_workqueue_attrs_locked(wq, attrs);
4929 4930 4931
	else
		ret = -EINVAL;

4932 4933
out_unlock:
	apply_wqattrs_unlock();
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq->unbound_attrs->cpumask));
	mutex_unlock(&wq->mutex);
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
4957 4958 4959
	int ret = -ENOMEM;

	apply_wqattrs_lock();
4960 4961 4962

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
4963
		goto out_unlock;
4964 4965 4966

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
4967
		ret = apply_workqueue_attrs_locked(wq, attrs);
4968

4969 4970
out_unlock:
	apply_wqattrs_unlock();
4971 4972 4973 4974 4975 4976 4977 4978 4979
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;
4980

4981 4982 4983 4984
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);
4985

4986
	return written;
4987 4988
}

4989 4990
static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
4991
{
4992 4993
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
4994 4995 4996
	int v, ret = -ENOMEM;

	apply_wqattrs_lock();
4997

4998 4999
	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5000
		goto out_unlock;
5001

5002 5003 5004
	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
5005
		ret = apply_workqueue_attrs_locked(wq, attrs);
5006
	}
5007

5008 5009
out_unlock:
	apply_wqattrs_unlock();
5010 5011
	free_workqueue_attrs(attrs);
	return ret ?: count;
5012 5013
}

5014 5015 5016 5017 5018 5019 5020
static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
	__ATTR_NULL,
};
5021

5022 5023 5024
static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_groups			= wq_sysfs_groups,
5025 5026
};

5027 5028 5029 5030 5031
static ssize_t wq_unbound_cpumask_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int written;

5032
	mutex_lock(&wq_pool_mutex);
5033 5034
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq_unbound_cpumask));
5035
	mutex_unlock(&wq_pool_mutex);
5036 5037 5038 5039

	return written;
}

5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
static ssize_t wq_unbound_cpumask_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	cpumask_var_t cpumask;
	int ret;

	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
		return -ENOMEM;

	ret = cpumask_parse(buf, cpumask);
	if (!ret)
		ret = workqueue_set_unbound_cpumask(cpumask);

	free_cpumask_var(cpumask);
	return ret ? ret : count;
}

5057
static struct device_attribute wq_sysfs_cpumask_attr =
5058 5059
	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
	       wq_unbound_cpumask_store);
5060

5061
static int __init wq_sysfs_init(void)
5062
{
5063 5064 5065 5066 5067 5068 5069
	int err;

	err = subsys_virtual_register(&wq_subsys, NULL);
	if (err)
		return err;

	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5070
}
5071
core_initcall(wq_sysfs_init);
5072

5073
static void wq_device_release(struct device *dev)
5074
{
5075
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5076

5077
	kfree(wq_dev);
5078
}
5079 5080

/**
5081 5082
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
5083
 *
5084 5085 5086
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
5087
 *
5088 5089 5090 5091 5092 5093
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Return: 0 on success, -errno on failure.
5094
 */
5095
int workqueue_sysfs_register(struct workqueue_struct *wq)
5096
{
5097 5098
	struct wq_device *wq_dev;
	int ret;
5099

5100
	/*
5101
	 * Adjusting max_active or creating new pwqs by applying
5102 5103 5104 5105 5106
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;
5107

5108 5109 5110
	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;
5111

5112 5113 5114 5115
	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;
5116

5117 5118 5119 5120 5121
	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);
5122

5123 5124 5125 5126 5127 5128
	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}
5129

5130 5131
	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;
5132

5133 5134 5135 5136 5137 5138
		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
5139 5140 5141
			}
		}
	}
5142 5143 5144 5145

	dev_set_uevent_suppress(&wq_dev->dev, false);
	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
5146 5147 5148
}

/**
5149 5150
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
5151
 *
5152
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5153
 */
5154
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5155
{
5156
	struct wq_device *wq_dev = wq->wq_dev;
5157

5158 5159
	if (!wq->wq_dev)
		return;
5160

5161 5162
	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
5163
}
5164 5165 5166
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */
5167

5168 5169 5170 5171 5172 5173 5174 5175
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	if (num_possible_nodes() <= 1)
		return;

5176 5177 5178 5179 5180
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

5181 5182 5183
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

5184 5185 5186 5187 5188
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
5189
	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5190 5191 5192
	BUG_ON(!tbl);

	for_each_node(node)
5193
		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5194
				node_online(node) ? node : NUMA_NO_NODE));
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

5210
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
5211
{
T
Tejun Heo 已提交
5212 5213
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
5214

5215 5216
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

5217 5218 5219
	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);

5220 5221
	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

5222
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5223
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5224

5225 5226
	wq_numa_init();

5227
	/* initialize CPU pools */
5228
	for_each_possible_cpu(cpu) {
5229
		struct worker_pool *pool;
5230

T
Tejun Heo 已提交
5231
		i = 0;
5232
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5233
			BUG_ON(init_worker_pool(pool));
5234
			pool->cpu = cpu;
5235
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5236
			pool->attrs->nice = std_nice[i++];
5237
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5238

T
Tejun Heo 已提交
5239
			/* alloc pool ID */
5240
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5241
			BUG_ON(worker_pool_assign_id(pool));
5242
			mutex_unlock(&wq_pool_mutex);
5243
		}
5244 5245
	}

5246
	/* create the initial worker */
5247
	for_each_online_cpu(cpu) {
5248
		struct worker_pool *pool;
5249

5250
		for_each_cpu_worker_pool(pool, cpu) {
5251
			pool->flags &= ~POOL_DISASSOCIATED;
5252
			BUG_ON(!create_worker(pool));
5253
		}
5254 5255
	}

5256
	/* create default unbound and ordered wq attrs */
5257 5258 5259 5260 5261 5262
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5273 5274
	}

5275
	system_wq = alloc_workqueue("events", 0, 0);
5276
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5277
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5278 5279
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5280 5281
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5282 5283 5284 5285 5286
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5287
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5288 5289 5290
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5291
	return 0;
L
Linus Torvalds 已提交
5292
}
5293
early_initcall(init_workqueues);