hrtimer.c 43.6 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47
#include <linux/sched.h>
#include <linux/timer.h>
48 49 50 51 52

#include <asm/uaccess.h>

/*
 * The timer bases:
53 54 55 56 57 58
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
59
 */
60
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
61
{
62 63

	.clock_base =
64
	{
65 66 67
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
68
			.resolution = KTIME_LOW_RES,
69 70 71 72
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
73
			.resolution = KTIME_LOW_RES,
74 75
		},
	}
76 77
};

78 79 80 81
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
82
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
83 84
{
	ktime_t xtim, tomono;
85
	struct timespec xts, tom;
86 87 88 89
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
90
		xts = current_kernel_time();
91
		tom = wall_to_monotonic;
92 93
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
94
	xtim = timespec_to_ktime(xts);
95
	tomono = timespec_to_ktime(tom);
96 97 98
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
99 100
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
119 120 121
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
122
{
123
	struct hrtimer_clock_base *base;
124 125 126 127

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
128
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
129 130 131
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
132
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
133 134 135 136 137
		}
		cpu_relax();
	}
}

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

/*
 * Get the preferred target CPU for NOHZ
 */
static int hrtimer_get_target(int this_cpu, int pinned)
{
#ifdef CONFIG_NO_HZ
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) {
		int preferred_cpu = get_nohz_load_balancer();

		if (preferred_cpu >= 0)
			return preferred_cpu;
	}
#endif
	return this_cpu;
}

/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

178 179 180
/*
 * Switch the timer base to the current CPU when possible.
 */
181
static inline struct hrtimer_clock_base *
182 183
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
184
{
185 186
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
187 188
	int this_cpu = smp_processor_id();
	int cpu = hrtimer_get_target(this_cpu, pinned);
189

190 191
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
192
	new_base = &new_cpu_base->clock_base[base->index];
193 194 195

	if (base != new_base) {
		/*
196
		 * We are trying to move timer to new_base.
197 198 199 200 201 202 203
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
204
		if (unlikely(hrtimer_callback_running(timer)))
205 206 207 208
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
209 210
		spin_unlock(&base->cpu_base->lock);
		spin_lock(&new_base->cpu_base->lock);
211

212 213 214 215 216 217
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
			spin_unlock(&new_base->cpu_base->lock);
			spin_lock(&base->cpu_base->lock);
			timer->base = base;
			goto again;
218
		}
219 220 221 222 223 224 225
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

226
static inline struct hrtimer_clock_base *
227 228
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
229
	struct hrtimer_clock_base *base = timer->base;
230

231
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
232 233 234 235

	return base;
}

236
# define switch_hrtimer_base(t, b, p)	(b)
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
267 268

EXPORT_SYMBOL_GPL(ktime_add_ns);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
293 294 295 296 297
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
298
u64 ktime_divns(const ktime_t kt, s64 div)
299
{
300
	u64 dclc;
301 302
	int sft = 0;

303
	dclc = ktime_to_ns(kt);
304 305 306 307 308 309 310 311
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
312
	return dclc;
313 314 315
}
#endif /* BITS_PER_LONG >= 64 */

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

333 334
EXPORT_SYMBOL_GPL(ktime_add_safe);

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires;

	cpu_base->expires_next.tv64 = KTIME_MAX;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
503
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
504 505 506 507 508 509 510
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
		if (expires.tv64 < cpu_base->expires_next.tv64)
			cpu_base->expires_next = expires;
	}

	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
532
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
533 534
	int res;

535
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
536

537 538 539
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
540
	 * the callback is executed in the hrtimer_interrupt context. The
541 542 543 544 545 546
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

547 548 549 550 551 552 553 554 555
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	if (expires.tv64 >= expires_next->tv64)
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
		*expires_next = expires;
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
	struct timespec realtime_offset;
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		set_normalized_timespec(&realtime_offset,
					-wall_to_monotonic.tv_sec,
					-wall_to_monotonic.tv_nsec);
	} while (read_seqretry(&xtime_lock, seq));

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
	spin_lock(&base->lock);
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

	hrtimer_force_reprogram(base);
	spin_unlock(&base->lock);
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
615
	on_each_cpu(retrigger_next_event, NULL, 1);
616 617
}

618 619 620 621 622 623
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
624 625 626
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");

627 628 629
	retrigger_next_event(NULL);
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

646

647 648 649 650 651 652 653
/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
654 655
					    struct hrtimer_clock_base *base,
					    int wakeup)
656 657
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
658 659 660 661 662 663 664
		if (wakeup) {
			spin_unlock(&base->cpu_base->lock);
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
			spin_lock(&base->cpu_base->lock);
		} else
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);

665
		return 1;
666
	}
667

668 669 670 671 672 673
	return 0;
}

/*
 * Switch to high resolution mode
 */
674
static int hrtimer_switch_to_hres(void)
675
{
I
Ingo Molnar 已提交
676 677
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
678 679 680
	unsigned long flags;

	if (base->hres_active)
681
		return 1;
682 683 684 685 686

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
687 688
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
689
		return 0;
690 691 692 693 694 695 696 697 698 699
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
700
	printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
701
	       smp_processor_id());
702
	return 1;
703 704 705 706 707 708
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
709
static inline int hrtimer_switch_to_hres(void) { return 0; }
710 711
static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
712 713
					    struct hrtimer_clock_base *base,
					    int wakeup)
714 715 716 717 718 719 720 721
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

722 723 724 725 726 727 728 729 730 731 732 733
#ifdef CONFIG_TIMER_STATS
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
#endif

734
/*
735
 * Counterpart to lock_hrtimer_base above:
736 737 738 739
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
740
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
741 742 743 744 745
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
746
 * @now:	forward past this time
747 748 749
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
750
 * Returns the number of overruns.
751
 */
D
Davide Libenzi 已提交
752
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
753
{
D
Davide Libenzi 已提交
754
	u64 orun = 1;
755
	ktime_t delta;
756

757
	delta = ktime_sub(now, hrtimer_get_expires(timer));
758 759 760 761

	if (delta.tv64 < 0)
		return 0;

762 763 764
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

765
	if (unlikely(delta.tv64 >= interval.tv64)) {
766
		s64 incr = ktime_to_ns(interval);
767 768

		orun = ktime_divns(delta, incr);
769 770
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
771 772 773 774 775 776 777
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
778
	hrtimer_add_expires(timer, interval);
779 780 781

	return orun;
}
S
Stas Sergeev 已提交
782
EXPORT_SYMBOL_GPL(hrtimer_forward);
783 784 785 786 787 788

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
789 790
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
791
 */
792 793
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
794 795 796 797
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;
I
Ingo Molnar 已提交
798
	int leftmost = 1;
799

800 801
	debug_hrtimer_activate(timer);

802 803 804 805 806 807 808 809 810 811
	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
812 813
		if (hrtimer_get_expires_tv64(timer) <
				hrtimer_get_expires_tv64(entry)) {
814
			link = &(*link)->rb_left;
I
Ingo Molnar 已提交
815
		} else {
816
			link = &(*link)->rb_right;
I
Ingo Molnar 已提交
817 818
			leftmost = 0;
		}
819 820 821
	}

	/*
822 823
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
824
	 */
825
	if (leftmost)
826 827
		base->first = &timer->node;

828 829
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
830 831 832 833 834
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
835 836

	return leftmost;
837
}
838 839 840 841 842

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
843 844 845 846 847
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
848
 */
849
static void __remove_hrtimer(struct hrtimer *timer,
850
			     struct hrtimer_clock_base *base,
851
			     unsigned long newstate, int reprogram)
852
{
853
	if (timer->state & HRTIMER_STATE_ENQUEUED) {
854 855 856 857 858 859 860 861 862 863 864 865
		/*
		 * Remove the timer from the rbtree and replace the
		 * first entry pointer if necessary.
		 */
		if (base->first == &timer->node) {
			base->first = rb_next(&timer->node);
			/* Reprogram the clock event device. if enabled */
			if (reprogram && hrtimer_hres_active())
				hrtimer_force_reprogram(base->cpu_base);
		}
		rb_erase(&timer->node, &base->active);
	}
866
	timer->state = newstate;
867 868 869 870 871 872
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
873
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
874
{
875
	if (hrtimer_is_queued(timer)) {
876 877 878 879 880 881 882 883 884 885
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
886
		debug_hrtimer_deactivate(timer);
887
		timer_stats_hrtimer_clear_start_info(timer);
888 889 890
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
891 892 893 894 895
		return 1;
	}
	return 0;
}

896 897 898
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
899
{
900
	struct hrtimer_clock_base *base, *new_base;
901
	unsigned long flags;
902
	int ret, leftmost;
903 904 905 906 907 908 909

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
910
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
911

912
	if (mode & HRTIMER_MODE_REL) {
913
		tim = ktime_add_safe(tim, new_base->get_time());
914 915 916 917 918 919 920 921
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
922
		tim = ktime_add_safe(tim, base->resolution);
923 924
#endif
	}
925

926
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
927

928 929
	timer_stats_hrtimer_set_start_info(timer);

930 931
	leftmost = enqueue_hrtimer(timer, new_base);

932 933 934
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
935 936
	 *
	 * XXX send_remote_softirq() ?
937
	 */
938
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
939
		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
940 941 942 943 944

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
962 963 964
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
965
 * hrtimer_start - (re)start an hrtimer on the current CPU
966 967 968 969 970 971 972 973 974 975 976
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
977
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
978
}
979
EXPORT_SYMBOL_GPL(hrtimer_start);
980

981

982 983 984 985 986 987 988 989
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
990
 *    cannot be stopped
991 992 993
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
994
	struct hrtimer_clock_base *base;
995 996 997 998 999
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1000
	if (!hrtimer_callback_running(timer))
1001 1002 1003 1004 1005 1006 1007
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1008
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1025
		cpu_relax();
1026 1027
	}
}
1028
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1029 1030 1031 1032 1033 1034 1035

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
1036
	struct hrtimer_clock_base *base;
1037 1038 1039 1040
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
1041
	rem = hrtimer_expires_remaining(timer);
1042 1043 1044 1045
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1046
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1047

1048
#ifdef CONFIG_NO_HZ
1049 1050 1051 1052 1053 1054 1055 1056
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1057 1058
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1059 1060 1061 1062
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1063 1064
	spin_lock_irqsave(&cpu_base->lock, flags);

1065 1066 1067
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1068

1069 1070
			if (!base->first)
				continue;
1071

1072
			timer = rb_entry(base->first, struct hrtimer, node);
1073
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1074 1075 1076 1077
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1078
	}
1079 1080 1081

	spin_unlock_irqrestore(&cpu_base->lock, flags);

1082 1083 1084 1085 1086 1087
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1088 1089
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1090
{
1091
	struct hrtimer_cpu_base *cpu_base;
1092

1093 1094
	memset(timer, 0, sizeof(struct hrtimer));

1095
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1096

1097
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1098 1099
		clock_id = CLOCK_MONOTONIC;

1100
	timer->base = &cpu_base->clock_base[clock_id];
1101
	hrtimer_init_timer_hres(timer);
1102 1103 1104 1105 1106 1107

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1108
}
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	__hrtimer_init(timer, clock_id, mode);
}
1122
EXPORT_SYMBOL_GPL(hrtimer_init);
1123 1124 1125 1126 1127 1128

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1129 1130
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1131 1132 1133
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1134
	struct hrtimer_cpu_base *cpu_base;
1135

1136 1137
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1138 1139 1140

	return 0;
}
1141
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1142

1143 1144 1145 1146 1147 1148 1149
static void __run_hrtimer(struct hrtimer *timer)
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1150 1151
	WARN_ON(!irqs_disabled());

1152
	debug_hrtimer_deactivate(timer);
1153 1154 1155
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1156 1157 1158 1159 1160 1161 1162 1163 1164

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
	spin_unlock(&cpu_base->lock);
	restart = fn(timer);
	spin_lock(&cpu_base->lock);
1165 1166

	/*
T
Thomas Gleixner 已提交
1167 1168 1169
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1170 1171 1172
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1173
		enqueue_hrtimer(timer, base);
1174 1175 1176 1177
	}
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1178 1179
#ifdef CONFIG_HIGH_RES_TIMERS

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
static int force_clock_reprogram;

/*
 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
 * is hanging, which could happen with something that slows the interrupt
 * such as the tracing. Then we force the clock reprogramming for each future
 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
 * threshold that we will overwrite.
 * The next tick event will be scheduled to 3 times we currently spend on
 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
 * 1/4 of their time to process the hrtimer interrupts. This is enough to
 * let it running without serious starvation.
 */

static inline void
hrtimer_interrupt_hanging(struct clock_event_device *dev,
			ktime_t try_time)
{
	force_clock_reprogram = 1;
	dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
	printk(KERN_WARNING "hrtimer: interrupt too slow, "
		"forcing clock min delta to %lu ns\n", dev->min_delta_ns);
}
1203 1204 1205 1206 1207 1208 1209 1210 1211
/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	ktime_t expires_next, now;
1212
	int nr_retries = 0;
1213
	int i;
1214 1215 1216 1217 1218 1219

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

 retry:
1220 1221 1222 1223
	/* 5 retries is enough to notice a hang */
	if (!(++nr_retries % 5))
		hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));

1224 1225 1226 1227
	now = ktime_get();

	expires_next.tv64 = KTIME_MAX;

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	spin_lock(&cpu_base->lock);
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1265 1266
				ktime_t expires;

1267
				expires = ktime_sub(hrtimer_get_expires(timer),
1268 1269 1270 1271 1272 1273
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1274
			__run_hrtimer(timer);
1275 1276 1277 1278
		}
		base++;
	}

1279 1280 1281 1282
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1283
	cpu_base->expires_next = expires_next;
1284
	spin_unlock(&cpu_base->lock);
1285 1286 1287

	/* Reprogramming necessary ? */
	if (expires_next.tv64 != KTIME_MAX) {
1288
		if (tick_program_event(expires_next, force_clock_reprogram))
1289 1290 1291 1292
			goto retry;
	}
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1320
	unsigned long flags;
1321

1322
	local_irq_save(flags);
1323
	__hrtimer_peek_ahead_timers();
1324 1325 1326
	local_irq_restore(flags);
}

1327 1328 1329 1330 1331
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1332 1333 1334 1335 1336
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1349

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1360 1361
}

1362
/*
1363
 * Called from hardirq context every jiffy
1364
 */
1365
void hrtimer_run_queues(void)
1366
{
1367
	struct rb_node *node;
1368 1369 1370
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1371

1372
	if (hrtimer_hres_active())
1373 1374
		return;

1375 1376
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1377

1378
		if (!base->first)
1379
			continue;
1380

1381
		if (gettime) {
1382 1383
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1384
		}
1385

1386
		spin_lock(&cpu_base->lock);
1387

1388 1389
		while ((node = base->first)) {
			struct hrtimer *timer;
1390

1391
			timer = rb_entry(node, struct hrtimer, node);
1392 1393
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1394 1395 1396 1397 1398 1399
				break;

			__run_hrtimer(timer);
		}
		spin_unlock(&cpu_base->lock);
	}
1400 1401
}

1402 1403 1404
/*
 * Sleep related functions:
 */
1405
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1418
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1419 1420 1421 1422 1423
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}

1424
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1425
{
1426
	hrtimer_init_sleeper(t, current);
1427

1428 1429
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1430
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1431 1432
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1433

1434 1435
		if (likely(t->task))
			schedule();
1436

1437
		hrtimer_cancel(&t->timer);
1438
		mode = HRTIMER_MODE_ABS;
1439 1440

	} while (t->task && !signal_pending(current));
1441

1442 1443
	__set_current_state(TASK_RUNNING);

1444
	return t->task == NULL;
1445 1446
}

1447 1448 1449 1450 1451
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1452
	rem = hrtimer_expires_remaining(timer);
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1463
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1464
{
1465
	struct hrtimer_sleeper t;
1466
	struct timespec __user  *rmtp;
1467
	int ret = 0;
1468

1469 1470
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1471
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1472

1473
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1474
		goto out;
1475

1476
	rmtp = restart->nanosleep.rmtp;
1477
	if (rmtp) {
1478
		ret = update_rmtp(&t.timer, rmtp);
1479
		if (ret <= 0)
1480
			goto out;
1481
	}
1482 1483

	/* The other values in restart are already filled in */
1484 1485 1486 1487
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1488 1489
}

1490
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1491 1492 1493
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1494
	struct hrtimer_sleeper t;
1495
	int ret = 0;
1496 1497 1498 1499 1500
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1501

1502
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1503
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1504
	if (do_nanosleep(&t, mode))
1505
		goto out;
1506

1507
	/* Absolute timers do not update the rmtp value and restart: */
1508 1509 1510 1511
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1512

1513
	if (rmtp) {
1514
		ret = update_rmtp(&t.timer, rmtp);
1515
		if (ret <= 0)
1516
			goto out;
1517
	}
1518 1519

	restart = &current_thread_info()->restart_block;
1520
	restart->fn = hrtimer_nanosleep_restart;
1521 1522
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1523
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1524

1525 1526 1527 1528
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1529 1530
}

1531 1532
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1533
{
1534
	struct timespec tu;
1535 1536 1537 1538 1539 1540 1541

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1542
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1543 1544
}

1545 1546 1547
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1548
static void __cpuinit init_hrtimers_cpu(int cpu)
1549
{
1550
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1551 1552
	int i;

1553 1554 1555 1556 1557
	spin_lock_init(&cpu_base->lock);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1558
	hrtimer_init_hres(cpu_base);
1559 1560 1561 1562
}

#ifdef CONFIG_HOTPLUG_CPU

1563
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1564
				struct hrtimer_clock_base *new_base)
1565 1566 1567 1568 1569 1570
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1571
		BUG_ON(hrtimer_callback_running(timer));
1572
		debug_hrtimer_deactivate(timer);
T
Thomas Gleixner 已提交
1573 1574 1575 1576 1577 1578 1579

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1580
		timer->base = new_base;
1581
		/*
T
Thomas Gleixner 已提交
1582 1583 1584 1585 1586 1587
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1588
		 */
1589
		enqueue_hrtimer(timer, new_base);
1590

T
Thomas Gleixner 已提交
1591 1592
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1593 1594 1595
	}
}

1596
static void migrate_hrtimers(int scpu)
1597
{
1598
	struct hrtimer_cpu_base *old_base, *new_base;
1599
	int i;
1600

1601 1602
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1603 1604 1605 1606

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1607 1608 1609 1610
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1611
	spin_lock(&new_base->lock);
1612
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1613

1614
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1615
		migrate_hrtimer_list(&old_base->clock_base[i],
1616
				     &new_base->clock_base[i]);
1617 1618
	}

1619
	spin_unlock(&old_base->lock);
1620
	spin_unlock(&new_base->lock);
1621

1622 1623 1624
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1625
}
1626

1627 1628
#endif /* CONFIG_HOTPLUG_CPU */

1629
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1630 1631
					unsigned long action, void *hcpu)
{
1632
	int scpu = (long)hcpu;
1633 1634 1635 1636

	switch (action) {

	case CPU_UP_PREPARE:
1637
	case CPU_UP_PREPARE_FROZEN:
1638
		init_hrtimers_cpu(scpu);
1639 1640 1641
		break;

#ifdef CONFIG_HOTPLUG_CPU
1642 1643 1644 1645
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1646
	case CPU_DEAD:
1647
	case CPU_DEAD_FROZEN:
1648
	{
1649
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1650
		migrate_hrtimers(scpu);
1651
		break;
1652
	}
1653 1654 1655 1656 1657 1658 1659 1660 1661
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1662
static struct notifier_block __cpuinitdata hrtimers_nb = {
1663 1664 1665 1666 1667 1668 1669 1670
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1671 1672 1673
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1674 1675
}

1676
/**
1677
 * schedule_hrtimeout_range - sleep until timeout
1678
 * @expires:	timeout value (ktime_t)
1679
 * @delta:	slack in expires timeout (ktime_t)
1680 1681 1682 1683 1684 1685
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
1686 1687 1688 1689 1690
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
1704
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
			       const enum hrtimer_mode mode)
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
	 * A NULL parameter means "inifinte"
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

	hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1728
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1729 1730 1731

	hrtimer_init_sleeper(&t, current);

1732
	hrtimer_start_expires(&t.timer, mode);
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1775
EXPORT_SYMBOL_GPL(schedule_hrtimeout);