/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Jia Haipeng, jiahaipeng95@gmail.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #if defined (DOUBLE_SUPPORT) #ifdef cl_khr_fp64 #pragma OPENCL EXTENSION cl_khr_fp64:enable #elif defined (cl_amd_fp64) #pragma OPENCL EXTENSION cl_amd_fp64:enable #endif #endif int4 round_int4(float4 v) { v.s0 = v.s0 + (v.s0 > 0 ? 0.5 : -0.5); v.s1 = v.s1 + (v.s1 > 0 ? 0.5 : -0.5); v.s2 = v.s2 + (v.s2 > 0 ? 0.5 : -0.5); v.s3 = v.s3 + (v.s3 > 0 ? 0.5 : -0.5); return convert_int4_sat(v); } uint4 round_uint4(float4 v) { v.s0 = v.s0 + (v.s0 > 0 ? 0.5 : -0.5); v.s1 = v.s1 + (v.s1 > 0 ? 0.5 : -0.5); v.s2 = v.s2 + (v.s2 > 0 ? 0.5 : -0.5); v.s3 = v.s3 + (v.s3 > 0 ? 0.5 : -0.5); return convert_uint4_sat(v); } long round_int(float v) { v = v + (v > 0 ? 0.5 : -0.5); return convert_int_sat(v); } ////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////multiply////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////// /**************************************add without mask**************************************/ __kernel void arithm_mul_D0 (__global uchar *src1, int src1_step, int src1_offset, __global uchar *src2, int src2_step, int src2_offset, __global uchar *dst, int dst_step, int dst_offset, int rows, int cols, int dst_step1, float scalar) { int x = get_global_id(0); int y = get_global_id(1); if (x < cols && y < rows) { x = x << 2; #ifdef dst_align #undef dst_align #endif #define dst_align (dst_offset & 3) int src1_index = mad24(y, src1_step, x + src1_offset - dst_align); int src2_index = mad24(y, src2_step, x + src2_offset - dst_align); int dst_start = mad24(y, dst_step, dst_offset); int dst_end = mad24(y, dst_step, dst_offset + dst_step1); int dst_index = mad24(y, dst_step, dst_offset + x & (int)0xfffffffc); uchar4 src1_data ,src2_data; src1_data.x= src1_index+0 >= 0 ? src1[src1_index+0] : 0; src1_data.y= src1_index+1 >= 0 ? src1[src1_index+1] : 0; src1_data.z= src1_index+2 >= 0 ? src1[src1_index+2] : 0; src1_data.w= src1_index+3 >= 0 ? src1[src1_index+3] : 0; src2_data.x= src2_index+0 >= 0 ? src2[src2_index+0] : 0; src2_data.y= src2_index+1 >= 0 ? src2[src2_index+1] : 0; src2_data.z= src2_index+2 >= 0 ? src2[src2_index+2] : 0; src2_data.w= src2_index+3 >= 0 ? src2[src2_index+3] : 0; uchar4 dst_data = *((__global uchar4 *)(dst + dst_index)); int4 tmp = convert_int4_sat(src1_data) * convert_int4_sat(src2_data); tmp = round_int4(convert_float4(tmp) * scalar); uchar4 tmp_data = convert_uchar4_sat(tmp); dst_data.x = ((dst_index + 0 >= dst_start) && (dst_index + 0 < dst_end)) ? tmp_data.x : dst_data.x; dst_data.y = ((dst_index + 1 >= dst_start) && (dst_index + 1 < dst_end)) ? tmp_data.y : dst_data.y; dst_data.z = ((dst_index + 2 >= dst_start) && (dst_index + 2 < dst_end)) ? tmp_data.z : dst_data.z; dst_data.w = ((dst_index + 3 >= dst_start) && (dst_index + 3 < dst_end)) ? tmp_data.w : dst_data.w; *((__global uchar4 *)(dst + dst_index)) = dst_data; } } __kernel void arithm_mul_D2 (__global ushort *src1, int src1_step, int src1_offset, __global ushort *src2, int src2_step, int src2_offset, __global ushort *dst, int dst_step, int dst_offset, int rows, int cols, int dst_step1, float scalar) { int x = get_global_id(0); int y = get_global_id(1); if (x < cols && y < rows) { x = x << 2; #ifdef dst_align #undef dst_align #endif #define dst_align ((dst_offset >> 1) & 3) int src1_index = mad24(y, src1_step, (x << 1) + src1_offset - (dst_align << 1)); int src2_index = mad24(y, src2_step, (x << 1) + src2_offset - (dst_align << 1)); int dst_start = mad24(y, dst_step, dst_offset); int dst_end = mad24(y, dst_step, dst_offset + dst_step1); int dst_index = mad24(y, dst_step, dst_offset + (x << 1) & (int)0xfffffff8); ushort4 src1_data = vload4(0, (__global ushort *)((__global char *)src1 + src1_index)); ushort4 src2_data = vload4(0, (__global ushort *)((__global char *)src2 + src2_index)); ushort4 dst_data = *((__global ushort4 *)((__global char *)dst + dst_index)); uint4 tmp = convert_uint4_sat(src1_data) * convert_uint4_sat(src2_data); tmp = round_uint4(convert_float4(tmp) * scalar); ushort4 tmp_data = convert_ushort4_sat(tmp); dst_data.x = ((dst_index + 0 >= dst_start) && (dst_index + 0 < dst_end)) ? tmp_data.x : dst_data.x; dst_data.y = ((dst_index + 2 >= dst_start) && (dst_index + 2 < dst_end)) ? tmp_data.y : dst_data.y; dst_data.z = ((dst_index + 4 >= dst_start) && (dst_index + 4 < dst_end)) ? tmp_data.z : dst_data.z; dst_data.w = ((dst_index + 6 >= dst_start) && (dst_index + 6 < dst_end)) ? tmp_data.w : dst_data.w; *((__global ushort4 *)((__global char *)dst + dst_index)) = dst_data; } } __kernel void arithm_mul_D3 (__global short *src1, int src1_step, int src1_offset, __global short *src2, int src2_step, int src2_offset, __global short *dst, int dst_step, int dst_offset, int rows, int cols, int dst_step1, float scalar) { int x = get_global_id(0); int y = get_global_id(1); if (x < cols && y < rows) { x = x << 2; #ifdef dst_align #undef dst_align #endif #define dst_align ((dst_offset >> 1) & 3) int src1_index = mad24(y, src1_step, (x << 1) + src1_offset - (dst_align << 1)); int src2_index = mad24(y, src2_step, (x << 1) + src2_offset - (dst_align << 1)); int dst_start = mad24(y, dst_step, dst_offset); int dst_end = mad24(y, dst_step, dst_offset + dst_step1); int dst_index = mad24(y, dst_step, dst_offset + (x << 1) & (int)0xfffffff8); short4 src1_data = vload4(0, (__global short *)((__global char *)src1 + src1_index)); short4 src2_data = vload4(0, (__global short *)((__global char *)src2 + src2_index)); short4 dst_data = *((__global short4 *)((__global char *)dst + dst_index)); int4 tmp = convert_int4_sat(src1_data) * convert_int4_sat(src2_data); tmp = round_int4(convert_float4(tmp) * scalar); short4 tmp_data = convert_short4_sat(tmp); dst_data.x = ((dst_index + 0 >= dst_start) && (dst_index + 0 < dst_end)) ? tmp_data.x : dst_data.x; dst_data.y = ((dst_index + 2 >= dst_start) && (dst_index + 2 < dst_end)) ? tmp_data.y : dst_data.y; dst_data.z = ((dst_index + 4 >= dst_start) && (dst_index + 4 < dst_end)) ? tmp_data.z : dst_data.z; dst_data.w = ((dst_index + 6 >= dst_start) && (dst_index + 6 < dst_end)) ? tmp_data.w : dst_data.w; *((__global short4 *)((__global char *)dst + dst_index)) = dst_data; } } __kernel void arithm_mul_D4 (__global int *src1, int src1_step, int src1_offset, __global int *src2, int src2_step, int src2_offset, __global int *dst, int dst_step, int dst_offset, int rows, int cols, int dst_step1, float scalar) { int x = get_global_id(0); int y = get_global_id(1); if (x < cols && y < rows) { int src1_index = mad24(y, src1_step, (x << 2) + src1_offset); int src2_index = mad24(y, src2_step, (x << 2) + src2_offset); int dst_index = mad24(y, dst_step, (x << 2) + dst_offset); int data1 = *((__global int *)((__global char *)src1 + src1_index)); int data2 = *((__global int *)((__global char *)src2 + src2_index)); int tmp = data1 * data2; tmp = round_int((float)tmp * scalar); *((__global int *)((__global char *)dst + dst_index)) = convert_int_sat(tmp); } } __kernel void arithm_mul_D5 (__global float *src1, int src1_step, int src1_offset, __global float *src2, int src2_step, int src2_offset, __global float *dst, int dst_step, int dst_offset, int rows, int cols, int dst_step1, float scalar) { int x = get_global_id(0); int y = get_global_id(1); if (x < cols && y < rows) { int src1_index = mad24(y, src1_step, (x << 2) + src1_offset); int src2_index = mad24(y, src2_step, (x << 2) + src2_offset); int dst_index = mad24(y, dst_step, (x << 2) + dst_offset); float data1 = *((__global float *)((__global char *)src1 + src1_index)); float data2 = *((__global float *)((__global char *)src2 + src2_index)); float tmp = data1 * data2; tmp = tmp * scalar; *((__global float *)((__global char *)dst + dst_index)) = tmp; } } #if defined (DOUBLE_SUPPORT) __kernel void arithm_mul_D6 (__global double *src1, int src1_step, int src1_offset, __global double *src2, int src2_step, int src2_offset, __global double *dst, int dst_step, int dst_offset, int rows, int cols, int dst_step1, double scalar) { int x = get_global_id(0); int y = get_global_id(1); if (x < cols && y < rows) { int src1_index = mad24(y, src1_step, (x << 3) + src1_offset); int src2_index = mad24(y, src2_step, (x << 3) + src2_offset); int dst_index = mad24(y, dst_step, (x << 3) + dst_offset); double data1 = *((__global double *)((__global char *)src1 + src1_index)); double data2 = *((__global double *)((__global char *)src2 + src2_index)); double tmp = data1 * data2; tmp = tmp * scalar; *((__global double *)((__global char *)dst + dst_index)) = tmp; } } #endif #ifdef DOUBLE_SUPPORT #define SCALAR_TYPE double #else #define SCALAR_TYPE float #endif __kernel void arithm_muls_D5 (__global float *src1, int src1_step, int src1_offset, __global float *dst, int dst_step, int dst_offset, int rows, int cols, int dst_step1, SCALAR_TYPE scalar) { int x = get_global_id(0); int y = get_global_id(1); if (x < cols && y < rows) { int src1_index = mad24(y, src1_step, (x << 2) + src1_offset); int dst_index = mad24(y, dst_step, (x << 2) + dst_offset); float data1 = *((__global float *)((__global char *)src1 + src1_index)); float tmp = data1 * scalar; *((__global float *)((__global char *)dst + dst_index)) = tmp; } }