/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. / // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" namespace cv { template void acc_( const T* src, AT* dst, const uchar* mask, int len, int cn ) { int i = 0; if( !mask ) { len *= cn; for( ; i <= len - 4; i += 4 ) { AT t0, t1; t0 = src[i] + dst[i]; t1 = src[i+1] + dst[i+1]; dst[i] = t0; dst[i+1] = t1; t0 = src[i+2] + dst[i+2]; t1 = src[i+3] + dst[i+3]; dst[i+2] = t0; dst[i+3] = t1; } for( ; i < len; i++ ) dst[i] += src[i]; } else if( cn == 1 ) { for( ; i < len; i++ ) { if( mask[i] ) dst[i] += src[i]; } } else if( cn == 3 ) { for( ; i < len; i++, src += 3, dst += 3 ) { if( mask[i] ) { AT t0 = src[0] + dst[0]; AT t1 = src[1] + dst[1]; AT t2 = src[2] + dst[2]; dst[0] = t0; dst[1] = t1; dst[2] = t2; } } } else { for( ; i < len; i++, src += cn, dst += cn ) if( mask[i] ) { for( int k = 0; k < cn; k++ ) dst[k] += src[k]; } } } template void accSqr_( const T* src, AT* dst, const uchar* mask, int len, int cn ) { int i = 0; if( !mask ) { len *= cn; for( ; i <= len - 4; i += 4 ) { AT t0, t1; t0 = (AT)src[i]*src[i] + dst[i]; t1 = (AT)src[i+1]*src[i+1] + dst[i+1]; dst[i] = t0; dst[i+1] = t1; t0 = (AT)src[i+2]*src[i+2] + dst[i+2]; t1 = (AT)src[i+3]*src[i+3] + dst[i+3]; dst[i+2] = t0; dst[i+3] = t1; } for( ; i < len; i++ ) dst[i] += (AT)src[i]*src[i]; } else if( cn == 1 ) { for( ; i < len; i++ ) { if( mask[i] ) dst[i] += (AT)src[i]*src[i]; } } else if( cn == 3 ) { for( ; i < len; i++, src += 3, dst += 3 ) { if( mask[i] ) { AT t0 = (AT)src[0]*src[0] + dst[0]; AT t1 = (AT)src[1]*src[1] + dst[1]; AT t2 = (AT)src[2]*src[2] + dst[2]; dst[0] = t0; dst[1] = t1; dst[2] = t2; } } } else { for( ; i < len; i++, src += cn, dst += cn ) if( mask[i] ) { for( int k = 0; k < cn; k++ ) dst[k] += (AT)src[k]*src[k]; } } } template void accProd_( const T* src1, const T* src2, AT* dst, const uchar* mask, int len, int cn ) { int i = 0; if( !mask ) { len *= cn; for( ; i <= len - 4; i += 4 ) { AT t0, t1; t0 = (AT)src1[i]*src2[i] + dst[i]; t1 = (AT)src1[i+1]*src2[i+1] + dst[i+1]; dst[i] = t0; dst[i+1] = t1; t0 = (AT)src1[i+2]*src2[i+2] + dst[i+2]; t1 = (AT)src1[i+3]*src2[i+3] + dst[i+3]; dst[i+2] = t0; dst[i+3] = t1; } for( ; i < len; i++ ) dst[i] += (AT)src1[i]*src2[i]; } else if( cn == 1 ) { for( ; i < len; i++ ) { if( mask[i] ) dst[i] += (AT)src1[i]*src2[i]; } } else if( cn == 3 ) { for( ; i < len; i++, src1 += 3, src2 += 3, dst += 3 ) { if( mask[i] ) { AT t0 = (AT)src1[0]*src2[0] + dst[0]; AT t1 = (AT)src1[1]*src2[1] + dst[1]; AT t2 = (AT)src1[2]*src2[2] + dst[2]; dst[0] = t0; dst[1] = t1; dst[2] = t2; } } } else { for( ; i < len; i++, src1 += cn, src2 += cn, dst += cn ) if( mask[i] ) { for( int k = 0; k < cn; k++ ) dst[k] += (AT)src1[k]*src2[k]; } } } template void accW_( const T* src, AT* dst, const uchar* mask, int len, int cn, double alpha ) { AT a = (AT)alpha, b = 1 - a; int i = 0; if( !mask ) { len *= cn; for( ; i <= len - 4; i += 4 ) { AT t0, t1; t0 = src[i]*a + dst[i]*b; t1 = src[i+1]*a + dst[i+1]*b; dst[i] = t0; dst[i+1] = t1; t0 = src[i+2]*a + dst[i+2]*b; t1 = src[i+3]*a + dst[i+3]*b; dst[i+2] = t0; dst[i+3] = t1; } for( ; i < len; i++ ) dst[i] = src[i]*a + dst[i]*b; } else if( cn == 1 ) { for( ; i < len; i++ ) { if( mask[i] ) dst[i] = src[i]*a + dst[i]*b; } } else if( cn == 3 ) { for( ; i < len; i++, src += 3, dst += 3 ) { if( mask[i] ) { AT t0 = src[0]*a + dst[0]*b; AT t1 = src[1]*a + dst[1]*b; AT t2 = src[2]*a + dst[2]*b; dst[0] = t0; dst[1] = t1; dst[2] = t2; } } } else { for( ; i < len; i++, src += cn, dst += cn ) if( mask[i] ) { for( int k = 0; k < cn; k++ ) dst[k] += src[k]*a + dst[k]*b; } } } #define DEF_ACC_FUNCS(suffix, type, acctype) \ static void acc_##suffix(const type* src, acctype* dst, \ const uchar* mask, int len, int cn) \ { acc_(src, dst, mask, len, cn); } \ \ static void accSqr_##suffix(const type* src, acctype* dst, \ const uchar* mask, int len, int cn) \ { accSqr_(src, dst, mask, len, cn); } \ \ static void accProd_##suffix(const type* src1, const type* src2, \ acctype* dst, const uchar* mask, int len, int cn) \ { accProd_(src1, src2, dst, mask, len, cn); } \ \ static void accW_##suffix(const type* src, acctype* dst, \ const uchar* mask, int len, int cn, double alpha) \ { accW_(src, dst, mask, len, cn, alpha); } DEF_ACC_FUNCS(8u32f, uchar, float) DEF_ACC_FUNCS(8u64f, uchar, double) DEF_ACC_FUNCS(16u32f, ushort, float) DEF_ACC_FUNCS(16u64f, ushort, double) DEF_ACC_FUNCS(32f, float, float) DEF_ACC_FUNCS(32f64f, float, double) DEF_ACC_FUNCS(64f, double, double) typedef void (*AccFunc)(const uchar*, uchar*, const uchar*, int, int); typedef void (*AccProdFunc)(const uchar*, const uchar*, uchar*, const uchar*, int, int); typedef void (*AccWFunc)(const uchar*, uchar*, const uchar*, int, int, double); static AccFunc accTab[] = { (AccFunc)acc_8u32f, (AccFunc)acc_8u64f, (AccFunc)acc_16u32f, (AccFunc)acc_16u64f, (AccFunc)acc_32f, (AccFunc)acc_32f64f, (AccFunc)acc_64f }; static AccFunc accSqrTab[] = { (AccFunc)accSqr_8u32f, (AccFunc)accSqr_8u64f, (AccFunc)accSqr_16u32f, (AccFunc)accSqr_16u64f, (AccFunc)accSqr_32f, (AccFunc)accSqr_32f64f, (AccFunc)accSqr_64f }; static AccProdFunc accProdTab[] = { (AccProdFunc)accProd_8u32f, (AccProdFunc)accProd_8u64f, (AccProdFunc)accProd_16u32f, (AccProdFunc)accProd_16u64f, (AccProdFunc)accProd_32f, (AccProdFunc)accProd_32f64f, (AccProdFunc)accProd_64f }; static AccWFunc accWTab[] = { (AccWFunc)accW_8u32f, (AccWFunc)accW_8u64f, (AccWFunc)accW_16u32f, (AccWFunc)accW_16u64f, (AccWFunc)accW_32f, (AccWFunc)accW_32f64f, (AccWFunc)accW_64f }; inline int getAccTabIdx(int sdepth, int ddepth) { return sdepth == CV_8U && ddepth == CV_32F ? 0 : sdepth == CV_8U && ddepth == CV_64F ? 1 : sdepth == CV_16U && ddepth == CV_32F ? 2 : sdepth == CV_16U && ddepth == CV_64F ? 3 : sdepth == CV_32F && ddepth == CV_32F ? 4 : sdepth == CV_32F && ddepth == CV_64F ? 5 : sdepth == CV_64F && ddepth == CV_64F ? 6 : -1; } } void cv::accumulate( InputArray _src, InputOutputArray _dst, InputArray _mask ) { Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat(); int sdepth = src.depth(), ddepth = dst.depth(), cn = src.channels(); CV_Assert( dst.size == src.size && dst.channels() == cn ); CV_Assert( mask.empty() || (mask.size == src.size && mask.type() == CV_8U) ); int fidx = getAccTabIdx(sdepth, ddepth); AccFunc func = fidx >= 0 ? accTab[fidx] : 0; CV_Assert( func != 0 ); const Mat* arrays[] = {&src, &dst, &mask, 0}; uchar* ptrs[3]; NAryMatIterator it(arrays, ptrs); int len = (int)it.size; for( size_t i = 0; i < it.nplanes; i++, ++it ) func(ptrs[0], ptrs[1], ptrs[2], len, cn); } void cv::accumulateSquare( InputArray _src, InputOutputArray _dst, InputArray _mask ) { Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat(); int sdepth = src.depth(), ddepth = dst.depth(), cn = src.channels(); CV_Assert( dst.size == src.size && dst.channels() == cn ); CV_Assert( mask.empty() || (mask.size == src.size && mask.type() == CV_8U) ); int fidx = getAccTabIdx(sdepth, ddepth); AccFunc func = fidx >= 0 ? accSqrTab[fidx] : 0; CV_Assert( func != 0 ); const Mat* arrays[] = {&src, &dst, &mask, 0}; uchar* ptrs[3]; NAryMatIterator it(arrays, ptrs); int len = (int)it.size; for( size_t i = 0; i < it.nplanes; i++, ++it ) func(ptrs[0], ptrs[1], ptrs[2], len, cn); } void cv::accumulateProduct( InputArray _src1, InputArray _src2, InputOutputArray _dst, InputArray _mask ) { Mat src1 = _src1.getMat(), src2 = _src2.getMat(), dst = _dst.getMat(), mask = _mask.getMat(); int sdepth = src1.depth(), ddepth = dst.depth(), cn = src1.channels(); CV_Assert( src2.size && src1.size && src2.type() == src1.type() ); CV_Assert( dst.size == src1.size && dst.channels() == cn ); CV_Assert( mask.empty() || (mask.size == src1.size && mask.type() == CV_8U) ); int fidx = getAccTabIdx(sdepth, ddepth); AccProdFunc func = fidx >= 0 ? accProdTab[fidx] : 0; CV_Assert( func != 0 ); const Mat* arrays[] = {&src1, &src2, &dst, &mask, 0}; uchar* ptrs[4]; NAryMatIterator it(arrays, ptrs); int len = (int)it.size; for( size_t i = 0; i < it.nplanes; i++, ++it ) func(ptrs[0], ptrs[1], ptrs[2], ptrs[3], len, cn); } void cv::accumulateWeighted( InputArray _src, InputOutputArray _dst, double alpha, InputArray _mask ) { Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat(); int sdepth = src.depth(), ddepth = dst.depth(), cn = src.channels(); CV_Assert( dst.size == src.size && dst.channels() == cn ); CV_Assert( mask.empty() || (mask.size == src.size && mask.type() == CV_8U) ); int fidx = getAccTabIdx(sdepth, ddepth); AccWFunc func = fidx >= 0 ? accWTab[fidx] : 0; CV_Assert( func != 0 ); const Mat* arrays[] = {&src, &dst, &mask, 0}; uchar* ptrs[3]; NAryMatIterator it(arrays, ptrs); int len = (int)it.size; for( size_t i = 0; i < it.nplanes; i++, ++it ) func(ptrs[0], ptrs[1], ptrs[2], len, cn, alpha); } CV_IMPL void cvAcc( const void* arr, void* sumarr, const void* maskarr ) { cv::Mat src = cv::cvarrToMat(arr), dst = cv::cvarrToMat(sumarr), mask; if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::accumulate( src, dst, mask ); } CV_IMPL void cvSquareAcc( const void* arr, void* sumarr, const void* maskarr ) { cv::Mat src = cv::cvarrToMat(arr), dst = cv::cvarrToMat(sumarr), mask; if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::accumulateSquare( src, dst, mask ); } CV_IMPL void cvMultiplyAcc( const void* arr1, const void* arr2, void* sumarr, const void* maskarr ) { cv::Mat src1 = cv::cvarrToMat(arr1), src2 = cv::cvarrToMat(arr2); cv::Mat dst = cv::cvarrToMat(sumarr), mask; if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::accumulateProduct( src1, src2, dst, mask ); } CV_IMPL void cvRunningAvg( const void* arr, void* sumarr, double alpha, const void* maskarr ) { cv::Mat src = cv::cvarrToMat(arr), dst = cv::cvarrToMat(sumarr), mask; if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::accumulateWeighted( src, dst, alpha, mask ); } /* End of file. */