/* This is FAST corner detector, contributed to OpenCV by the author, Edward Rosten. Below is the original copyright and the references */ /* Copyright (c) 2006, 2008 Edward Rosten All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: *Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. *Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. *Neither the name of the University of Cambridge nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* The references are: * Machine learning for high-speed corner detection, E. Rosten and T. Drummond, ECCV 2006 * Faster and better: A machine learning approach to corner detection E. Rosten, R. Porter and T. Drummond, PAMI, 2009 */ #include "precomp.hpp" #include "fast_score.hpp" #include "opencl_kernels_features2d.hpp" #if defined _MSC_VER # pragma warning( disable : 4127) #endif namespace cv { template void FAST_t(InputArray _img, std::vector& keypoints, int threshold, bool nonmax_suppression) { Mat img = _img.getMat(); const int K = patternSize/2, N = patternSize + K + 1; #if CV_SSE2 const int quarterPatternSize = patternSize/4; (void)quarterPatternSize; #endif int i, j, k, pixel[25]; makeOffsets(pixel, (int)img.step, patternSize); keypoints.clear(); threshold = std::min(std::max(threshold, 0), 255); #if CV_SSE2 __m128i delta = _mm_set1_epi8(-128), t = _mm_set1_epi8((char)threshold), K16 = _mm_set1_epi8((char)K); (void)K16; (void)delta; (void)t; #endif uchar threshold_tab[512]; for( i = -255; i <= 255; i++ ) threshold_tab[i+255] = (uchar)(i < -threshold ? 1 : i > threshold ? 2 : 0); AutoBuffer _buf((img.cols+16)*3*(sizeof(int) + sizeof(uchar)) + 128); uchar* buf[3]; buf[0] = _buf; buf[1] = buf[0] + img.cols; buf[2] = buf[1] + img.cols; int* cpbuf[3]; cpbuf[0] = (int*)alignPtr(buf[2] + img.cols, sizeof(int)) + 1; cpbuf[1] = cpbuf[0] + img.cols + 1; cpbuf[2] = cpbuf[1] + img.cols + 1; memset(buf[0], 0, img.cols*3); for(i = 3; i < img.rows-2; i++) { const uchar* ptr = img.ptr(i) + 3; uchar* curr = buf[(i - 3)%3]; int* cornerpos = cpbuf[(i - 3)%3]; memset(curr, 0, img.cols); int ncorners = 0; if( i < img.rows - 3 ) { j = 3; #if CV_SSE2 if( patternSize == 16 ) { for(; j < img.cols - 16 - 3; j += 16, ptr += 16) { __m128i m0, m1; __m128i v0 = _mm_loadu_si128((const __m128i*)ptr); __m128i v1 = _mm_xor_si128(_mm_subs_epu8(v0, t), delta); v0 = _mm_xor_si128(_mm_adds_epu8(v0, t), delta); __m128i x0 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[0])), delta); __m128i x1 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[quarterPatternSize])), delta); __m128i x2 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[2*quarterPatternSize])), delta); __m128i x3 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[3*quarterPatternSize])), delta); m0 = _mm_and_si128(_mm_cmpgt_epi8(x0, v0), _mm_cmpgt_epi8(x1, v0)); m1 = _mm_and_si128(_mm_cmpgt_epi8(v1, x0), _mm_cmpgt_epi8(v1, x1)); m0 = _mm_or_si128(m0, _mm_and_si128(_mm_cmpgt_epi8(x1, v0), _mm_cmpgt_epi8(x2, v0))); m1 = _mm_or_si128(m1, _mm_and_si128(_mm_cmpgt_epi8(v1, x1), _mm_cmpgt_epi8(v1, x2))); m0 = _mm_or_si128(m0, _mm_and_si128(_mm_cmpgt_epi8(x2, v0), _mm_cmpgt_epi8(x3, v0))); m1 = _mm_or_si128(m1, _mm_and_si128(_mm_cmpgt_epi8(v1, x2), _mm_cmpgt_epi8(v1, x3))); m0 = _mm_or_si128(m0, _mm_and_si128(_mm_cmpgt_epi8(x3, v0), _mm_cmpgt_epi8(x0, v0))); m1 = _mm_or_si128(m1, _mm_and_si128(_mm_cmpgt_epi8(v1, x3), _mm_cmpgt_epi8(v1, x0))); m0 = _mm_or_si128(m0, m1); int mask = _mm_movemask_epi8(m0); if( mask == 0 ) continue; if( (mask & 255) == 0 ) { j -= 8; ptr -= 8; continue; } __m128i c0 = _mm_setzero_si128(), c1 = c0, max0 = c0, max1 = c0; for( k = 0; k < N; k++ ) { __m128i x = _mm_xor_si128(_mm_loadu_si128((const __m128i*)(ptr + pixel[k])), delta); m0 = _mm_cmpgt_epi8(x, v0); m1 = _mm_cmpgt_epi8(v1, x); c0 = _mm_and_si128(_mm_sub_epi8(c0, m0), m0); c1 = _mm_and_si128(_mm_sub_epi8(c1, m1), m1); max0 = _mm_max_epu8(max0, c0); max1 = _mm_max_epu8(max1, c1); } max0 = _mm_max_epu8(max0, max1); int m = _mm_movemask_epi8(_mm_cmpgt_epi8(max0, K16)); for( k = 0; m > 0 && k < 16; k++, m >>= 1 ) if(m & 1) { cornerpos[ncorners++] = j+k; if(nonmax_suppression) curr[j+k] = (uchar)cornerScore(ptr+k, pixel, threshold); } } } #endif for( ; j < img.cols - 3; j++, ptr++ ) { int v = ptr[0]; const uchar* tab = &threshold_tab[0] - v + 255; int d = tab[ptr[pixel[0]]] | tab[ptr[pixel[8]]]; if( d == 0 ) continue; d &= tab[ptr[pixel[2]]] | tab[ptr[pixel[10]]]; d &= tab[ptr[pixel[4]]] | tab[ptr[pixel[12]]]; d &= tab[ptr[pixel[6]]] | tab[ptr[pixel[14]]]; if( d == 0 ) continue; d &= tab[ptr[pixel[1]]] | tab[ptr[pixel[9]]]; d &= tab[ptr[pixel[3]]] | tab[ptr[pixel[11]]]; d &= tab[ptr[pixel[5]]] | tab[ptr[pixel[13]]]; d &= tab[ptr[pixel[7]]] | tab[ptr[pixel[15]]]; if( d & 1 ) { int vt = v - threshold, count = 0; for( k = 0; k < N; k++ ) { int x = ptr[pixel[k]]; if(x < vt) { if( ++count > K ) { cornerpos[ncorners++] = j; if(nonmax_suppression) curr[j] = (uchar)cornerScore(ptr, pixel, threshold); break; } } else count = 0; } } if( d & 2 ) { int vt = v + threshold, count = 0; for( k = 0; k < N; k++ ) { int x = ptr[pixel[k]]; if(x > vt) { if( ++count > K ) { cornerpos[ncorners++] = j; if(nonmax_suppression) curr[j] = (uchar)cornerScore(ptr, pixel, threshold); break; } } else count = 0; } } } } cornerpos[-1] = ncorners; if( i == 3 ) continue; const uchar* prev = buf[(i - 4 + 3)%3]; const uchar* pprev = buf[(i - 5 + 3)%3]; cornerpos = cpbuf[(i - 4 + 3)%3]; ncorners = cornerpos[-1]; for( k = 0; k < ncorners; k++ ) { j = cornerpos[k]; int score = prev[j]; if( !nonmax_suppression || (score > prev[j+1] && score > prev[j-1] && score > pprev[j-1] && score > pprev[j] && score > pprev[j+1] && score > curr[j-1] && score > curr[j] && score > curr[j+1]) ) { keypoints.push_back(KeyPoint((float)j, (float)(i-1), 7.f, -1, (float)score)); } } } } template struct cmp_pt { bool operator ()(const pt& a, const pt& b) const { return a.y < b.y || (a.y == b.y && a.x < b.x); } }; static bool ocl_FAST( InputArray _img, std::vector& keypoints, int threshold, bool nonmax_suppression, int maxKeypoints ) { UMat img = _img.getUMat(); if( img.cols < 7 || img.rows < 7 ) return false; size_t globalsize[] = { img.cols-6, img.rows-6 }; ocl::Kernel fastKptKernel("FAST_findKeypoints", ocl::features2d::fast_oclsrc); if (fastKptKernel.empty()) return false; UMat kp1(1, maxKeypoints*2+1, CV_32S); UMat ucounter1(kp1, Rect(0,0,1,1)); ucounter1.setTo(Scalar::all(0)); if( !fastKptKernel.args(ocl::KernelArg::ReadOnly(img), ocl::KernelArg::PtrReadWrite(kp1), maxKeypoints, threshold).run(2, globalsize, 0, true)) return false; Mat mcounter; ucounter1.copyTo(mcounter); int i, counter = mcounter.at(0); counter = std::min(counter, maxKeypoints); keypoints.clear(); if( counter == 0 ) return true; if( !nonmax_suppression ) { Mat m; kp1(Rect(0, 0, counter*2+1, 1)).copyTo(m); const Point* pt = (const Point*)(m.ptr() + 1); for( i = 0; i < counter; i++ ) keypoints.push_back(KeyPoint((float)pt[i].x, (float)pt[i].y, 7.f, -1, 1.f)); } else { UMat kp2(1, maxKeypoints*3+1, CV_32S); UMat ucounter2 = kp2(Rect(0,0,1,1)); ucounter2.setTo(Scalar::all(0)); ocl::Kernel fastNMSKernel("FAST_nonmaxSupression", ocl::features2d::fast_oclsrc); if (fastNMSKernel.empty()) return false; size_t globalsize_nms[] = { counter }; if( !fastNMSKernel.args(ocl::KernelArg::PtrReadOnly(kp1), ocl::KernelArg::PtrReadWrite(kp2), ocl::KernelArg::ReadOnly(img), counter, counter).run(1, globalsize_nms, 0, true)) return false; Mat m2; kp2(Rect(0, 0, counter*3+1, 1)).copyTo(m2); Point3i* pt2 = (Point3i*)(m2.ptr() + 1); int newcounter = std::min(m2.at(0), counter); std::sort(pt2, pt2 + newcounter, cmp_pt()); for( i = 0; i < newcounter; i++ ) keypoints.push_back(KeyPoint((float)pt2[i].x, (float)pt2[i].y, 7.f, -1, (float)pt2[i].z)); } return true; } void FAST(InputArray _img, std::vector& keypoints, int threshold, bool nonmax_suppression, int type) { if( ocl::useOpenCL() && _img.isUMat() && type == FastFeatureDetector::TYPE_9_16 && ocl_FAST(_img, keypoints, threshold, nonmax_suppression, 10000)) { CV_IMPL_ADD(CV_IMPL_OCL); return; } switch(type) { case FastFeatureDetector::TYPE_5_8: FAST_t<8>(_img, keypoints, threshold, nonmax_suppression); break; case FastFeatureDetector::TYPE_7_12: FAST_t<12>(_img, keypoints, threshold, nonmax_suppression); break; case FastFeatureDetector::TYPE_9_16: #ifdef HAVE_TEGRA_OPTIMIZATION if(tegra::FAST(_img, keypoints, threshold, nonmax_suppression)) break; #endif FAST_t<16>(_img, keypoints, threshold, nonmax_suppression); break; } } void FAST(InputArray _img, std::vector& keypoints, int threshold, bool nonmax_suppression) { FAST(_img, keypoints, threshold, nonmax_suppression, FastFeatureDetector::TYPE_9_16); } class FastFeatureDetector_Impl : public FastFeatureDetector { public: FastFeatureDetector_Impl( int _threshold, bool _nonmaxSuppression, int _type ) : threshold(_threshold), nonmaxSuppression(_nonmaxSuppression), type((short)_type) {} void detect( InputArray _image, std::vector& keypoints, InputArray _mask ) { Mat mask = _mask.getMat(), grayImage; UMat ugrayImage; _InputArray gray = _image; if( _image.type() != CV_8U ) { _OutputArray ogray = _image.isUMat() ? _OutputArray(ugrayImage) : _OutputArray(grayImage); cvtColor( _image, ogray, COLOR_BGR2GRAY ); gray = ogray; } FAST( gray, keypoints, threshold, nonmaxSuppression, type ); KeyPointsFilter::runByPixelsMask( keypoints, mask ); } void set(int prop, double value) { if(prop == THRESHOLD) threshold = cvRound(value); else if(prop == NONMAX_SUPPRESSION) nonmaxSuppression = value != 0; else if(prop == FAST_N) type = cvRound(value); else CV_Error(Error::StsBadArg, ""); } double get(int prop) const { if(prop == THRESHOLD) return threshold; if(prop == NONMAX_SUPPRESSION) return nonmaxSuppression; if(prop == FAST_N) return type; CV_Error(Error::StsBadArg, ""); return 0; } int threshold; bool nonmaxSuppression; int type; }; Ptr FastFeatureDetector::create( int threshold, bool nonmaxSuppression, int type ) { return makePtr(threshold, nonmaxSuppression, type); } }