提交 a25c27ca 编写于 作者: A Andrey Kamaev

Fixed windows build problems of BackgroundSubtractorGMG but code still need more work.

上级 82cb2ab5
......@@ -50,7 +50,7 @@ namespace cv
/*!
The Base Class for Background/Foreground Segmentation
The class is only used to define the common interface for
the whole family of background/foreground segmentation algorithms.
*/
......@@ -70,13 +70,13 @@ public:
/*!
Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm
The class implements the following algorithm:
"An improved adaptive background mixture model for real-time tracking with shadow detection"
P. KadewTraKuPong and R. Bowden,
Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001."
http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
*/
class CV_EXPORTS_W BackgroundSubtractorMOG : public BackgroundSubtractor
{
......@@ -89,13 +89,13 @@ public:
virtual ~BackgroundSubtractorMOG();
//! the update operator
virtual void operator()(InputArray image, OutputArray fgmask, double learningRate=0);
//! re-initiaization method
virtual void initialize(Size frameSize, int frameType);
virtual AlgorithmInfo* info() const;
protected:
protected:
Size frameSize;
int frameType;
Mat bgmodel;
......@@ -105,7 +105,7 @@ protected:
double varThreshold;
double backgroundRatio;
double noiseSigma;
};
};
/*!
......@@ -126,16 +126,16 @@ public:
virtual ~BackgroundSubtractorMOG2();
//! the update operator
virtual void operator()(InputArray image, OutputArray fgmask, double learningRate=-1);
//! computes a background image which are the mean of all background gaussians
virtual void getBackgroundImage(OutputArray backgroundImage) const;
//! re-initiaization method
virtual void initialize(Size frameSize, int frameType);
virtual AlgorithmInfo* info() const;
protected:
protected:
Size frameSize;
int frameType;
Mat bgmodel;
......@@ -150,7 +150,7 @@ protected:
// by the background model or not. Related to Cthr from the paper.
// This does not influence the update of the background. A typical value could be 4 sigma
// and that is varThreshold=4*4=16; Corresponds to Tb in the paper.
/////////////////////////
// less important parameters - things you might change but be carefull
////////////////////////
......@@ -179,7 +179,7 @@ protected:
//this is related to the number of samples needed to accept that a component
//actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
//the standard Stauffer&Grimson algorithm (maybe not exact but very similar)
//shadow detection parameters
bool bShadowDetection;//default 1 - do shadow detection
unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result - 127 default value
......@@ -188,7 +188,7 @@ protected:
//version of the background. Tau is a threshold on how much darker the shadow can be.
//Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
//See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
};
};
/**
* Background Subtractor module. Takes a series of images and returns a sequence of mask (8UC1)
......@@ -200,252 +200,250 @@ protected:
class CV_EXPORTS BackgroundSubtractorGMG: public cv::BackgroundSubtractor
{
private:
/**
* A general flexible datatype.
*
* Used internally to enable background subtraction algorithm to be robust to any input Mat type.
* Datatype can be char, unsigned char, int, unsigned int, long int, float, or double.
*/
union flexitype{
char c;
uchar uc;
int i;
unsigned int ui;
long int li;
float f;
double d;
flexitype(){d = 0.0;} //!< Default constructor, set all bits of the union to 0.
flexitype(char cval){c = cval;} //!< Char type constructor
bool operator ==(flexitype& rhs)
{
return d == rhs.d;
}
//! Char type assignment operator
flexitype& operator =(char cval){
if (this->c == cval){return *this;}
c = cval; return *this;
}
flexitype(unsigned char ucval){uc = ucval;} //!< unsigned char type constructor
//! unsigned char type assignment operator
flexitype& operator =(unsigned char ucval){
if (this->uc == ucval){return *this;}
uc = ucval; return *this;
}
flexitype(int ival){i = ival;} //!< int type constructor
//! int type assignment operator
flexitype& operator =(int ival){
if (this->i == ival){return *this;}
i = ival; return *this;
}
flexitype(unsigned int uival){ui = uival;} //!< unsigned int type constructor
//! unsigned int type assignment operator
flexitype& operator =(unsigned int uival){
if (this->ui == uival){return *this;}
ui = uival; return *this;
}
flexitype(float fval){f = fval;} //!< float type constructor
//! float type assignment operator
flexitype& operator =(float fval){
if (this->f == fval){return *this;}
f = fval; return *this;
}
flexitype(long int lival){li = lival;} //!< long int type constructor
//! long int type assignment operator
flexitype& operator =(long int lival){
if (this->li == lival){return *this;}
li = lival; return *this;
}
flexitype(double dval){d=dval;} //!< double type constructor
//! double type assignment operator
flexitype& operator =(double dval){
if (this->d == dval){return *this;}
d = dval; return *this;
}
};
/**
* Used internally to represent a single feature in a histogram.
* Feature is a color and an associated likelihood (weight in the histogram).
*/
struct HistogramFeatureGMG
{
/**
* Default constructor.
* Initializes likelihood of feature to 0, color remains uninitialized.
*/
HistogramFeatureGMG(){likelihood = 0.0;}
/**
* Copy constructor.
* Required to use HistogramFeatureGMG in a std::vector
* @see operator =()
*/
HistogramFeatureGMG(const HistogramFeatureGMG& orig){
color = orig.color; likelihood = orig.likelihood;
}
/**
* Assignment operator.
* Required to use HistogramFeatureGMG in a std::vector
*/
HistogramFeatureGMG& operator =(const HistogramFeatureGMG& orig){
color = orig.color; likelihood = orig.likelihood; return *this;
}
/**
* Tests equality of histogram features.
* Equality is tested only by matching the color (feature), not the likelihood.
* This operator is used to look up an observed feature in a histogram.
*/
bool operator ==(HistogramFeatureGMG &rhs);
//! Regardless of the image datatype, it is quantized and mapped to an integer and represented as a vector.
vector<size_t> color;
//! Represents the weight of feature in the histogram.
float likelihood;
friend class PixelModelGMG;
};
/**
* Representation of the statistical model of a single pixel for use in the background subtraction
* algorithm.
*/
class PixelModelGMG
{
public:
PixelModelGMG();
virtual ~PixelModelGMG();
/**
* Incorporate the last observed feature into the statistical model.
*
* @param learningRate The adaptation parameter for the histogram. -1.0 to use default. Value
* should be between 0.0 and 1.0, the higher the value, the faster the
* adaptation. 1.0 is limiting case where fast adaptation means no memory.
*/
void insertFeature(double learningRate = -1.0);
/**
* Set the feature last observed, to save before incorporating it into the statistical
* model with insertFeature().
*
* @param feature The feature (color) just observed.
*/
void setLastObservedFeature(BackgroundSubtractorGMG::HistogramFeatureGMG feature);
/**
* Set the upper limit for the number of features to store in the histogram. Use to adjust
* memory requirements.
*
* @param max size_t representing the max number of features.
*/
void setMaxFeatures(size_t max) {
maxFeatures = max; histogram.resize(max); histogram.clear();
}
/**
* Normalize the histogram, so sum of weights of all features = 1.0
*/
void normalizeHistogram();
/**
* Return the weight of a feature in the histogram. If the feature is not represented in the
* histogram, the weight returned is 0.0.
*/
double getLikelihood(HistogramFeatureGMG f);
PixelModelGMG& operator *=(const float &rhs);
//friend class BackgroundSubtractorGMG;
//friend class HistogramFeatureGMG;
protected:
size_t numFeatures; //!< number of features in histogram
size_t maxFeatures; //!< max allowable features in histogram
std::list<HistogramFeatureGMG> histogram; //!< represents the histogram as a list of features
HistogramFeatureGMG lastObservedFeature;
//!< store last observed feature in case we need to add it to histogram
};
/**
* A general flexible datatype.
*
* Used internally to enable background subtraction algorithm to be robust to any input Mat type.
* Datatype can be char, unsigned char, int, unsigned int, long int, float, or double.
*/
union flexitype{
char c;
uchar uc;
int i;
unsigned int ui;
long int li;
float f;
double d;
flexitype(){d = 0.0;} //!< Default constructor, set all bits of the union to 0.
flexitype(char cval){c = cval;} //!< Char type constructor
bool operator ==(flexitype& rhs)
{
return d == rhs.d;
}
//! Char type assignment operator
flexitype& operator =(char cval){
if (this->c == cval){return *this;}
c = cval; return *this;
}
flexitype(unsigned char ucval){uc = ucval;} //!< unsigned char type constructor
//! unsigned char type assignment operator
flexitype& operator =(unsigned char ucval){
if (this->uc == ucval){return *this;}
uc = ucval; return *this;
}
flexitype(int ival){i = ival;} //!< int type constructor
//! int type assignment operator
flexitype& operator =(int ival){
if (this->i == ival){return *this;}
i = ival; return *this;
}
flexitype(unsigned int uival){ui = uival;} //!< unsigned int type constructor
//! unsigned int type assignment operator
flexitype& operator =(unsigned int uival){
if (this->ui == uival){return *this;}
ui = uival; return *this;
}
flexitype(float fval){f = fval;} //!< float type constructor
//! float type assignment operator
flexitype& operator =(float fval){
if (this->f == fval){return *this;}
f = fval; return *this;
}
flexitype(long int lival){li = lival;} //!< long int type constructor
//! long int type assignment operator
flexitype& operator =(long int lival){
if (this->li == lival){return *this;}
li = lival; return *this;
}
flexitype(double dval){d=dval;} //!< double type constructor
//! double type assignment operator
flexitype& operator =(double dval){
if (this->d == dval){return *this;}
d = dval; return *this;
}
};
/**
* Used internally to represent a single feature in a histogram.
* Feature is a color and an associated likelihood (weight in the histogram).
*/
struct CV_EXPORTS HistogramFeatureGMG
{
/**
* Default constructor.
* Initializes likelihood of feature to 0, color remains uninitialized.
*/
HistogramFeatureGMG(){likelihood = 0.0;}
/**
* Copy constructor.
* Required to use HistogramFeatureGMG in a std::vector
* @see operator =()
*/
HistogramFeatureGMG(const HistogramFeatureGMG& orig){
color = orig.color; likelihood = orig.likelihood;
}
/**
* Assignment operator.
* Required to use HistogramFeatureGMG in a std::vector
*/
HistogramFeatureGMG& operator =(const HistogramFeatureGMG& orig){
color = orig.color; likelihood = orig.likelihood; return *this;
}
/**
* Tests equality of histogram features.
* Equality is tested only by matching the color (feature), not the likelihood.
* This operator is used to look up an observed feature in a histogram.
*/
bool operator ==(HistogramFeatureGMG &rhs);
//! Regardless of the image datatype, it is quantized and mapped to an integer and represented as a vector.
vector<size_t> color;
//! Represents the weight of feature in the histogram.
float likelihood;
friend class PixelModelGMG;
};
/**
* Representation of the statistical model of a single pixel for use in the background subtraction
* algorithm.
*/
class CV_EXPORTS PixelModelGMG
{
public:
PixelModelGMG();
~PixelModelGMG();
/**
* Incorporate the last observed feature into the statistical model.
*
* @param learningRate The adaptation parameter for the histogram. -1.0 to use default. Value
* should be between 0.0 and 1.0, the higher the value, the faster the
* adaptation. 1.0 is limiting case where fast adaptation means no memory.
*/
void insertFeature(double learningRate = -1.0);
/**
* Set the feature last observed, to save before incorporating it into the statistical
* model with insertFeature().
*
* @param feature The feature (color) just observed.
*/
void setLastObservedFeature(BackgroundSubtractorGMG::HistogramFeatureGMG feature);
/**
* Set the upper limit for the number of features to store in the histogram. Use to adjust
* memory requirements.
*
* @param max size_t representing the max number of features.
*/
void setMaxFeatures(size_t max) {
maxFeatures = max; histogram.resize(max); histogram.clear();
}
/**
* Normalize the histogram, so sum of weights of all features = 1.0
*/
void normalizeHistogram();
/**
* Return the weight of a feature in the histogram. If the feature is not represented in the
* histogram, the weight returned is 0.0.
*/
double getLikelihood(HistogramFeatureGMG f);
PixelModelGMG& operator *=(const float &rhs);
//friend class BackgroundSubtractorGMG;
//friend class HistogramFeatureGMG;
private:
size_t numFeatures; //!< number of features in histogram
size_t maxFeatures; //!< max allowable features in histogram
std::list<HistogramFeatureGMG> histogram; //!< represents the histogram as a list of features
HistogramFeatureGMG lastObservedFeature;
//!< store last observed feature in case we need to add it to histogram
};
public:
BackgroundSubtractorGMG();
virtual ~BackgroundSubtractorGMG();
virtual AlgorithmInfo* info() const;
/**
* Performs single-frame background subtraction and builds up a statistical background image
* model.
* @param image Input image
* @param fgmask Output mask image representing foreground and background pixels
*/
virtual void operator()(InputArray image, OutputArray fgmask, double learningRate=-1.0);
/**
* Validate parameters and set up data structures for appropriate image type. Must call before
* running on data.
* @param image One sample image from dataset
* @param min minimum value taken on by pixels in image sequence. Usually 0
* @param max maximum value taken on by pixels in image sequence. e.g. 1.0 or 255
*/
void initializeType(InputArray image, flexitype min, flexitype max);
/**
* Selectively update the background model. Only update background model for pixels identified
* as background.
* @param mask Mask image same size as images in sequence. Must be 8UC1 matrix, 255 for foreground
* and 0 for background.
*/
void updateBackgroundModel(InputArray mask);
/**
* Retrieve the greyscale image representing the probability that each pixel is foreground given
* the current estimated background model. Values are 0.0 (black) to 1.0 (white).
* @param img The 32FC1 image representing per-pixel probabilities that the pixel is foreground.
*/
void getPosteriorImage(OutputArray img);
BackgroundSubtractorGMG();
virtual ~BackgroundSubtractorGMG();
virtual AlgorithmInfo* info() const;
/**
* Performs single-frame background subtraction and builds up a statistical background image
* model.
* @param image Input image
* @param fgmask Output mask image representing foreground and background pixels
*/
virtual void operator()(InputArray image, OutputArray fgmask, double learningRate=-1.0);
/**
* Validate parameters and set up data structures for appropriate image type. Must call before
* running on data.
* @param image One sample image from dataset
* @param min minimum value taken on by pixels in image sequence. Usually 0
* @param max maximum value taken on by pixels in image sequence. e.g. 1.0 or 255
*/
void initializeType(InputArray image, flexitype min, flexitype max);
/**
* Selectively update the background model. Only update background model for pixels identified
* as background.
* @param mask Mask image same size as images in sequence. Must be 8UC1 matrix, 255 for foreground
* and 0 for background.
*/
void updateBackgroundModel(InputArray mask);
/**
* Retrieve the greyscale image representing the probability that each pixel is foreground given
* the current estimated background model. Values are 0.0 (black) to 1.0 (white).
* @param img The 32FC1 image representing per-pixel probabilities that the pixel is foreground.
*/
void getPosteriorImage(OutputArray img);
protected:
//! Total number of distinct colors to maintain in histogram.
int maxFeatures;
//! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
double learningRate;
//! Number of frames of video to use to initialize histograms.
int numInitializationFrames;
//! Number of discrete levels in each channel to be used in histograms.
int quantizationLevels;
//! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
double backgroundPrior;
double decisionThreshold; //!< value above which pixel is determined to be FG.
int smoothingRadius; //!< smoothing radius, in pixels, for cleaning up FG image.
flexitype maxVal, minVal;
/*
* General Parameters
*/
size_t imWidth; //!< width of image.
size_t imHeight; //!< height of image.
size_t numPixels;
int imageDepth; //!< Depth of image, e.g. CV_8U
unsigned int numChannels; //!< Number of channels in image.
bool isDataInitialized;
//!< After general parameters are set, data structures must be initialized.
size_t elemSize; //!< store image mat element sizes
size_t elemSize1;
/*
* Data Structures
*/
vector<PixelModelGMG> pixels; //!< Probabilistic background models for each pixel in image.
int frameNum; //!< Frame number counter, used to count frames in training mode.
Mat posteriorImage; //!< Posterior probability image.
Mat fgMaskImage; //!< Foreground mask image.
//! Total number of distinct colors to maintain in histogram.
int maxFeatures;
//! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
double learningRate;
//! Number of frames of video to use to initialize histograms.
int numInitializationFrames;
//! Number of discrete levels in each channel to be used in histograms.
int quantizationLevels;
//! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
double backgroundPrior;
double decisionThreshold; //!< value above which pixel is determined to be FG.
int smoothingRadius; //!< smoothing radius, in pixels, for cleaning up FG image.
flexitype maxVal, minVal;
/*
* General Parameters
*/
size_t imWidth; //!< width of image.
size_t imHeight; //!< height of image.
size_t numPixels;
int imageDepth; //!< Depth of image, e.g. CV_8U
unsigned int numChannels; //!< Number of channels in image.
bool isDataInitialized;
//!< After general parameters are set, data structures must be initialized.
size_t elemSize; //!< store image mat element sizes
size_t elemSize1;
/*
* Data Structures
*/
vector<PixelModelGMG> pixels; //!< Probabilistic background models for each pixel in image.
int frameNum; //!< Frame number counter, used to count frames in training mode.
Mat posteriorImage; //!< Posterior probability image.
Mat fgMaskImage; //!< Foreground mask image.
};
bool initModule_BackgroundSubtractorGMG(void);
}
#endif
......@@ -7,7 +7,7 @@
// copy or use the software.
//
//
// License Agreement
// License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
......@@ -66,245 +66,245 @@ BackgroundSubtractorGMG::BackgroundSubtractorGMG()
decisionThreshold = 0.8;
smoothingRadius = 7;
}
void BackgroundSubtractorGMG::initializeType(InputArray _image,flexitype min, flexitype max)
{
minVal = min;
maxVal = max;
if (minVal == maxVal)
{
CV_Error_(CV_StsBadArg,("minVal and maxVal cannot be the same."));
}
/*
* Parameter validation
*/
if (maxFeatures <= 0)
{
CV_Error_(CV_StsBadArg,
("maxFeatures parameter must be 1 or greater. Instead, it is %d.",maxFeatures));
}
if (learningRate < 0.0 || learningRate > 1.0)
{
CV_Error_(CV_StsBadArg,
("learningRate parameter must be in the range [0.0,1.0]. Instead, it is %f.",
learningRate));
}
if (numInitializationFrames < 1)
{
CV_Error_(CV_StsBadArg,
("numInitializationFrames must be at least 1. Instead, it is %d.",
numInitializationFrames));
}
if (quantizationLevels < 1)
{
CV_Error_(CV_StsBadArg,
("quantizationLevels must be at least 1 (preferably more). Instead it is %d.",
quantizationLevels));
}
if (backgroundPrior < 0.0 || backgroundPrior > 1.0)
{
CV_Error_(CV_StsBadArg,
("backgroundPrior must be a probability, between 0.0 and 1.0. Instead it is %f.",
backgroundPrior));
}
/*
* Detect and accommodate the image depth
*/
Mat image = _image.getMat();
imageDepth = image.depth(); // 32f, 8u, etc.
numChannels = image.channels();
/*
* Color quantization [0 | | | | max] --> [0 | | max]
* (0) Use double as intermediary to convert all types to int.
* (i) Shift min to 0,
* (ii) max/(num intervals) = factor. x/factor * factor = quantized result, after integer operation.
*/
/*
* Data Structure Initialization
*/
Size imsize = image.size();
imWidth = imsize.width;
imHeight = imsize.height;
numPixels = imWidth*imHeight;
pixels.resize(numPixels);
frameNum = 0;
// used to iterate through matrix of type unknown at compile time
elemSize = image.elemSize();
elemSize1 = image.elemSize1();
vector<PixelModelGMG>::iterator pixel;
vector<PixelModelGMG>::iterator pixel_end = pixels.end();
for (pixel = pixels.begin(); pixel != pixel_end; ++pixel)
{
pixel->setMaxFeatures(maxFeatures);
}
fgMaskImage = Mat::zeros(imHeight,imWidth,CV_8UC1); // 8-bit unsigned mask. 255 for FG, 0 for BG
posteriorImage = Mat::zeros(imHeight,imWidth,CV_32FC1); // float for storing probabilities. Can be viewed directly with imshow.
isDataInitialized = true;
minVal = min;
maxVal = max;
if (minVal == maxVal)
{
CV_Error_(CV_StsBadArg,("minVal and maxVal cannot be the same."));
}
/*
* Parameter validation
*/
if (maxFeatures <= 0)
{
CV_Error_(CV_StsBadArg,
("maxFeatures parameter must be 1 or greater. Instead, it is %d.",maxFeatures));
}
if (learningRate < 0.0 || learningRate > 1.0)
{
CV_Error_(CV_StsBadArg,
("learningRate parameter must be in the range [0.0,1.0]. Instead, it is %f.",
learningRate));
}
if (numInitializationFrames < 1)
{
CV_Error_(CV_StsBadArg,
("numInitializationFrames must be at least 1. Instead, it is %d.",
numInitializationFrames));
}
if (quantizationLevels < 1)
{
CV_Error_(CV_StsBadArg,
("quantizationLevels must be at least 1 (preferably more). Instead it is %d.",
quantizationLevels));
}
if (backgroundPrior < 0.0 || backgroundPrior > 1.0)
{
CV_Error_(CV_StsBadArg,
("backgroundPrior must be a probability, between 0.0 and 1.0. Instead it is %f.",
backgroundPrior));
}
/*
* Detect and accommodate the image depth
*/
Mat image = _image.getMat();
imageDepth = image.depth(); // 32f, 8u, etc.
numChannels = image.channels();
/*
* Color quantization [0 | | | | max] --> [0 | | max]
* (0) Use double as intermediary to convert all types to int.
* (i) Shift min to 0,
* (ii) max/(num intervals) = factor. x/factor * factor = quantized result, after integer operation.
*/
/*
* Data Structure Initialization
*/
Size imsize = image.size();
imWidth = imsize.width;
imHeight = imsize.height;
numPixels = imWidth*imHeight;
pixels.resize(numPixels);
frameNum = 0;
// used to iterate through matrix of type unknown at compile time
elemSize = image.elemSize();
elemSize1 = image.elemSize1();
vector<PixelModelGMG>::iterator pixel;
vector<PixelModelGMG>::iterator pixel_end = pixels.end();
for (pixel = pixels.begin(); pixel != pixel_end; ++pixel)
{
pixel->setMaxFeatures(maxFeatures);
}
fgMaskImage = Mat::zeros(imHeight,imWidth,CV_8UC1); // 8-bit unsigned mask. 255 for FG, 0 for BG
posteriorImage = Mat::zeros(imHeight,imWidth,CV_32FC1); // float for storing probabilities. Can be viewed directly with imshow.
isDataInitialized = true;
}
void BackgroundSubtractorGMG::operator()(InputArray _image, OutputArray _fgmask, double newLearningRate)
{
if (!isDataInitialized)
{
CV_Error(CV_StsError,"BackgroundSubstractorGMG has not been initialized. Call initialize() first.\n");
}
/*
* Update learning rate parameter, if desired
*/
if (newLearningRate != -1.0)
{
if (newLearningRate < 0.0 || newLearningRate > 1.0)
{
CV_Error(CV_StsOutOfRange,"Learning rate for Operator () must be between 0.0 and 1.0.\n");
}
this->learningRate = newLearningRate;
}
Mat image = _image.getMat();
_fgmask.create(Size(imHeight,imWidth),CV_8U);
fgMaskImage = _fgmask.getMat(); // 8-bit unsigned mask. 255 for FG, 0 for BG
/*
* Iterate over pixels in image
*/
// grab data at each pixel (1,2,3 channels, int, float, etc.)
// grab data as an array of bytes. Then, send that array to a function that reads data into vector of appropriate types... and quantizing... before saving as a feature, which is a vector of flexitypes, so code can be portable.
// multiple channels do have sequential storage, use mat::elemSize() and mat::elemSize1()
vector<PixelModelGMG>::iterator pixel;
vector<PixelModelGMG>::iterator pixel_end = pixels.end();
size_t i;
if (!isDataInitialized)
{
CV_Error(CV_StsError,"BackgroundSubstractorGMG has not been initialized. Call initialize() first.\n");
}
/*
* Update learning rate parameter, if desired
*/
if (newLearningRate != -1.0)
{
if (newLearningRate < 0.0 || newLearningRate > 1.0)
{
CV_Error(CV_StsOutOfRange,"Learning rate for Operator () must be between 0.0 and 1.0.\n");
}
this->learningRate = newLearningRate;
}
Mat image = _image.getMat();
_fgmask.create(Size(imHeight,imWidth),CV_8U);
fgMaskImage = _fgmask.getMat(); // 8-bit unsigned mask. 255 for FG, 0 for BG
/*
* Iterate over pixels in image
*/
// grab data at each pixel (1,2,3 channels, int, float, etc.)
// grab data as an array of bytes. Then, send that array to a function that reads data into vector of appropriate types... and quantizing... before saving as a feature, which is a vector of flexitypes, so code can be portable.
// multiple channels do have sequential storage, use mat::elemSize() and mat::elemSize1()
vector<PixelModelGMG>::iterator pixel;
vector<PixelModelGMG>::iterator pixel_end = pixels.end();
size_t i;
//#pragma omp parallel
for (i = 0, pixel=pixels.begin(); pixel != pixel_end; ++i,++pixel)
{
HistogramFeatureGMG newFeature;
newFeature.color.clear();
for (size_t c = 0; c < numChannels; ++c)
{
/*
* Perform quantization. in each channel. (color-min)*(levels)/(max-min).
* Shifts min to 0 and scales, finally casting to an int.
*/
size_t quantizedColor;
// pixel at data+elemSize*i. Individual channel c at data+elemSize*i+elemSize1*c
if (imageDepth == CV_8U)
{
uchar *color = (uchar*)(image.data+elemSize*i+elemSize1*c);
quantizedColor = (size_t)((double)(*color-minVal.uc)*quantizationLevels/(maxVal.uc-minVal.uc));
}
else if (imageDepth == CV_8S)
{
char *color = (char*)(image.data+elemSize*i+elemSize1*c);
quantizedColor = (size_t)((double)(*color-minVal.c)*quantizationLevels/(maxVal.c-minVal.c));
}
else if (imageDepth == CV_16U)
{
unsigned int *color = (unsigned int*)(image.data+elemSize*i+elemSize1*c);
quantizedColor = (size_t)((double)(*color-minVal.ui)*quantizationLevels/(maxVal.ui-minVal.ui));
}
else if (imageDepth == CV_16S)
{
int *color = (int*)(image.data+elemSize*i+elemSize1*c);
quantizedColor = (size_t)((double)(*color-minVal.i)*quantizationLevels/(maxVal.i-minVal.i));
}
else if (imageDepth == CV_32F)
{
float *color = (float*)image.data+elemSize*i+elemSize1*c;
quantizedColor = (size_t)((double)(*color-minVal.ui)*quantizationLevels/(maxVal.ui-minVal.ui));
}
else if (imageDepth == CV_32S)
{
long int *color = (long int*)(image.data+elemSize*i+elemSize1*c);
quantizedColor = (size_t)((double)(*color-minVal.li)*quantizationLevels/(maxVal.li-minVal.li));
}
else if (imageDepth == CV_64F)
{
double *color = (double*)image.data+elemSize*i+elemSize1*c;
quantizedColor = (size_t)((double)(*color-minVal.d)*quantizationLevels/(maxVal.d-minVal.d));
}
newFeature.color.push_back(quantizedColor);
}
// now that the feature is ready for use, put it in the histogram
if (frameNum > numInitializationFrames) // typical operation
{
newFeature.likelihood = learningRate;
/*
* (1) Query histogram to find posterior probability of feature under model.
*/
float likelihood = (float)pixel->getLikelihood(newFeature);
// see Godbehere, Matsukawa, Goldberg (2012) for reasoning behind this implementation of Bayes rule
float posterior = (likelihood*backgroundPrior)/(likelihood*backgroundPrior+(1-likelihood)*(1-backgroundPrior));
/*
* (2) feed posterior probability into the posterior image
*/
int row,col;
col = i%imWidth;
row = (i-col)/imWidth;
posteriorImage.at<float>(row,col) = (1.0-posterior);
}
pixel->setLastObservedFeature(newFeature);
}
/*
* (3) Perform filtering and threshold operations to yield final mask image.
*
* 2 options. First is morphological open/close as before. Second is "median filtering" which Jon Barron says is good to remove noise
*/
Mat thresholdedPosterior;
threshold(posteriorImage,thresholdedPosterior,decisionThreshold,1.0,THRESH_BINARY);
thresholdedPosterior.convertTo(fgMaskImage,CV_8U,255); // convert image to integer space for further filtering and mask creation
medianBlur(fgMaskImage,fgMaskImage,smoothingRadius);
fgMaskImage.copyTo(_fgmask);
++frameNum; // keep track of how many frames we have processed
for (i = 0, pixel=pixels.begin(); pixel != pixel_end; ++i,++pixel)
{
HistogramFeatureGMG newFeature;
newFeature.color.clear();
for (size_t c = 0; c < numChannels; ++c)
{
/*
* Perform quantization. in each channel. (color-min)*(levels)/(max-min).
* Shifts min to 0 and scales, finally casting to an int.
*/
size_t quantizedColor;
// pixel at data+elemSize*i. Individual channel c at data+elemSize*i+elemSize1*c
if (imageDepth == CV_8U)
{
uchar *color = (uchar*)(image.data+elemSize*i+elemSize1*c);
quantizedColor = (size_t)((double)(*color-minVal.uc)*quantizationLevels/(maxVal.uc-minVal.uc));
}
else if (imageDepth == CV_8S)
{
char *color = (char*)(image.data+elemSize*i+elemSize1*c);
quantizedColor = (size_t)((double)(*color-minVal.c)*quantizationLevels/(maxVal.c-minVal.c));
}
else if (imageDepth == CV_16U)
{
unsigned int *color = (unsigned int*)(image.data+elemSize*i+elemSize1*c);
quantizedColor = (size_t)((double)(*color-minVal.ui)*quantizationLevels/(maxVal.ui-minVal.ui));
}
else if (imageDepth == CV_16S)
{
int *color = (int*)(image.data+elemSize*i+elemSize1*c);
quantizedColor = (size_t)((double)(*color-minVal.i)*quantizationLevels/(maxVal.i-minVal.i));
}
else if (imageDepth == CV_32F)
{
float *color = (float*)image.data+elemSize*i+elemSize1*c;
quantizedColor = (size_t)((double)(*color-minVal.ui)*quantizationLevels/(maxVal.ui-minVal.ui));
}
else if (imageDepth == CV_32S)
{
long int *color = (long int*)(image.data+elemSize*i+elemSize1*c);
quantizedColor = (size_t)((double)(*color-minVal.li)*quantizationLevels/(maxVal.li-minVal.li));
}
else if (imageDepth == CV_64F)
{
double *color = (double*)image.data+elemSize*i+elemSize1*c;
quantizedColor = (size_t)((double)(*color-minVal.d)*quantizationLevels/(maxVal.d-minVal.d));
}
newFeature.color.push_back(quantizedColor);
}
// now that the feature is ready for use, put it in the histogram
if (frameNum > numInitializationFrames) // typical operation
{
newFeature.likelihood = float(learningRate);
/*
* (1) Query histogram to find posterior probability of feature under model.
*/
float likelihood = (float)pixel->getLikelihood(newFeature);
// see Godbehere, Matsukawa, Goldberg (2012) for reasoning behind this implementation of Bayes rule
float posterior = float((likelihood*backgroundPrior)/(likelihood*backgroundPrior+(1-likelihood)*(1-backgroundPrior)));
/*
* (2) feed posterior probability into the posterior image
*/
int row,col;
col = i%imWidth;
row = (i-col)/imWidth;
posteriorImage.at<float>(row,col) = (1.0f-posterior);
}
pixel->setLastObservedFeature(newFeature);
}
/*
* (3) Perform filtering and threshold operations to yield final mask image.
*
* 2 options. First is morphological open/close as before. Second is "median filtering" which Jon Barron says is good to remove noise
*/
Mat thresholdedPosterior;
threshold(posteriorImage,thresholdedPosterior,decisionThreshold,1.0,THRESH_BINARY);
thresholdedPosterior.convertTo(fgMaskImage,CV_8U,255); // convert image to integer space for further filtering and mask creation
medianBlur(fgMaskImage,fgMaskImage,smoothingRadius);
fgMaskImage.copyTo(_fgmask);
++frameNum; // keep track of how many frames we have processed
}
void BackgroundSubtractorGMG::getPosteriorImage(OutputArray _img)
{
_img.create(Size(imWidth,imHeight),CV_32F);
Mat img = _img.getMat();
posteriorImage.copyTo(img);
_img.create(Size(imWidth,imHeight),CV_32F);
Mat img = _img.getMat();
posteriorImage.copyTo(img);
}
void BackgroundSubtractorGMG::updateBackgroundModel(InputArray _mask)
{
CV_Assert(_mask.size() == Size(imWidth,imHeight)); // mask should be same size as image
CV_Assert(_mask.size() == Size(imWidth,imHeight)); // mask should be same size as image
Mat maskImg = _mask.getMat();
Mat maskImg = _mask.getMat();
//#pragma omp parallel
for (size_t i = 0; i < imHeight; ++i)
{
for (size_t i = 0; i < imHeight; ++i)
{
//#pragma omp parallel
for (size_t j = 0; j < imWidth; ++j)
{
if (frameNum <= numInitializationFrames + 1)
{
// insert previously observed feature into the histogram. -1.0 parameter indicates training.
pixels[i*imWidth+j].insertFeature(-1.0);
if (frameNum >= numInitializationFrames+1) // training is done, normalize
{
pixels[i*imWidth+j].normalizeHistogram();
}
}
// if mask is 0, pixel is identified as a background pixel, so update histogram.
else if (maskImg.at<uchar>(i,j) == 0)
{
pixels[i*imWidth+j].insertFeature(learningRate); // updates the histogram for the next iteration.
}
}
}
for (size_t j = 0; j < imWidth; ++j)
{
if (frameNum <= numInitializationFrames + 1)
{
// insert previously observed feature into the histogram. -1.0 parameter indicates training.
pixels[i*imWidth+j].insertFeature(-1.0);
if (frameNum >= numInitializationFrames+1) // training is done, normalize
{
pixels[i*imWidth+j].normalizeHistogram();
}
}
// if mask is 0, pixel is identified as a background pixel, so update histogram.
else if (maskImg.at<uchar>(i,j) == 0)
{
pixels[i*imWidth+j].insertFeature(learningRate); // updates the histogram for the next iteration.
}
}
}
}
BackgroundSubtractorGMG::~BackgroundSubtractorGMG()
......@@ -314,8 +314,8 @@ BackgroundSubtractorGMG::~BackgroundSubtractorGMG()
BackgroundSubtractorGMG::PixelModelGMG::PixelModelGMG()
{
numFeatures = 0;
maxFeatures = 0;
numFeatures = 0;
maxFeatures = 0;
}
BackgroundSubtractorGMG::PixelModelGMG::~PixelModelGMG()
......@@ -325,154 +325,154 @@ BackgroundSubtractorGMG::PixelModelGMG::~PixelModelGMG()
void BackgroundSubtractorGMG::PixelModelGMG::setLastObservedFeature(HistogramFeatureGMG f)
{
this->lastObservedFeature = f;
this->lastObservedFeature = f;
}
double BackgroundSubtractorGMG::PixelModelGMG::getLikelihood(BackgroundSubtractorGMG::HistogramFeatureGMG f)
{
std::list<HistogramFeatureGMG>::iterator feature = histogram.begin();
std::list<HistogramFeatureGMG>::iterator feature_end = histogram.end();
for (feature = histogram.begin(); feature != feature_end; ++feature)
{
// comparing only feature color, not likelihood. See equality operator for HistogramFeatureGMG
if (f == *feature)
{
return feature->likelihood;
}
}
return 0.0; // not in histogram, so return 0.
std::list<HistogramFeatureGMG>::iterator feature = histogram.begin();
std::list<HistogramFeatureGMG>::iterator feature_end = histogram.end();
for (feature = histogram.begin(); feature != feature_end; ++feature)
{
// comparing only feature color, not likelihood. See equality operator for HistogramFeatureGMG
if (f == *feature)
{
return feature->likelihood;
}
}
return 0.0; // not in histogram, so return 0.
}
void BackgroundSubtractorGMG::PixelModelGMG::insertFeature(double learningRate)
{
std::list<HistogramFeatureGMG>::iterator feature;
std::list<HistogramFeatureGMG>::iterator swap_end;
std::list<HistogramFeatureGMG>::iterator last_feature = histogram.end();
/*
* If feature is in histogram already, add the weights, and move feature to front.
* If there are too many features, remove the end feature and push new feature to beginning
*/
if (learningRate == -1.0) // then, this is a training-mode update.
{
/*
* (1) Check if feature already represented in histogram
*/
lastObservedFeature.likelihood = 1.0;
for (feature = histogram.begin(); feature != last_feature; ++feature)
{
if (lastObservedFeature == *feature) // feature in histogram
{
feature->likelihood += lastObservedFeature.likelihood;
// now, move feature to beginning of list and break the loop
HistogramFeatureGMG tomove = *feature;
histogram.erase(feature);
histogram.push_front(tomove);
return;
}
}
if (numFeatures == maxFeatures)
{
histogram.pop_back(); // discard oldest feature
histogram.push_front(lastObservedFeature);
}
else
{
histogram.push_front(lastObservedFeature);
++numFeatures;
}
}
else
{
/*
* (1) Scale entire histogram by scaling factor
* (2) Scale input feature.
* (3) Check if feature already represented. If so, simply add.
* (4) If feature is not represented, remove old feature, distribute weight evenly among existing features, add in new feature.
*/
*this *= (1.0-learningRate);
lastObservedFeature.likelihood = learningRate;
for (feature = histogram.begin(); feature != last_feature; ++feature)
{
if (lastObservedFeature == *feature) // feature in histogram
{
lastObservedFeature.likelihood += feature->likelihood;
histogram.erase(feature);
histogram.push_front(lastObservedFeature);
return; // done with the update.
}
}
if (numFeatures == maxFeatures)
{
histogram.pop_back(); // discard oldest feature
histogram.push_front(lastObservedFeature);
normalizeHistogram();
}
else
{
histogram.push_front(lastObservedFeature);
++numFeatures;
}
}
std::list<HistogramFeatureGMG>::iterator feature;
std::list<HistogramFeatureGMG>::iterator swap_end;
std::list<HistogramFeatureGMG>::iterator last_feature = histogram.end();
/*
* If feature is in histogram already, add the weights, and move feature to front.
* If there are too many features, remove the end feature and push new feature to beginning
*/
if (learningRate == -1.0) // then, this is a training-mode update.
{
/*
* (1) Check if feature already represented in histogram
*/
lastObservedFeature.likelihood = 1.0;
for (feature = histogram.begin(); feature != last_feature; ++feature)
{
if (lastObservedFeature == *feature) // feature in histogram
{
feature->likelihood += lastObservedFeature.likelihood;
// now, move feature to beginning of list and break the loop
HistogramFeatureGMG tomove = *feature;
histogram.erase(feature);
histogram.push_front(tomove);
return;
}
}
if (numFeatures == maxFeatures)
{
histogram.pop_back(); // discard oldest feature
histogram.push_front(lastObservedFeature);
}
else
{
histogram.push_front(lastObservedFeature);
++numFeatures;
}
}
else
{
/*
* (1) Scale entire histogram by scaling factor
* (2) Scale input feature.
* (3) Check if feature already represented. If so, simply add.
* (4) If feature is not represented, remove old feature, distribute weight evenly among existing features, add in new feature.
*/
*this *= float(1.0-learningRate);
lastObservedFeature.likelihood = float(learningRate);
for (feature = histogram.begin(); feature != last_feature; ++feature)
{
if (lastObservedFeature == *feature) // feature in histogram
{
lastObservedFeature.likelihood += feature->likelihood;
histogram.erase(feature);
histogram.push_front(lastObservedFeature);
return; // done with the update.
}
}
if (numFeatures == maxFeatures)
{
histogram.pop_back(); // discard oldest feature
histogram.push_front(lastObservedFeature);
normalizeHistogram();
}
else
{
histogram.push_front(lastObservedFeature);
++numFeatures;
}
}
}
BackgroundSubtractorGMG::PixelModelGMG& BackgroundSubtractorGMG::PixelModelGMG::operator *=(const float &rhs)
{
/*
* Used to scale histogram by a constant factor
*/
list<HistogramFeatureGMG>::iterator feature;
list<HistogramFeatureGMG>::iterator last_feature = histogram.end();
for (feature = histogram.begin(); feature != last_feature; ++feature)
{
feature->likelihood *= rhs;
}
return *this;
/*
* Used to scale histogram by a constant factor
*/
list<HistogramFeatureGMG>::iterator feature;
list<HistogramFeatureGMG>::iterator last_feature = histogram.end();
for (feature = histogram.begin(); feature != last_feature; ++feature)
{
feature->likelihood *= rhs;
}
return *this;
}
void BackgroundSubtractorGMG::PixelModelGMG::normalizeHistogram()
{
/*
* First, calculate the total weight in the histogram
*/
list<HistogramFeatureGMG>::iterator feature;
list<HistogramFeatureGMG>::iterator last_feature = histogram.end();
double total = 0.0;
for (feature = histogram.begin(); feature != last_feature; ++feature)
{
total += feature->likelihood;
}
/*
* Then, if weight is not 0, divide every feature by the total likelihood to re-normalize.
*/
for (feature = histogram.begin(); feature != last_feature; ++feature)
{
if (total != 0.0)
feature->likelihood /= total;
}
/*
* First, calculate the total weight in the histogram
*/
list<HistogramFeatureGMG>::iterator feature;
list<HistogramFeatureGMG>::iterator last_feature = histogram.end();
double total = 0.0;
for (feature = histogram.begin(); feature != last_feature; ++feature)
{
total += feature->likelihood;
}
/*
* Then, if weight is not 0, divide every feature by the total likelihood to re-normalize.
*/
for (feature = histogram.begin(); feature != last_feature; ++feature)
{
if (total != 0.0)
feature->likelihood = float(feature->likelihood / total);
}
}
bool BackgroundSubtractorGMG::HistogramFeatureGMG::operator ==(HistogramFeatureGMG &rhs)
{
CV_Assert(color.size() == rhs.color.size());
std::vector<size_t>::iterator color_a;
std::vector<size_t>::iterator color_b;
std::vector<size_t>::iterator color_a_end = this->color.end();
std::vector<size_t>::iterator color_b_end = rhs.color.end();
for (color_a = color.begin(),color_b =rhs.color.begin();color_a!=color_a_end;++color_a,++color_b)
{
if (*color_a != *color_b)
{
return false;
}
}
return true;
CV_Assert(color.size() == rhs.color.size());
std::vector<size_t>::iterator color_a;
std::vector<size_t>::iterator color_b;
std::vector<size_t>::iterator color_a_end = this->color.end();
std::vector<size_t>::iterator color_b_end = rhs.color.end();
for (color_a = color.begin(),color_b =rhs.color.begin();color_a!=color_a_end;++color_a,++color_b)
{
if (*color_a != *color_b)
{
return false;
}
}
return true;
}
......
......@@ -79,7 +79,7 @@ CV_INIT_ALGORITHM(BackgroundSubtractorGMG, "BackgroundSubtractor.GMG",
"Radius of smoothing kernel to filter noise from FG mask image.");
obj.info()->addParam(obj, "decisionThreshold", obj.decisionThreshold,false,0,0,
"Threshold for FG decision rule. Pixel is FG if posterior probability exceeds threshold."));
bool initModule_video(void)
{
bool all = true;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册