提交 4d9d7e6d 编写于 作者: V Vadim Pisarevsky

Merge pull request #3160 from akarsakov:ocl_dft_double_support

...@@ -1802,11 +1802,14 @@ private: ...@@ -1802,11 +1802,14 @@ private:
String buildOptions; String buildOptions;
int thread_count; int thread_count;
int dft_size; int dft_size;
int dft_depth;
bool status; bool status;
public: public:
OCL_FftPlan(int _size) : dft_size(_size), status(true) OCL_FftPlan(int _size, int _depth) : dft_size(_size), dft_depth(_depth), status(true)
{ {
CV_Assert( dft_depth == CV_32F || dft_depth == CV_64F );
int min_radix; int min_radix;
std::vector<int> radixes, blocks; std::vector<int> radixes, blocks;
ocl_getRadixes(dft_size, radixes, blocks, min_radix); ocl_getRadixes(dft_size, radixes, blocks, min_radix);
...@@ -1832,31 +1835,15 @@ public: ...@@ -1832,31 +1835,15 @@ public:
n *= radix; n *= radix;
} }
twiddles.create(1, twiddle_size, CV_32FC2); twiddles.create(1, twiddle_size, CV_MAKE_TYPE(dft_depth, 2));
Mat tw = twiddles.getMat(ACCESS_WRITE); if (dft_depth == CV_32F)
float* ptr = tw.ptr<float>(); fillRadixTable<float>(twiddles, radixes);
int ptr_index = 0; else
fillRadixTable<double>(twiddles, radixes);
n = 1;
for (size_t i=0; i<radixes.size(); i++)
{
int radix = radixes[i];
n *= radix;
for (int j=1; j<radix; j++)
{
double theta = -CV_2PI*j/n;
for (int k=0; k<(n/radix); k++)
{
ptr[ptr_index++] = (float) cos(k*theta);
ptr[ptr_index++] = (float) sin(k*theta);
}
}
}
buildOptions = format("-D LOCAL_SIZE=%d -D kercn=%d -D RADIX_PROCESS=%s", buildOptions = format("-D LOCAL_SIZE=%d -D kercn=%d -D FT=%s -D CT=%s%s -D RADIX_PROCESS=%s",
dft_size, min_radix, radix_processing.c_str()); dft_size, min_radix, ocl::typeToStr(dft_depth), ocl::typeToStr(CV_MAKE_TYPE(dft_depth, 2)),
dft_depth == CV_64F ? " -D DOUBLE_SUPPORT" : "", radix_processing.c_str());
} }
bool enqueueTransform(InputArray _src, OutputArray _dst, int num_dfts, int flags, int fftType, bool rows = true) const bool enqueueTransform(InputArray _src, OutputArray _dst, int num_dfts, int flags, int fftType, bool rows = true) const
...@@ -1913,7 +1900,7 @@ public: ...@@ -1913,7 +1900,7 @@ public:
if (k.empty()) if (k.empty())
return false; return false;
k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst), ocl::KernelArg::PtrReadOnly(twiddles), thread_count, num_dfts); k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst), ocl::KernelArg::ReadOnlyNoSize(twiddles), thread_count, num_dfts);
return k.run(2, globalsize, localsize, false); return k.run(2, globalsize, localsize, false);
} }
...@@ -1986,6 +1973,32 @@ private: ...@@ -1986,6 +1973,32 @@ private:
min_radix = min(min_radix, block*radix); min_radix = min(min_radix, block*radix);
} }
} }
template <typename T>
static void fillRadixTable(UMat twiddles, const std::vector<int>& radixes)
{
Mat tw = twiddles.getMat(ACCESS_WRITE);
T* ptr = tw.ptr<T>();
int ptr_index = 0;
int n = 1;
for (size_t i=0; i<radixes.size(); i++)
{
int radix = radixes[i];
n *= radix;
for (int j=1; j<radix; j++)
{
double theta = -CV_2PI*j/n;
for (int k=0; k<(n/radix); k++)
{
ptr[ptr_index++] = (T) cos(k*theta);
ptr[ptr_index++] = (T) sin(k*theta);
}
}
}
}
}; };
class OCL_FftPlanCache class OCL_FftPlanCache
...@@ -1997,17 +2010,18 @@ public: ...@@ -1997,17 +2010,18 @@ public:
return planCache; return planCache;
} }
Ptr<OCL_FftPlan> getFftPlan(int dft_size) Ptr<OCL_FftPlan> getFftPlan(int dft_size, int depth)
{ {
std::map<int, Ptr<OCL_FftPlan> >::iterator f = planStorage.find(dft_size); int key = (dft_size << 16) | (depth & 0xFFFF);
std::map<int, Ptr<OCL_FftPlan> >::iterator f = planStorage.find(key);
if (f != planStorage.end()) if (f != planStorage.end())
{ {
return f->second; return f->second;
} }
else else
{ {
Ptr<OCL_FftPlan> newPlan = Ptr<OCL_FftPlan>(new OCL_FftPlan(dft_size)); Ptr<OCL_FftPlan> newPlan = Ptr<OCL_FftPlan>(new OCL_FftPlan(dft_size, depth));
planStorage[dft_size] = newPlan; planStorage[key] = newPlan;
return newPlan; return newPlan;
} }
} }
...@@ -2027,21 +2041,25 @@ protected: ...@@ -2027,21 +2041,25 @@ protected:
static bool ocl_dft_rows(InputArray _src, OutputArray _dst, int nonzero_rows, int flags, int fftType) static bool ocl_dft_rows(InputArray _src, OutputArray _dst, int nonzero_rows, int flags, int fftType)
{ {
Ptr<OCL_FftPlan> plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.cols()); int type = _src.type(), depth = CV_MAT_DEPTH(type);
Ptr<OCL_FftPlan> plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.cols(), depth);
return plan->enqueueTransform(_src, _dst, nonzero_rows, flags, fftType, true); return plan->enqueueTransform(_src, _dst, nonzero_rows, flags, fftType, true);
} }
static bool ocl_dft_cols(InputArray _src, OutputArray _dst, int nonzero_cols, int flags, int fftType) static bool ocl_dft_cols(InputArray _src, OutputArray _dst, int nonzero_cols, int flags, int fftType)
{ {
Ptr<OCL_FftPlan> plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.rows()); int type = _src.type(), depth = CV_MAT_DEPTH(type);
Ptr<OCL_FftPlan> plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.rows(), depth);
return plan->enqueueTransform(_src, _dst, nonzero_cols, flags, fftType, false); return plan->enqueueTransform(_src, _dst, nonzero_cols, flags, fftType, false);
} }
static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_rows) static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_rows)
{ {
int type = _src.type(), cn = CV_MAT_CN(type); int type = _src.type(), cn = CV_MAT_CN(type), depth = CV_MAT_DEPTH(type);
Size ssize = _src.size(); Size ssize = _src.size();
if ( !(type == CV_32FC1 || type == CV_32FC2) ) bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if ( !((cn == 1 || cn == 2) && (depth == CV_32F || (depth == CV_64F && doubleSupport))) )
return false; return false;
// if is not a multiplication of prime numbers { 2, 3, 5 } // if is not a multiplication of prime numbers { 2, 3, 5 }
...@@ -2082,7 +2100,7 @@ static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_ro ...@@ -2082,7 +2100,7 @@ static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_ro
if (fftType == C2C || fftType == R2C) if (fftType == C2C || fftType == R2C)
{ {
// complex output // complex output
_dst.create(src.size(), CV_32FC2); _dst.create(src.size(), CV_MAKETYPE(depth, 2));
output = _dst.getUMat(); output = _dst.getUMat();
} }
else else
...@@ -2090,13 +2108,13 @@ static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_ro ...@@ -2090,13 +2108,13 @@ static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_ro
// real output // real output
if (is1d) if (is1d)
{ {
_dst.create(src.size(), CV_32FC1); _dst.create(src.size(), CV_MAKETYPE(depth, 1));
output = _dst.getUMat(); output = _dst.getUMat();
} }
else else
{ {
_dst.create(src.size(), CV_32FC1); _dst.create(src.size(), CV_MAKETYPE(depth, 1));
output.create(src.size(), CV_32FC2); output.create(src.size(), CV_MAKETYPE(depth, 2));
} }
} }
......
...@@ -12,22 +12,30 @@ ...@@ -12,22 +12,30 @@
#define fft5_4 -1.538841768587f #define fft5_4 -1.538841768587f
#define fft5_5 0.363271264002f #define fft5_5 0.363271264002f
#ifdef DOUBLE_SUPPORT
#ifdef cl_amd_fp64
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
#endif
__attribute__((always_inline)) __attribute__((always_inline))
float2 mul_float2(float2 a, float2 b) { CT mul_complex(CT a, CT b) {
return (float2)(fma(a.x, b.x, -a.y * b.y), fma(a.x, b.y, a.y * b.x)); return (CT)(fma(a.x, b.x, -a.y * b.y), fma(a.x, b.y, a.y * b.x));
} }
__attribute__((always_inline)) __attribute__((always_inline))
float2 twiddle(float2 a) { CT twiddle(CT a) {
return (float2)(a.y, -a.x); return (CT)(a.y, -a.x);
} }
__attribute__((always_inline)) __attribute__((always_inline))
void butterfly2(float2 a0, float2 a1, __local float2* smem, __global const float2* twiddles, void butterfly2(CT a0, CT a1, __local CT* smem, __global const CT* twiddles,
const int x, const int block_size) const int x, const int block_size)
{ {
const int k = x & (block_size - 1); const int k = x & (block_size - 1);
a1 = mul_float2(twiddles[k], a1); a1 = mul_complex(twiddles[k], a1);
const int dst_ind = (x << 1) - k; const int dst_ind = (x << 1) - k;
smem[dst_ind] = a0 + a1; smem[dst_ind] = a0 + a1;
...@@ -35,19 +43,19 @@ void butterfly2(float2 a0, float2 a1, __local float2* smem, __global const float ...@@ -35,19 +43,19 @@ void butterfly2(float2 a0, float2 a1, __local float2* smem, __global const float
} }
__attribute__((always_inline)) __attribute__((always_inline))
void butterfly4(float2 a0, float2 a1, float2 a2, float2 a3, __local float2* smem, __global const float2* twiddles, void butterfly4(CT a0, CT a1, CT a2, CT a3, __local CT* smem, __global const CT* twiddles,
const int x, const int block_size) const int x, const int block_size)
{ {
const int k = x & (block_size - 1); const int k = x & (block_size - 1);
a1 = mul_float2(twiddles[k], a1); a1 = mul_complex(twiddles[k], a1);
a2 = mul_float2(twiddles[k + block_size], a2); a2 = mul_complex(twiddles[k + block_size], a2);
a3 = mul_float2(twiddles[k + 2*block_size], a3); a3 = mul_complex(twiddles[k + 2*block_size], a3);
const int dst_ind = ((x - k) << 2) + k; const int dst_ind = ((x - k) << 2) + k;
float2 b0 = a0 + a2; CT b0 = a0 + a2;
a2 = a0 - a2; a2 = a0 - a2;
float2 b1 = a1 + a3; CT b1 = a1 + a3;
a3 = twiddle(a1 - a3); a3 = twiddle(a1 - a3);
smem[dst_ind] = b0 + b1; smem[dst_ind] = b0 + b1;
...@@ -57,17 +65,17 @@ void butterfly4(float2 a0, float2 a1, float2 a2, float2 a3, __local float2* smem ...@@ -57,17 +65,17 @@ void butterfly4(float2 a0, float2 a1, float2 a2, float2 a3, __local float2* smem
} }
__attribute__((always_inline)) __attribute__((always_inline))
void butterfly3(float2 a0, float2 a1, float2 a2, __local float2* smem, __global const float2* twiddles, void butterfly3(CT a0, CT a1, CT a2, __local CT* smem, __global const CT* twiddles,
const int x, const int block_size) const int x, const int block_size)
{ {
const int k = x % block_size; const int k = x % block_size;
a1 = mul_float2(twiddles[k], a1); a1 = mul_complex(twiddles[k], a1);
a2 = mul_float2(twiddles[k+block_size], a2); a2 = mul_complex(twiddles[k+block_size], a2);
const int dst_ind = ((x - k) * 3) + k; const int dst_ind = ((x - k) * 3) + k;
float2 b1 = a1 + a2; CT b1 = a1 + a2;
a2 = twiddle(sin_120*(a1 - a2)); a2 = twiddle(sin_120*(a1 - a2));
float2 b0 = a0 - (float2)(0.5f)*b1; CT b0 = a0 - (CT)(0.5f)*b1;
smem[dst_ind] = a0 + b1; smem[dst_ind] = a0 + b1;
smem[dst_ind + block_size] = b0 + a2; smem[dst_ind + block_size] = b0 + a2;
...@@ -75,19 +83,19 @@ void butterfly3(float2 a0, float2 a1, float2 a2, __local float2* smem, __global ...@@ -75,19 +83,19 @@ void butterfly3(float2 a0, float2 a1, float2 a2, __local float2* smem, __global
} }
__attribute__((always_inline)) __attribute__((always_inline))
void butterfly5(float2 a0, float2 a1, float2 a2, float2 a3, float2 a4, __local float2* smem, __global const float2* twiddles, void butterfly5(CT a0, CT a1, CT a2, CT a3, CT a4, __local CT* smem, __global const CT* twiddles,
const int x, const int block_size) const int x, const int block_size)
{ {
const int k = x % block_size; const int k = x % block_size;
a1 = mul_float2(twiddles[k], a1); a1 = mul_complex(twiddles[k], a1);
a2 = mul_float2(twiddles[k + block_size], a2); a2 = mul_complex(twiddles[k + block_size], a2);
a3 = mul_float2(twiddles[k+2*block_size], a3); a3 = mul_complex(twiddles[k+2*block_size], a3);
a4 = mul_float2(twiddles[k+3*block_size], a4); a4 = mul_complex(twiddles[k+3*block_size], a4);
const int dst_ind = ((x - k) * 5) + k; const int dst_ind = ((x - k) * 5) + k;
__local float2* dst = smem + dst_ind; __local CT* dst = smem + dst_ind;
float2 b0, b1, b5; CT b0, b1, b5;
b1 = a1 + a4; b1 = a1 + a4;
a1 -= a4; a1 -= a4;
...@@ -96,11 +104,11 @@ void butterfly5(float2 a0, float2 a1, float2 a2, float2 a3, float2 a4, __local f ...@@ -96,11 +104,11 @@ void butterfly5(float2 a0, float2 a1, float2 a2, float2 a3, float2 a4, __local f
a3 -= a2; a3 -= a2;
a2 = b1 + a4; a2 = b1 + a4;
b0 = a0 - (float2)0.25f * a2; b0 = a0 - (CT)0.25f * a2;
b1 = fft5_2 * (b1 - a4); b1 = fft5_2 * (b1 - a4);
a4 = fft5_3 * (float2)(-a1.y - a3.y, a1.x + a3.x); a4 = fft5_3 * (CT)(-a1.y - a3.y, a1.x + a3.x);
b5 = (float2)(a4.x - fft5_5 * a1.y, a4.y + fft5_5 * a1.x); b5 = (CT)(a4.x - fft5_5 * a1.y, a4.y + fft5_5 * a1.x);
a4.x += fft5_4 * a3.y; a4.x += fft5_4 * a3.y;
a4.y -= fft5_4 * a3.x; a4.y -= fft5_4 * a3.x;
...@@ -116,9 +124,9 @@ void butterfly5(float2 a0, float2 a1, float2 a2, float2 a3, float2 a4, __local f ...@@ -116,9 +124,9 @@ void butterfly5(float2 a0, float2 a1, float2 a2, float2 a3, float2 a4, __local f
} }
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix2(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t) void fft_radix2(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t)
{ {
float2 a0, a1; CT a0, a1;
if (x < t) if (x < t)
{ {
...@@ -135,10 +143,10 @@ void fft_radix2(__local float2* smem, __global const float2* twiddles, const int ...@@ -135,10 +143,10 @@ void fft_radix2(__local float2* smem, __global const float2* twiddles, const int
} }
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix2_B2(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t) void fft_radix2_B2(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{ {
const int x2 = x1 + t/2; const int x2 = x1 + t/2;
float2 a0, a1, a2, a3; CT a0, a1, a2, a3;
if (x1 < t/2) if (x1 < t/2)
{ {
...@@ -158,11 +166,11 @@ void fft_radix2_B2(__local float2* smem, __global const float2* twiddles, const ...@@ -158,11 +166,11 @@ void fft_radix2_B2(__local float2* smem, __global const float2* twiddles, const
} }
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix2_B3(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t) void fft_radix2_B3(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{ {
const int x2 = x1 + t/3; const int x2 = x1 + t/3;
const int x3 = x1 + 2*t/3; const int x3 = x1 + 2*t/3;
float2 a0, a1, a2, a3, a4, a5; CT a0, a1, a2, a3, a4, a5;
if (x1 < t/3) if (x1 < t/3)
{ {
...@@ -184,13 +192,13 @@ void fft_radix2_B3(__local float2* smem, __global const float2* twiddles, const ...@@ -184,13 +192,13 @@ void fft_radix2_B3(__local float2* smem, __global const float2* twiddles, const
} }
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix2_B4(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t) void fft_radix2_B4(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{ {
const int thread_block = t/4; const int thread_block = t/4;
const int x2 = x1 + thread_block; const int x2 = x1 + thread_block;
const int x3 = x1 + 2*thread_block; const int x3 = x1 + 2*thread_block;
const int x4 = x1 + 3*thread_block; const int x4 = x1 + 3*thread_block;
float2 a0, a1, a2, a3, a4, a5, a6, a7; CT a0, a1, a2, a3, a4, a5, a6, a7;
if (x1 < t/4) if (x1 < t/4)
{ {
...@@ -214,14 +222,14 @@ void fft_radix2_B4(__local float2* smem, __global const float2* twiddles, const ...@@ -214,14 +222,14 @@ void fft_radix2_B4(__local float2* smem, __global const float2* twiddles, const
} }
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix2_B5(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t) void fft_radix2_B5(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{ {
const int thread_block = t/5; const int thread_block = t/5;
const int x2 = x1 + thread_block; const int x2 = x1 + thread_block;
const int x3 = x1 + 2*thread_block; const int x3 = x1 + 2*thread_block;
const int x4 = x1 + 3*thread_block; const int x4 = x1 + 3*thread_block;
const int x5 = x1 + 4*thread_block; const int x5 = x1 + 4*thread_block;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8, a9; CT a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;
if (x1 < t/5) if (x1 < t/5)
{ {
...@@ -247,9 +255,9 @@ void fft_radix2_B5(__local float2* smem, __global const float2* twiddles, const ...@@ -247,9 +255,9 @@ void fft_radix2_B5(__local float2* smem, __global const float2* twiddles, const
} }
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix4(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t) void fft_radix4(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t)
{ {
float2 a0, a1, a2, a3; CT a0, a1, a2, a3;
if (x < t) if (x < t)
{ {
...@@ -265,10 +273,10 @@ void fft_radix4(__local float2* smem, __global const float2* twiddles, const int ...@@ -265,10 +273,10 @@ void fft_radix4(__local float2* smem, __global const float2* twiddles, const int
} }
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix4_B2(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t) void fft_radix4_B2(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{ {
const int x2 = x1 + t/2; const int x2 = x1 + t/2;
float2 a0, a1, a2, a3, a4, a5, a6, a7; CT a0, a1, a2, a3, a4, a5, a6, a7;
if (x1 < t/2) if (x1 < t/2)
{ {
...@@ -288,11 +296,11 @@ void fft_radix4_B2(__local float2* smem, __global const float2* twiddles, const ...@@ -288,11 +296,11 @@ void fft_radix4_B2(__local float2* smem, __global const float2* twiddles, const
} }
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix4_B3(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t) void fft_radix4_B3(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{ {
const int x2 = x1 + t/3; const int x2 = x1 + t/3;
const int x3 = x2 + t/3; const int x3 = x2 + t/3;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11; CT a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11;
if (x1 < t/3) if (x1 < t/3)
{ {
...@@ -314,35 +322,35 @@ void fft_radix4_B3(__local float2* smem, __global const float2* twiddles, const ...@@ -314,35 +322,35 @@ void fft_radix4_B3(__local float2* smem, __global const float2* twiddles, const
} }
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix8(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t) void fft_radix8(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t)
{ {
const int k = x % block_size; const int k = x % block_size;
float2 a0, a1, a2, a3, a4, a5, a6, a7; CT a0, a1, a2, a3, a4, a5, a6, a7;
if (x < t) if (x < t)
{ {
int tw_ind = block_size / 8; int tw_ind = block_size / 8;
a0 = smem[x]; a0 = smem[x];
a1 = mul_float2(twiddles[k], smem[x + t]); a1 = mul_complex(twiddles[k], smem[x + t]);
a2 = mul_float2(twiddles[k + block_size],smem[x+2*t]); a2 = mul_complex(twiddles[k + block_size],smem[x+2*t]);
a3 = mul_float2(twiddles[k+2*block_size],smem[x+3*t]); a3 = mul_complex(twiddles[k+2*block_size],smem[x+3*t]);
a4 = mul_float2(twiddles[k+3*block_size],smem[x+4*t]); a4 = mul_complex(twiddles[k+3*block_size],smem[x+4*t]);
a5 = mul_float2(twiddles[k+4*block_size],smem[x+5*t]); a5 = mul_complex(twiddles[k+4*block_size],smem[x+5*t]);
a6 = mul_float2(twiddles[k+5*block_size],smem[x+6*t]); a6 = mul_complex(twiddles[k+5*block_size],smem[x+6*t]);
a7 = mul_float2(twiddles[k+6*block_size],smem[x+7*t]); a7 = mul_complex(twiddles[k+6*block_size],smem[x+7*t]);
float2 b0, b1, b6, b7; CT b0, b1, b6, b7;
b0 = a0 + a4; b0 = a0 + a4;
a4 = a0 - a4; a4 = a0 - a4;
b1 = a1 + a5; b1 = a1 + a5;
a5 = a1 - a5; a5 = a1 - a5;
a5 = (float2)(SQRT_2) * (float2)(a5.x + a5.y, -a5.x + a5.y); a5 = (CT)(SQRT_2) * (CT)(a5.x + a5.y, -a5.x + a5.y);
b6 = twiddle(a2 - a6); b6 = twiddle(a2 - a6);
a2 = a2 + a6; a2 = a2 + a6;
b7 = a3 - a7; b7 = a3 - a7;
b7 = (float2)(SQRT_2) * (float2)(-b7.x + b7.y, -b7.x - b7.y); b7 = (CT)(SQRT_2) * (CT)(-b7.x + b7.y, -b7.x - b7.y);
a3 = a3 + a7; a3 = a3 + a7;
a0 = b0 + a2; a0 = b0 + a2;
...@@ -361,7 +369,7 @@ void fft_radix8(__local float2* smem, __global const float2* twiddles, const int ...@@ -361,7 +369,7 @@ void fft_radix8(__local float2* smem, __global const float2* twiddles, const int
if (x < t) if (x < t)
{ {
const int dst_ind = ((x - k) << 3) + k; const int dst_ind = ((x - k) << 3) + k;
__local float2* dst = smem + dst_ind; __local CT* dst = smem + dst_ind;
dst[0] = a0 + a1; dst[0] = a0 + a1;
dst[block_size] = a4 + a5; dst[block_size] = a4 + a5;
...@@ -377,9 +385,9 @@ void fft_radix8(__local float2* smem, __global const float2* twiddles, const int ...@@ -377,9 +385,9 @@ void fft_radix8(__local float2* smem, __global const float2* twiddles, const int
} }
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix3(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t) void fft_radix3(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t)
{ {
float2 a0, a1, a2; CT a0, a1, a2;
if (x < t) if (x < t)
{ {
...@@ -395,10 +403,10 @@ void fft_radix3(__local float2* smem, __global const float2* twiddles, const int ...@@ -395,10 +403,10 @@ void fft_radix3(__local float2* smem, __global const float2* twiddles, const int
} }
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix3_B2(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t) void fft_radix3_B2(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{ {
const int x2 = x1 + t/2; const int x2 = x1 + t/2;
float2 a0, a1, a2, a3, a4, a5; CT a0, a1, a2, a3, a4, a5;
if (x1 < t/2) if (x1 < t/2)
{ {
...@@ -418,11 +426,11 @@ void fft_radix3_B2(__local float2* smem, __global const float2* twiddles, const ...@@ -418,11 +426,11 @@ void fft_radix3_B2(__local float2* smem, __global const float2* twiddles, const
} }
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix3_B3(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t) void fft_radix3_B3(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{ {
const int x2 = x1 + t/3; const int x2 = x1 + t/3;
const int x3 = x2 + t/3; const int x3 = x2 + t/3;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8; CT a0, a1, a2, a3, a4, a5, a6, a7, a8;
if (x1 < t/3) if (x1 < t/3)
{ {
...@@ -444,13 +452,13 @@ void fft_radix3_B3(__local float2* smem, __global const float2* twiddles, const ...@@ -444,13 +452,13 @@ void fft_radix3_B3(__local float2* smem, __global const float2* twiddles, const
} }
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix3_B4(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t) void fft_radix3_B4(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{ {
const int thread_block = t/4; const int thread_block = t/4;
const int x2 = x1 + thread_block; const int x2 = x1 + thread_block;
const int x3 = x1 + 2*thread_block; const int x3 = x1 + 2*thread_block;
const int x4 = x1 + 3*thread_block; const int x4 = x1 + 3*thread_block;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11; CT a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11;
if (x1 < t/4) if (x1 < t/4)
{ {
...@@ -474,10 +482,10 @@ void fft_radix3_B4(__local float2* smem, __global const float2* twiddles, const ...@@ -474,10 +482,10 @@ void fft_radix3_B4(__local float2* smem, __global const float2* twiddles, const
} }
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix5(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t) void fft_radix5(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t)
{ {
const int k = x % block_size; const int k = x % block_size;
float2 a0, a1, a2, a3, a4; CT a0, a1, a2, a3, a4;
if (x < t) if (x < t)
{ {
...@@ -493,10 +501,10 @@ void fft_radix5(__local float2* smem, __global const float2* twiddles, const int ...@@ -493,10 +501,10 @@ void fft_radix5(__local float2* smem, __global const float2* twiddles, const int
} }
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix5_B2(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t) void fft_radix5_B2(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{ {
const int x2 = x1+t/2; const int x2 = x1+t/2;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8, a9; CT a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;
if (x1 < t/2) if (x1 < t/2)
{ {
...@@ -523,32 +531,32 @@ void fft_radix5_B2(__local float2* smem, __global const float2* twiddles, const ...@@ -523,32 +531,32 @@ void fft_radix5_B2(__local float2* smem, __global const float2* twiddles, const
__kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols, __kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, __global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global float2* twiddles_ptr, const int t, const int nz) __global CT* twiddles_ptr, int twiddles_step, int twiddles_offset, const int t, const int nz)
{ {
const int x = get_global_id(0); const int x = get_global_id(0);
const int y = get_group_id(1); const int y = get_group_id(1);
const int block_size = LOCAL_SIZE/kercn; const int block_size = LOCAL_SIZE/kercn;
if (y < nz) if (y < nz)
{ {
__local float2 smem[LOCAL_SIZE]; __local CT smem[LOCAL_SIZE];
__global const float2* twiddles = (__global float2*) twiddles_ptr; __global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset);
const int ind = x; const int ind = x;
#ifdef IS_1D #ifdef IS_1D
float scale = 1.f/dst_cols; FT scale = (FT) 1/dst_cols;
#else #else
float scale = 1.f/(dst_cols*dst_rows); FT scale = (FT) 1/(dst_cols*dst_rows);
#endif #endif
#ifdef COMPLEX_INPUT #ifdef COMPLEX_INPUT
__global const float2* src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset))); __global const CT* src = (__global const CT*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(CT)), src_offset)));
#pragma unroll #pragma unroll
for (int i=0; i<kercn; i++) for (int i=0; i<kercn; i++)
smem[x+i*block_size] = src[i*block_size]; smem[x+i*block_size] = src[i*block_size];
#else #else
__global const float* src = (__global const float*)(src_ptr + mad24(y, src_step, mad24(x, (int)sizeof(float), src_offset))); __global const FT* src = (__global const FT*)(src_ptr + mad24(y, src_step, mad24(x, (int)sizeof(FT), src_offset)));
#pragma unroll #pragma unroll
for (int i=0; i<kercn; i++) for (int i=0; i<kercn; i++)
smem[x+i*block_size] = (float2)(src[i*block_size], 0.f); smem[x+i*block_size] = (CT)(src[i*block_size], 0.f);
#endif #endif
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
...@@ -562,14 +570,14 @@ __kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step, ...@@ -562,14 +570,14 @@ __kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
const int cols = dst_cols; const int cols = dst_cols;
#endif #endif
__global float2* dst = (__global float2*)(dst_ptr + mad24(y, dst_step, dst_offset)); __global CT* dst = (__global CT*)(dst_ptr + mad24(y, dst_step, dst_offset));
#pragma unroll #pragma unroll
for (int i=x; i<cols; i+=block_size) for (int i=x; i<cols; i+=block_size)
dst[i] = SCALE_VAL(smem[i], scale); dst[i] = SCALE_VAL(smem[i], scale);
#else #else
// pack row to CCS // pack row to CCS
__local float* smem_1cn = (__local float*) smem; __local FT* smem_1cn = (__local FT*) smem;
__global float* dst = (__global float*)(dst_ptr + mad24(y, dst_step, dst_offset)); __global FT* dst = (__global FT*)(dst_ptr + mad24(y, dst_step, dst_offset));
for (int i=x; i<dst_cols-1; i+=block_size) for (int i=x; i<dst_cols-1; i+=block_size)
dst[i+1] = SCALE_VAL(smem_1cn[i+2], scale); dst[i+1] = SCALE_VAL(smem_1cn[i+2], scale);
if (x == 0) if (x == 0)
...@@ -580,9 +588,9 @@ __kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step, ...@@ -580,9 +588,9 @@ __kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
{ {
// fill with zero other rows // fill with zero other rows
#ifdef COMPLEX_OUTPUT #ifdef COMPLEX_OUTPUT
__global float2* dst = (__global float2*)(dst_ptr + mad24(y, dst_step, dst_offset)); __global CT* dst = (__global CT*)(dst_ptr + mad24(y, dst_step, dst_offset));
#else #else
__global float* dst = (__global float*)(dst_ptr + mad24(y, dst_step, dst_offset)); __global FT* dst = (__global FT*)(dst_ptr + mad24(y, dst_step, dst_offset));
#endif #endif
#pragma unroll #pragma unroll
for (int i=x; i<dst_cols; i+=block_size) for (int i=x; i<dst_cols; i+=block_size)
...@@ -592,60 +600,60 @@ __kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step, ...@@ -592,60 +600,60 @@ __kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
__kernel void fft_multi_radix_cols(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols, __kernel void fft_multi_radix_cols(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, __global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global float2* twiddles_ptr, const int t, const int nz) __global CT* twiddles_ptr, int twiddles_step, int twiddles_offset, const int t, const int nz)
{ {
const int x = get_group_id(0); const int x = get_group_id(0);
const int y = get_global_id(1); const int y = get_global_id(1);
if (x < nz) if (x < nz)
{ {
__local float2 smem[LOCAL_SIZE]; __local CT smem[LOCAL_SIZE];
__global const uchar* src = src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset)); __global const uchar* src = src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(CT)), src_offset));
__global const float2* twiddles = (__global float2*) twiddles_ptr; __global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset);
const int ind = y; const int ind = y;
const int block_size = LOCAL_SIZE/kercn; const int block_size = LOCAL_SIZE/kercn;
float scale = 1.f/(dst_rows*dst_cols); FT scale = 1.f/(dst_rows*dst_cols);
#pragma unroll #pragma unroll
for (int i=0; i<kercn; i++) for (int i=0; i<kercn; i++)
smem[y+i*block_size] = *((__global const float2*)(src + i*block_size*src_step)); smem[y+i*block_size] = *((__global const CT*)(src + i*block_size*src_step));
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
RADIX_PROCESS; RADIX_PROCESS;
#ifdef COMPLEX_OUTPUT #ifdef COMPLEX_OUTPUT
__global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset)); __global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(CT)), dst_offset));
#pragma unroll #pragma unroll
for (int i=0; i<kercn; i++) for (int i=0; i<kercn; i++)
*((__global float2*)(dst + i*block_size*dst_step)) = SCALE_VAL(smem[y + i*block_size], scale); *((__global CT*)(dst + i*block_size*dst_step)) = SCALE_VAL(smem[y + i*block_size], scale);
#else #else
if (x == 0) if (x == 0)
{ {
// pack first column to CCS // pack first column to CCS
__local float* smem_1cn = (__local float*) smem; __local FT* smem_1cn = (__local FT*) smem;
__global uchar* dst = dst_ptr + mad24(y+1, dst_step, dst_offset); __global uchar* dst = dst_ptr + mad24(y+1, dst_step, dst_offset);
for (int i=y; i<dst_rows-1; i+=block_size, dst+=dst_step*block_size) for (int i=y; i<dst_rows-1; i+=block_size, dst+=dst_step*block_size)
*((__global float*) dst) = SCALE_VAL(smem_1cn[i+2], scale); *((__global FT*) dst) = SCALE_VAL(smem_1cn[i+2], scale);
if (y == 0) if (y == 0)
*((__global float*) (dst_ptr + dst_offset)) = SCALE_VAL(smem_1cn[0], scale); *((__global FT*) (dst_ptr + dst_offset)) = SCALE_VAL(smem_1cn[0], scale);
} }
else if (x == (dst_cols+1)/2) else if (x == (dst_cols+1)/2)
{ {
// pack last column to CCS (if needed) // pack last column to CCS (if needed)
__local float* smem_1cn = (__local float*) smem; __local FT* smem_1cn = (__local FT*) smem;
__global uchar* dst = dst_ptr + mad24(dst_cols-1, (int)sizeof(float), mad24(y+1, dst_step, dst_offset)); __global uchar* dst = dst_ptr + mad24(dst_cols-1, (int)sizeof(FT), mad24(y+1, dst_step, dst_offset));
for (int i=y; i<dst_rows-1; i+=block_size, dst+=dst_step*block_size) for (int i=y; i<dst_rows-1; i+=block_size, dst+=dst_step*block_size)
*((__global float*) dst) = SCALE_VAL(smem_1cn[i+2], scale); *((__global FT*) dst) = SCALE_VAL(smem_1cn[i+2], scale);
if (y == 0) if (y == 0)
*((__global float*) (dst_ptr + mad24(dst_cols-1, (int)sizeof(float), dst_offset))) = SCALE_VAL(smem_1cn[0], scale); *((__global FT*) (dst_ptr + mad24(dst_cols-1, (int)sizeof(FT), dst_offset))) = SCALE_VAL(smem_1cn[0], scale);
} }
else else
{ {
__global uchar* dst = dst_ptr + mad24(x, (int)sizeof(float)*2, mad24(y, dst_step, dst_offset - (int)sizeof(float))); __global uchar* dst = dst_ptr + mad24(x, (int)sizeof(FT)*2, mad24(y, dst_step, dst_offset - (int)sizeof(FT)));
#pragma unroll #pragma unroll
for (int i=y; i<dst_rows; i+=block_size, dst+=block_size*dst_step) for (int i=y; i<dst_rows; i+=block_size, dst+=block_size*dst_step)
vstore2(SCALE_VAL(smem[i], scale), 0, (__global float*) dst); vstore2(SCALE_VAL(smem[i], scale), 0, (__global FT*) dst);
} }
#endif #endif
} }
...@@ -653,25 +661,25 @@ __kernel void fft_multi_radix_cols(__global const uchar* src_ptr, int src_step, ...@@ -653,25 +661,25 @@ __kernel void fft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
__kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols, __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, __global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global float2* twiddles_ptr, const int t, const int nz) __global CT* twiddles_ptr, int twiddles_step, int twiddles_offset, const int t, const int nz)
{ {
const int x = get_global_id(0); const int x = get_global_id(0);
const int y = get_group_id(1); const int y = get_group_id(1);
const int block_size = LOCAL_SIZE/kercn; const int block_size = LOCAL_SIZE/kercn;
#ifdef IS_1D #ifdef IS_1D
const float scale = 1.f/dst_cols; const FT scale = (FT) 1/dst_cols;
#else #else
const float scale = 1.f/(dst_cols*dst_rows); const FT scale = (FT) 1/(dst_cols*dst_rows);
#endif #endif
if (y < nz) if (y < nz)
{ {
__local float2 smem[LOCAL_SIZE]; __local CT smem[LOCAL_SIZE];
__global const float2* twiddles = (__global float2*) twiddles_ptr; __global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset);
const int ind = x; const int ind = x;
#if defined(COMPLEX_INPUT) && !defined(NO_CONJUGATE) #if defined(COMPLEX_INPUT) && !defined(NO_CONJUGATE)
__global const float2* src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset))); __global const CT* src = (__global const CT*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(CT)), src_offset)));
#pragma unroll #pragma unroll
for (int i=0; i<kercn; i++) for (int i=0; i<kercn; i++)
{ {
...@@ -681,7 +689,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step, ...@@ -681,7 +689,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
#else #else
#if !defined(REAL_INPUT) && defined(NO_CONJUGATE) #if !defined(REAL_INPUT) && defined(NO_CONJUGATE)
__global const float2* src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(2, (int)sizeof(float), src_offset))); __global const CT* src = (__global const CT*)(src_ptr + mad24(y, src_step, mad24(2, (int)sizeof(FT), src_offset)));
#pragma unroll #pragma unroll
for (int i=x; i<(LOCAL_SIZE-1)/2; i+=block_size) for (int i=x; i<(LOCAL_SIZE-1)/2; i+=block_size)
...@@ -695,7 +703,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step, ...@@ -695,7 +703,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
#pragma unroll #pragma unroll
for (int i=x; i<(LOCAL_SIZE-1)/2; i+=block_size) for (int i=x; i<(LOCAL_SIZE-1)/2; i+=block_size)
{ {
float2 src = vload2(0, (__global const float*)(src_ptr + mad24(y, src_step, mad24(2*i+1, (int)sizeof(float), src_offset)))); CT src = vload2(0, (__global const FT*)(src_ptr + mad24(y, src_step, mad24(2*i+1, (int)sizeof(FT), src_offset))));
smem[i+1].x = src.x; smem[i+1].x = src.x;
smem[i+1].y = -src.y; smem[i+1].y = -src.y;
...@@ -706,7 +714,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step, ...@@ -706,7 +714,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
if (x==0) if (x==0)
{ {
smem[0].x = *(__global const float*)(src_ptr + mad24(y, src_step, src_offset)); smem[0].x = *(__global const FT*)(src_ptr + mad24(y, src_step, src_offset));
smem[0].y = 0.f; smem[0].y = 0.f;
if(LOCAL_SIZE % 2 ==0) if(LOCAL_SIZE % 2 ==0)
...@@ -714,7 +722,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step, ...@@ -714,7 +722,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
#if !defined(REAL_INPUT) && defined(NO_CONJUGATE) #if !defined(REAL_INPUT) && defined(NO_CONJUGATE)
smem[LOCAL_SIZE/2].x = src[LOCAL_SIZE/2-1].x; smem[LOCAL_SIZE/2].x = src[LOCAL_SIZE/2-1].x;
#else #else
smem[LOCAL_SIZE/2].x = *(__global const float*)(src_ptr + mad24(y, src_step, mad24(LOCAL_SIZE-1, (int)sizeof(float), src_offset))); smem[LOCAL_SIZE/2].x = *(__global const FT*)(src_ptr + mad24(y, src_step, mad24(LOCAL_SIZE-1, (int)sizeof(FT), src_offset)));
#endif #endif
smem[LOCAL_SIZE/2].y = 0.f; smem[LOCAL_SIZE/2].y = 0.f;
} }
...@@ -727,7 +735,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step, ...@@ -727,7 +735,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
// copy data to dst // copy data to dst
#ifdef COMPLEX_OUTPUT #ifdef COMPLEX_OUTPUT
__global float2* dst = (__global float*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset))); __global CT* dst = (__global CT*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(CT)), dst_offset)));
#pragma unroll #pragma unroll
for (int i=0; i<kercn; i++) for (int i=0; i<kercn; i++)
{ {
...@@ -735,7 +743,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step, ...@@ -735,7 +743,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
dst[i*block_size].y = SCALE_VAL(-smem[x + i*block_size].y, scale); dst[i*block_size].y = SCALE_VAL(-smem[x + i*block_size].y, scale);
} }
#else #else
__global float* dst = (__global float*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)), dst_offset))); __global FT* dst = (__global FT*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(FT)), dst_offset)));
#pragma unroll #pragma unroll
for (int i=0; i<kercn; i++) for (int i=0; i<kercn; i++)
{ {
...@@ -747,9 +755,9 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step, ...@@ -747,9 +755,9 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
{ {
// fill with zero other rows // fill with zero other rows
#ifdef COMPLEX_OUTPUT #ifdef COMPLEX_OUTPUT
__global float2* dst = (__global float2*)(dst_ptr + mad24(y, dst_step, dst_offset)); __global CT* dst = (__global CT*)(dst_ptr + mad24(y, dst_step, dst_offset));
#else #else
__global float* dst = (__global float*)(dst_ptr + mad24(y, dst_step, dst_offset)); __global FT* dst = (__global FT*)(dst_ptr + mad24(y, dst_step, dst_offset));
#endif #endif
#pragma unroll #pragma unroll
for (int i=x; i<dst_cols; i+=block_size) for (int i=x; i<dst_cols; i+=block_size)
...@@ -759,7 +767,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step, ...@@ -759,7 +767,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
__kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols, __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, __global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global float2* twiddles_ptr, const int t, const int nz) __global CT* twiddles_ptr, int twiddles_step, int twiddles_offset, const int t, const int nz)
{ {
const int x = get_group_id(0); const int x = get_group_id(0);
const int y = get_global_id(1); const int y = get_global_id(1);
...@@ -767,17 +775,17 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step, ...@@ -767,17 +775,17 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
#ifdef COMPLEX_INPUT #ifdef COMPLEX_INPUT
if (x < nz) if (x < nz)
{ {
__local float2 smem[LOCAL_SIZE]; __local CT smem[LOCAL_SIZE];
__global const uchar* src = src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset)); __global const uchar* src = src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(CT)), src_offset));
__global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset)); __global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(CT)), dst_offset));
__global const float2* twiddles = (__global float2*) twiddles_ptr; __global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset);
const int ind = y; const int ind = y;
const int block_size = LOCAL_SIZE/kercn; const int block_size = LOCAL_SIZE/kercn;
#pragma unroll #pragma unroll
for (int i=0; i<kercn; i++) for (int i=0; i<kercn; i++)
{ {
float2 temp = *((__global const float2*)(src + i*block_size*src_step)); CT temp = *((__global const CT*)(src + i*block_size*src_step));
smem[y+i*block_size].x = temp.x; smem[y+i*block_size].x = temp.x;
smem[y+i*block_size].y = -temp.y; smem[y+i*block_size].y = -temp.y;
} }
...@@ -790,7 +798,7 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step, ...@@ -790,7 +798,7 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
#pragma unroll #pragma unroll
for (int i=0; i<kercn; i++) for (int i=0; i<kercn; i++)
{ {
__global float2* res = (__global float2*)(dst + i*block_size*dst_step); __global CT* res = (__global CT*)(dst + i*block_size*dst_step);
res[0].x = smem[y + i*block_size].x; res[0].x = smem[y + i*block_size].x;
res[0].y = -smem[y + i*block_size].y; res[0].y = -smem[y + i*block_size].y;
} }
...@@ -798,22 +806,22 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step, ...@@ -798,22 +806,22 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
#else #else
if (x < nz) if (x < nz)
{ {
__global const float2* twiddles = (__global float2*) twiddles_ptr; __global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset);
const int ind = y; const int ind = y;
const int block_size = LOCAL_SIZE/kercn; const int block_size = LOCAL_SIZE/kercn;
__local float2 smem[LOCAL_SIZE]; __local CT smem[LOCAL_SIZE];
#ifdef EVEN #ifdef EVEN
if (x!=0 && (x!=(nz-1))) if (x!=0 && (x!=(nz-1)))
#else #else
if (x!=0) if (x!=0)
#endif #endif
{ {
__global const uchar* src = src_ptr + mad24(y, src_step, mad24(2*x-1, (int)sizeof(float), src_offset)); __global const uchar* src = src_ptr + mad24(y, src_step, mad24(2*x-1, (int)sizeof(FT), src_offset));
#pragma unroll #pragma unroll
for (int i=0; i<kercn; i++) for (int i=0; i<kercn; i++)
{ {
float2 temp = vload2(0, (__global const float*)(src + i*block_size*src_step)); CT temp = vload2(0, (__global const FT*)(src + i*block_size*src_step));
smem[y+i*block_size].x = temp.x; smem[y+i*block_size].x = temp.x;
smem[y+i*block_size].y = -temp.y; smem[y+i*block_size].y = -temp.y;
} }
...@@ -821,8 +829,8 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step, ...@@ -821,8 +829,8 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
else else
{ {
int ind = x==0 ? 0: 2*x-1; int ind = x==0 ? 0: 2*x-1;
__global const float* src = (__global const float*)(src_ptr + mad24(1, src_step, mad24(ind, (int)sizeof(float), src_offset))); __global const FT* src = (__global const FT*)(src_ptr + mad24(1, src_step, mad24(ind, (int)sizeof(FT), src_offset)));
int step = src_step/(int)sizeof(float); int step = src_step/(int)sizeof(FT);
#pragma unroll #pragma unroll
for (int i=y; i<(LOCAL_SIZE-1)/2; i+=block_size) for (int i=y; i<(LOCAL_SIZE-1)/2; i+=block_size)
...@@ -835,7 +843,7 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step, ...@@ -835,7 +843,7 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
} }
if (y==0) if (y==0)
{ {
smem[0].x = *(__global const float*)(src_ptr + mad24(ind, (int)sizeof(float), src_offset)); smem[0].x = *(__global const FT*)(src_ptr + mad24(ind, (int)sizeof(FT), src_offset));
smem[0].y = 0.f; smem[0].y = 0.f;
if(LOCAL_SIZE % 2 ==0) if(LOCAL_SIZE % 2 ==0)
...@@ -850,12 +858,12 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step, ...@@ -850,12 +858,12 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
RADIX_PROCESS; RADIX_PROCESS;
// copy data to dst // copy data to dst
__global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float2)), dst_offset)); __global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(CT)), dst_offset));
#pragma unroll #pragma unroll
for (int i=0; i<kercn; i++) for (int i=0; i<kercn; i++)
{ {
__global float2* res = (__global float2*)(dst + i*block_size*dst_step); __global CT* res = (__global CT*)(dst + i*block_size*dst_step);
res[0].x = smem[y + i*block_size].x; res[0].x = smem[y + i*block_size].x;
res[0].y = -smem[y + i*block_size].y; res[0].y = -smem[y + i*block_size].y;
} }
......
...@@ -62,7 +62,7 @@ namespace ocl { ...@@ -62,7 +62,7 @@ namespace ocl {
//////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////
// Dft // Dft
PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, bool, bool, bool, bool) PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, MatDepth, bool, bool, bool, bool)
{ {
cv::Size dft_size; cv::Size dft_size;
int dft_flags, depth, cn, dft_type; int dft_flags, depth, cn, dft_type;
...@@ -76,7 +76,7 @@ PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, bool, bool, bool, bool) ...@@ -76,7 +76,7 @@ PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, bool, bool, bool, bool)
{ {
dft_size = GET_PARAM(0); dft_size = GET_PARAM(0);
dft_type = GET_PARAM(1); dft_type = GET_PARAM(1);
depth = CV_32F; depth = GET_PARAM(2);
dft_flags = 0; dft_flags = 0;
switch (dft_type) switch (dft_type)
...@@ -87,13 +87,13 @@ PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, bool, bool, bool, bool) ...@@ -87,13 +87,13 @@ PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, bool, bool, bool, bool)
case C2C: dft_flags |= cv::DFT_COMPLEX_OUTPUT; cn = 2; break; case C2C: dft_flags |= cv::DFT_COMPLEX_OUTPUT; cn = 2; break;
} }
if (GET_PARAM(2))
dft_flags |= cv::DFT_INVERSE;
if (GET_PARAM(3)) if (GET_PARAM(3))
dft_flags |= cv::DFT_ROWS; dft_flags |= cv::DFT_INVERSE;
if (GET_PARAM(4)) if (GET_PARAM(4))
dft_flags |= cv::DFT_ROWS;
if (GET_PARAM(5))
dft_flags |= cv::DFT_SCALE; dft_flags |= cv::DFT_SCALE;
hint = GET_PARAM(5); hint = GET_PARAM(6);
is1d = (dft_flags & DFT_ROWS) != 0 || dft_size.height == 1; is1d = (dft_flags & DFT_ROWS) != 0 || dft_size.height == 1;
} }
...@@ -177,6 +177,7 @@ OCL_INSTANTIATE_TEST_CASE_P(OCL_ImgProc, MulSpectrums, testing::Combine(Bool(), ...@@ -177,6 +177,7 @@ OCL_INSTANTIATE_TEST_CASE_P(OCL_ImgProc, MulSpectrums, testing::Combine(Bool(),
OCL_INSTANTIATE_TEST_CASE_P(Core, Dft, Combine(Values(cv::Size(45, 72), cv::Size(36, 36), cv::Size(512, 1), cv::Size(1280, 768)), OCL_INSTANTIATE_TEST_CASE_P(Core, Dft, Combine(Values(cv::Size(45, 72), cv::Size(36, 36), cv::Size(512, 1), cv::Size(1280, 768)),
Values((OCL_FFT_TYPE) R2C, (OCL_FFT_TYPE) C2C, (OCL_FFT_TYPE) R2R, (OCL_FFT_TYPE) C2R), Values((OCL_FFT_TYPE) R2C, (OCL_FFT_TYPE) C2C, (OCL_FFT_TYPE) R2R, (OCL_FFT_TYPE) C2R),
Values(CV_32F, CV_64F),
Bool(), // DFT_INVERSE Bool(), // DFT_INVERSE
Bool(), // DFT_ROWS Bool(), // DFT_ROWS
Bool(), // DFT_SCALE Bool(), // DFT_SCALE
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册