package crypto import ( "crypto/aes" "crypto/hmac" "crypto/sha1" "hash" "gopkg.in/jcmturner/gokrb5.v7/crypto/common" "gopkg.in/jcmturner/gokrb5.v7/crypto/rfc3961" "gopkg.in/jcmturner/gokrb5.v7/crypto/rfc3962" "gopkg.in/jcmturner/gokrb5.v7/iana/chksumtype" "gopkg.in/jcmturner/gokrb5.v7/iana/etypeID" ) // RFC 3962 //+--------------------------------------------------------------------+ //| protocol key format 128- or 256-bit string | //| | //| string-to-key function PBKDF2+DK with variable | //| iteration count (see | //| above) | //| | //| default string-to-key parameters 00 00 10 00 | //| | //| key-generation seed length key size | //| | //| random-to-key function identity function | //| | //| hash function, H SHA-1 | //| | //| HMAC output size, h 12 octets (96 bits) | //| | //| message block size, m 1 octet | //| | //| encryption/decryption functions, AES in CBC-CTS mode | //| E and D (cipher block size 16 | //| octets), with next-to- | //| last block (last block | //| if only one) as CBC-style | //| ivec | //+--------------------------------------------------------------------+ // //+--------------------------------------------------------------------+ //| encryption types | //+--------------------------------------------------------------------+ //| type name etype value key size | //+--------------------------------------------------------------------+ //| aes128-cts-hmac-sha1-96 17 128 | //| aes256-cts-hmac-sha1-96 18 256 | //+--------------------------------------------------------------------+ // //+--------------------------------------------------------------------+ //| checksum types | //+--------------------------------------------------------------------+ //| type name sumtype value length | //+--------------------------------------------------------------------+ //| hmac-sha1-96-aes128 15 96 | //| hmac-sha1-96-aes256 16 96 | //+--------------------------------------------------------------------+ // Aes128CtsHmacSha96 implements Kerberos encryption type aes128-cts-hmac-sha1-96 type Aes128CtsHmacSha96 struct { } // GetETypeID returns the EType ID number. func (e Aes128CtsHmacSha96) GetETypeID() int32 { return etypeID.AES128_CTS_HMAC_SHA1_96 } // GetHashID returns the checksum type ID number. func (e Aes128CtsHmacSha96) GetHashID() int32 { return chksumtype.HMAC_SHA1_96_AES128 } // GetKeyByteSize returns the number of bytes for key of this etype. func (e Aes128CtsHmacSha96) GetKeyByteSize() int { return 128 / 8 } // GetKeySeedBitLength returns the number of bits for the seed for key generation. func (e Aes128CtsHmacSha96) GetKeySeedBitLength() int { return e.GetKeyByteSize() * 8 } // GetHashFunc returns the hash function for this etype. func (e Aes128CtsHmacSha96) GetHashFunc() func() hash.Hash { return sha1.New } // GetMessageBlockByteSize returns the block size for the etype's messages. func (e Aes128CtsHmacSha96) GetMessageBlockByteSize() int { return 1 } // GetDefaultStringToKeyParams returns the default key derivation parameters in string form. func (e Aes128CtsHmacSha96) GetDefaultStringToKeyParams() string { return "00001000" } // GetConfounderByteSize returns the byte count for confounder to be used during cryptographic operations. func (e Aes128CtsHmacSha96) GetConfounderByteSize() int { return aes.BlockSize } // GetHMACBitLength returns the bit count size of the integrity hash. func (e Aes128CtsHmacSha96) GetHMACBitLength() int { return 96 } // GetCypherBlockBitLength returns the bit count size of the cypher block. func (e Aes128CtsHmacSha96) GetCypherBlockBitLength() int { return aes.BlockSize * 8 } // StringToKey returns a key derived from the string provided. func (e Aes128CtsHmacSha96) StringToKey(secret string, salt string, s2kparams string) ([]byte, error) { return rfc3962.StringToKey(secret, salt, s2kparams, e) } // RandomToKey returns a key from the bytes provided. func (e Aes128CtsHmacSha96) RandomToKey(b []byte) []byte { return rfc3961.RandomToKey(b) } // EncryptData encrypts the data provided. func (e Aes128CtsHmacSha96) EncryptData(key, data []byte) ([]byte, []byte, error) { return rfc3962.EncryptData(key, data, e) } // EncryptMessage encrypts the message provided and concatenates it with the integrity hash to create an encrypted message. func (e Aes128CtsHmacSha96) EncryptMessage(key, message []byte, usage uint32) ([]byte, []byte, error) { return rfc3962.EncryptMessage(key, message, usage, e) } // DecryptData decrypts the data provided. func (e Aes128CtsHmacSha96) DecryptData(key, data []byte) ([]byte, error) { return rfc3962.DecryptData(key, data, e) } // DecryptMessage decrypts the message provided and verifies the integrity of the message. func (e Aes128CtsHmacSha96) DecryptMessage(key, ciphertext []byte, usage uint32) ([]byte, error) { return rfc3962.DecryptMessage(key, ciphertext, usage, e) } // DeriveKey derives a key from the protocol key based on the usage value. func (e Aes128CtsHmacSha96) DeriveKey(protocolKey, usage []byte) ([]byte, error) { return rfc3961.DeriveKey(protocolKey, usage, e) } // DeriveRandom generates data needed for key generation. func (e Aes128CtsHmacSha96) DeriveRandom(protocolKey, usage []byte) ([]byte, error) { return rfc3961.DeriveRandom(protocolKey, usage, e) } // VerifyIntegrity checks the integrity of the plaintext message. func (e Aes128CtsHmacSha96) VerifyIntegrity(protocolKey, ct, pt []byte, usage uint32) bool { return rfc3961.VerifyIntegrity(protocolKey, ct, pt, usage, e) } // GetChecksumHash returns a keyed checksum hash of the bytes provided. func (e Aes128CtsHmacSha96) GetChecksumHash(protocolKey, data []byte, usage uint32) ([]byte, error) { return common.GetHash(data, protocolKey, common.GetUsageKc(usage), e) } // VerifyChecksum compares the checksum of the message bytes is the same as the checksum provided. func (e Aes128CtsHmacSha96) VerifyChecksum(protocolKey, data, chksum []byte, usage uint32) bool { c, err := e.GetChecksumHash(protocolKey, data, usage) if err != nil { return false } return hmac.Equal(chksum, c) }