/* * Copyright (c) 2013-2019 Huawei Technologies Co., Ltd. All rights reserved. * Copyright (c) 2020-2021 Huawei Device Co., Ltd. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "los_task_pri.h" #include "los_base_pri.h" #include "los_event_pri.h" #include "los_exc.h" #include "los_hw_pri.h" #include "los_init.h" #include "los_memstat_pri.h" #include "los_mp.h" #include "los_mux_pri.h" #include "los_sched_pri.h" #include "los_sem_pri.h" #include "los_spinlock.h" #include "los_strncpy_from_user.h" #include "los_percpu_pri.h" #include "los_process_pri.h" #include "los_vm_map.h" #include "los_vm_syscall.h" #include "los_signal.h" #include "los_hook.h" #ifdef LOSCFG_KERNEL_CPUP #include "los_cpup_pri.h" #endif #ifdef LOSCFG_BASE_CORE_SWTMR_ENABLE #include "los_swtmr_pri.h" #endif #ifdef LOSCFG_KERNEL_LITEIPC #include "hm_liteipc.h" #endif #ifdef LOSCFG_ENABLE_OOM_LOOP_TASK #include "los_oom.h" #endif /** * @file los_task.c * @brief * @verbatim 基本概念 从系统角度看,任务是竞争系统资源的最小运行单元。任务可以使用或等待CPU、 使用内存空间等系统资源,并独立于其它任务运行。 任务模块可以给用户提供多个任务,实现任务间的切换,帮助用户管理业务程序流程。具有如下特性: 支持多任务。 一个任务表示一个线程。 抢占式调度机制,高优先级的任务可打断低优先级任务,低优先级任务必须在高优先级任务阻塞或结束后才能得到调度。 相同优先级任务支持时间片轮转调度方式。 共有32个优先级[0-31],最高优先级为0,最低优先级为31。 任务状态通常分为以下四种: 就绪(Ready):该任务在就绪队列中,只等待CPU。 运行(Running):该任务正在执行。 阻塞(Blocked):该任务不在就绪队列中。包含任务被挂起(suspend状态)、任务被延时(delay状态)、 任务正在等待信号量、读写队列或者等待事件等。 退出态(Dead):该任务运行结束,等待系统回收资源。 任务状态迁移说明 就绪态→运行态 任务创建后进入就绪态,发生任务切换时,就绪队列中最高优先级的任务被执行, 从而进入运行态,但此刻该任务依旧在就绪队列中。 运行态→阻塞态 正在运行的任务发生阻塞(挂起、延时、读信号量等)时,该任务会从就绪队列中删除, 任务状态由运行态变成阻塞态,然后发生任务切换,运行就绪队列中最高优先级任务。 阻塞态→就绪态(阻塞态→运行态) 阻塞的任务被恢复后(任务恢复、延时时间超时、读信号量超时或读到信号量等),此时被 恢复的任务会被加入就绪队列,从而由阻塞态变成就绪态;此时如果被恢复任务的优先级高于 正在运行任务的优先级,则会发生任务切换,该任务由就绪态变成运行态。 就绪态→阻塞态 任务也有可能在就绪态时被阻塞(挂起),此时任务状态由就绪态变为阻塞态,该任务 从就绪队列中删除,不会参与任务调度,直到该任务被恢复。 运行态→就绪态 有更高优先级任务创建或者恢复后,会发生任务调度,此刻就绪队列中最高优先级任务 变为运行态,那么原先运行的任务由运行态变为就绪态,依然在就绪队列中。 运行态→退出态 运行中的任务运行结束,任务状态由运行态变为退出态。退出态包含任务运行结束的正常退出状态 以及Invalid状态。例如,任务运行结束但是没有自删除,对外呈现的就是Invalid状态,即退出态。 阻塞态→退出态 阻塞的任务调用删除接口,任务状态由阻塞态变为退出态。 主要术语 任务ID 任务ID,在任务创建时通过参数返回给用户,是任务的重要标识。系统中的ID号是唯一的。用户可以 通过任务ID对指定任务进行任务挂起、任务恢复、查询任务名等操作。 任务优先级 优先级表示任务执行的优先顺序。任务的优先级决定了在发生任务切换时即将要执行的任务, 就绪队列中最高优先级的任务将得到执行。 任务入口函数 新任务得到调度后将执行的函数。该函数由用户实现,在任务创建时,通过任务创建结构体设置。 任务栈 每个任务都拥有一个独立的栈空间,我们称为任务栈。栈空间里保存的信息包含局部变量、寄存器、函数参数、函数返回地址等。 任务上下文 任务在运行过程中使用的一些资源,如寄存器等,称为任务上下文。当这个任务挂起时,其他任务继续执行, 可能会修改寄存器等资源中的值。如果任务切换时没有保存任务上下文,可能会导致任务恢复后出现未知错误。 因此,Huawei LiteOS在任务切换时会将切出任务的任务上下文信息,保存在自身的任务栈中,以便任务恢复后, 从栈空间中恢复挂起时的上下文信息,从而继续执行挂起时被打断的代码。 任务控制块TCB 每个任务都含有一个任务控制块(TCB)。TCB包含了任务上下文栈指针(stack pointer)、任务状态、 任务优先级、任务ID、任务名、任务栈大小等信息。TCB可以反映出每个任务运行情况。 任务切换 任务切换包含获取就绪队列中最高优先级任务、切出任务上下文保存、切入任务上下文恢复等动作。 运作机制 用户创建任务时,系统会初始化任务栈,预置上下文。此外,系统还会将“任务入口函数” 地址放在相应位置。这样在任务第一次启动进入运行态时,将会执行“任务入口函数”。 * @endverbatim * @param pathname * @return int */ #if (LOSCFG_BASE_CORE_TSK_LIMIT <= 0) #error "task maxnum cannot be zero" #endif /* LOSCFG_BASE_CORE_TSK_LIMIT <= 0 */ LITE_OS_SEC_BSS LosTaskCB *g_taskCBArray;//任务池 128个 LITE_OS_SEC_BSS LOS_DL_LIST g_losFreeTask;//空闲任务链表 LITE_OS_SEC_BSS LOS_DL_LIST g_taskRecycleList;//回收任务链表 LITE_OS_SEC_BSS UINT32 g_taskMaxNum;//任务最大个数 LITE_OS_SEC_BSS UINT32 g_taskScheduled; /* one bit for each cores *///任务调度器,每个CPU都有对应位 LITE_OS_SEC_BSS EVENT_CB_S g_resourceEvent;//资源的事件 /* spinlock for task module, only available on SMP mode */ LITE_OS_SEC_BSS SPIN_LOCK_INIT(g_taskSpin); STATIC VOID OsConsoleIDSetHook(UINT32 param1, UINT32 param2) __attribute__((weakref("OsSetConsoleID"))); #define OS_CHECK_TASK_BLOCK (OS_TASK_STATUS_DELAY | \ OS_TASK_STATUS_PENDING | \ OS_TASK_STATUS_SUSPENDED) /* temp task blocks for booting procedure */ LITE_OS_SEC_BSS STATIC LosTaskCB g_mainTask[LOSCFG_KERNEL_CORE_NUM];//启动引导过程中使用的临时任务 LosTaskCB *OsGetMainTask() { return (LosTaskCB *)(g_mainTask + ArchCurrCpuid()); } VOID OsSetMainTask() { UINT32 i; CHAR *name = "osMain";//任务名称 //为每个CPU core 设置mainTask for (i = 0; i < LOSCFG_KERNEL_CORE_NUM; i++) { g_mainTask[i].taskStatus = OS_TASK_STATUS_UNUSED; g_mainTask[i].taskID = LOSCFG_BASE_CORE_TSK_LIMIT;//128 g_mainTask[i].priority = OS_TASK_PRIORITY_LOWEST;//31 #ifdef LOSCFG_KERNEL_SMP_LOCKDEP g_mainTask[i].lockDep.lockDepth = 0; g_mainTask[i].lockDep.waitLock = NULL; #endif (VOID)strncpy_s(g_mainTask[i].taskName, OS_TCB_NAME_LEN, name, OS_TCB_NAME_LEN - 1); LOS_ListInit(&g_mainTask[i].lockList);//初始化任务锁链表,上面挂的是任务已申请到的互斥锁 } } ///空闲任务,每个CPU都有自己的空闲任务 LITE_OS_SEC_TEXT WEAK VOID OsIdleTask(VOID) { while (1) {//只有一个死循环 WFI; } } //插入一个TCB到空闲链表 STATIC INLINE VOID OsInsertTCBToFreeList(LosTaskCB *taskCB) { UINT32 taskID = taskCB->taskID; (VOID)memset_s(taskCB, sizeof(LosTaskCB), 0, sizeof(LosTaskCB)); taskCB->taskID = taskID; taskCB->taskStatus = OS_TASK_STATUS_UNUSED; taskCB->processID = OS_INVALID_VALUE; LOS_ListAdd(&g_losFreeTask, &taskCB->pendList);//内核挂在g_losFreeTask上的任务都是由pendList完成 } /*! * @brief OsTaskJoinPostUnsafe * 查找task 通过 OS_TCB_FROM_PENDLIST 来完成,相当于由LOS_DL_LIST找到LosTaskCB, * 将那些和参数任务绑在一起的task唤醒. * @param taskCB * @return * * @see */ LITE_OS_SEC_TEXT_INIT VOID OsTaskJoinPostUnsafe(LosTaskCB *taskCB) { LosTaskCB *resumedTask = NULL; if (taskCB->taskStatus & OS_TASK_FLAG_PTHREAD_JOIN) {//join任务处理 if (!LOS_ListEmpty(&taskCB->joinList)) {//注意到了这里 joinList中的节点身上都有阻塞标签 resumedTask = OS_TCB_FROM_PENDLIST(LOS_DL_LIST_FIRST(&(taskCB->joinList)));//通过贴有JOIN标签链表的第一个节点找到Task OsTaskWakeClearPendMask(resumedTask);//清除任务的挂起标记 OsSchedTaskWake(resumedTask);//唤醒任务 } } taskCB->taskStatus |= OS_TASK_STATUS_EXIT;//贴上任务退出标签 } /// 挂起任务,任务进入等待链表,Join代表是支持通过一个任务去唤醒其他的任务 LITE_OS_SEC_TEXT UINT32 OsTaskJoinPendUnsafe(LosTaskCB *taskCB) { LosProcessCB *processCB = OS_PCB_FROM_PID(taskCB->processID); if (!(processCB->processStatus & OS_PROCESS_STATUS_RUNNING)) { return LOS_EPERM; } if (taskCB->taskStatus & OS_TASK_STATUS_INIT) { return LOS_EINVAL; } if (taskCB->taskStatus & OS_TASK_STATUS_EXIT) { return LOS_OK; } if ((taskCB->taskStatus & OS_TASK_FLAG_PTHREAD_JOIN) && LOS_ListEmpty(&taskCB->joinList)) { OsTaskWaitSetPendMask(OS_TASK_WAIT_JOIN, taskCB->taskID, LOS_WAIT_FOREVER);//设置任务的等待标记 return OsSchedTaskWait(&taskCB->joinList, LOS_WAIT_FOREVER, TRUE);//永久等待 } return LOS_EINVAL; } ///任务设置分离模式 Deatch和JOIN是一对有你没我的状态 LITE_OS_SEC_TEXT UINT32 OsTaskSetDetachUnsafe(LosTaskCB *taskCB) { LosProcessCB *processCB = OS_PCB_FROM_PID(taskCB->processID);//获取进程实体 if (!(processCB->processStatus & OS_PROCESS_STATUS_RUNNING)) {//进程必须是运行状态 return LOS_EPERM; } if (taskCB->taskStatus & OS_TASK_FLAG_PTHREAD_JOIN) {//join状态时 if (LOS_ListEmpty(&(taskCB->joinList))) {//joinlist中没有数据了 LOS_ListDelete(&(taskCB->joinList));//所谓删除就是自己指向自己 taskCB->taskStatus &= ~OS_TASK_FLAG_PTHREAD_JOIN;//去掉JOIN标签 return LOS_OK; } /* This error code has a special purpose and is not allowed to appear again on the interface */ return LOS_ESRCH; } return LOS_EINVAL; } //初始化任务模块 LITE_OS_SEC_TEXT_INIT UINT32 OsTaskInit(VOID) { UINT32 index; UINT32 size; UINT32 ret; g_taskMaxNum = LOSCFG_BASE_CORE_TSK_LIMIT;//任务池中最多默认128个,可谓铁打的任务池流水的线程 size = (g_taskMaxNum + 1) * sizeof(LosTaskCB);//计算需分配内存总大小 /* * This memory is resident memory and is used to save the system resources * of task control block and will not be freed. */ g_taskCBArray = (LosTaskCB *)LOS_MemAlloc(m_aucSysMem0, size);//任务池常驻内存,不被释放 if (g_taskCBArray == NULL) { ret = LOS_ERRNO_TSK_NO_MEMORY; goto EXIT; } (VOID)memset_s(g_taskCBArray, size, 0, size); LOS_ListInit(&g_losFreeTask);//初始化空闲任务链表 LOS_ListInit(&g_taskRecycleList);//初始化回收任务链表 for (index = 0; index < g_taskMaxNum; index++) {//任务挨个初始化 g_taskCBArray[index].taskStatus = OS_TASK_STATUS_UNUSED;//默认未使用,干净. g_taskCBArray[index].taskID = index;//任务ID [0 ~ g_taskMaxNum - 1] LOS_ListTailInsert(&g_losFreeTask, &g_taskCBArray[index].pendList);//通过pendList节点插入空闲任务列表 }//注意:这里挂的是pendList节点,所以取TCB也要通过 OS_TCB_FROM_PENDLIST 取. ret = OsSchedInit();//调度器初始化 EXIT: if (ret != LOS_OK) { PRINT_ERR("OsTaskInit error\n"); } return ret; } ///获取IdletaskId,每个CPU核都对Task进行了内部管理,做到真正的并行处理 UINT32 OsGetIdleTaskId(VOID) { Percpu *perCpu = OsPercpuGet();//获取当前Cpu信息 return perCpu->idleTaskID;//返回当前CPU 空闲任务ID } ///创建一个空闲任务 LITE_OS_SEC_TEXT_INIT UINT32 OsIdleTaskCreate(VOID) { UINT32 ret; TSK_INIT_PARAM_S taskInitParam; Percpu *perCpu = OsPercpuGet();//获取当前运行CPU信息 UINT32 *idleTaskID = &perCpu->idleTaskID;//每个CPU都有一个空闲任务 (VOID)memset_s((VOID *)(&taskInitParam), sizeof(TSK_INIT_PARAM_S), 0, sizeof(TSK_INIT_PARAM_S));//任务初始参数清0 taskInitParam.pfnTaskEntry = (TSK_ENTRY_FUNC)OsIdleTask;//入口函数 taskInitParam.uwStackSize = LOSCFG_BASE_CORE_TSK_IDLE_STACK_SIZE;//任务栈大小 2K taskInitParam.pcName = "Idle";//任务名称 叫pcName有点怪怪的,不能换个撒 taskInitParam.usTaskPrio = OS_TASK_PRIORITY_LOWEST;//默认最低优先级 31 taskInitParam.processID = OsGetIdleProcessID(); #ifdef LOSCFG_KERNEL_SMP taskInitParam.usCpuAffiMask = CPUID_TO_AFFI_MASK(ArchCurrCpuid());//每个idle任务只在单独的cpu上运行 #endif ret = LOS_TaskCreateOnly(idleTaskID, &taskInitParam); LosTaskCB *idleTask = OS_TCB_FROM_TID(*idleTaskID); idleTask->taskStatus |= OS_TASK_FLAG_SYSTEM_TASK; OsSchedSetIdleTaskSchedParam(idleTask); return ret; } /* * Description : get id of current running task. * Return : task id */ LITE_OS_SEC_TEXT UINT32 LOS_CurTaskIDGet(VOID)//获取当前任务的ID { LosTaskCB *runTask = OsCurrTaskGet(); if (runTask == NULL) { return LOS_ERRNO_TSK_ID_INVALID; } return runTask->taskID; } STATIC INLINE UINT32 OsTaskSyncCreate(LosTaskCB *taskCB) { #ifdef LOSCFG_KERNEL_SMP_TASK_SYNC UINT32 ret = LOS_SemCreate(0, &taskCB->syncSignal); if (ret != LOS_OK) { return LOS_ERRNO_TSK_MP_SYNC_RESOURCE; } #else (VOID)taskCB; #endif return LOS_OK; } STATIC INLINE VOID OsTaskSyncDestroy(UINT32 syncSignal) { #ifdef LOSCFG_KERNEL_SMP_TASK_SYNC (VOID)LOS_SemDelete(syncSignal); #else (VOID)syncSignal; #endif } #ifdef LOSCFG_KERNEL_SMP /*! * @brief OsTaskSyncWait * 任务同步等待,通过信号量保持同步 * @param taskCB * @return * * @see */ STATIC INLINE UINT32 OsTaskSyncWait(const LosTaskCB *taskCB) { #ifdef LOSCFG_KERNEL_SMP_TASK_SYNC UINT32 ret = LOS_OK; LOS_ASSERT(LOS_SpinHeld(&g_taskSpin)); LOS_SpinUnlock(&g_taskSpin); /* * gc soft timer works every OS_MP_GC_PERIOD period, to prevent this timer * triggered right at the timeout has reached, we set the timeout as double * of the gc peroid. */ if (LOS_SemPend(taskCB->syncSignal, OS_MP_GC_PERIOD * 2) != LOS_OK) { ret = LOS_ERRNO_TSK_MP_SYNC_FAILED; } LOS_SpinLock(&g_taskSpin); return ret; #else (VOID)taskCB; return LOS_OK; #endif } #endif STATIC INLINE VOID OsTaskSyncWake(const LosTaskCB *taskCB) { #ifdef LOSCFG_KERNEL_SMP_TASK_SYNC (VOID)OsSemPostUnsafe(taskCB->syncSignal, NULL); #else (VOID)taskCB; #endif } STATIC VOID OsTaskReleaseHoldLock(LosProcessCB *processCB, LosTaskCB *taskCB) { LosMux *mux = NULL; UINT32 ret; while (!LOS_ListEmpty(&taskCB->lockList)) { mux = LOS_DL_LIST_ENTRY(LOS_DL_LIST_FIRST(&taskCB->lockList), LosMux, holdList); ret = OsMuxUnlockUnsafe(taskCB, mux, NULL); if (ret != LOS_OK) { LOS_ListDelete(&mux->holdList); PRINT_ERR("mux ulock failed! : %u\n", ret); } } #ifdef LOSCFG_KERNEL_VM if (processCB->processMode == OS_USER_MODE) { OsFutexNodeDeleteFromFutexHash(&taskCB->futex, TRUE, NULL, NULL); } #endif OsTaskJoinPostUnsafe(taskCB); OsTaskSyncWake(taskCB); } ///一个任务的退出过程 LITE_OS_SEC_TEXT VOID OsTaskToExit(LosTaskCB *taskCB, UINT32 status) { UINT32 intSave; LosProcessCB *runProcess = OS_PCB_FROM_PID(taskCB->processID); LosTaskCB *mainTask = OS_TCB_FROM_TID(runProcess->threadGroupID); if (mainTask == taskCB) {//如果参数任务就是主任务 OsTaskExitGroup(status);//task退出线程组 } SCHEDULER_LOCK(intSave); if (runProcess->threadNumber == 1) { /* 1: The last task of the process exits *///进程的最后一个任务退出 SCHEDULER_UNLOCK(intSave); (VOID)OsProcessExit(taskCB, status);//调用进程退出流程 return; } if ((taskCB->taskStatus & OS_TASK_FLAG_EXIT_KILL) || !(taskCB->taskStatus & OS_TASK_FLAG_PTHREAD_JOIN)) { UINT32 ret = OsTaskDeleteUnsafe(taskCB, status, intSave); LOS_Panic("Task delete failed! ERROR : 0x%x\n", ret); return; } OsTaskReleaseHoldLock(runProcess, taskCB); OsSchedResched();//申请调度 SCHEDULER_UNLOCK(intSave); return; } /* * Description : All task entry * Input : taskID --- The ID of the task to be run *///所有任务的入口函数,OsTaskEntry是在new task OsTaskStackInit 时指定的 LITE_OS_SEC_TEXT_INIT VOID OsTaskEntry(UINT32 taskID) { LosTaskCB *taskCB = NULL; LOS_ASSERT(!OS_TID_CHECK_INVALID(taskID)); /* * task scheduler needs to be protected throughout the whole process * from interrupt and other cores. release task spinlock and enable * interrupt in sequence at the task entry. */ LOS_SpinUnlock(&g_taskSpin);//释放任务自旋锁 (VOID)LOS_IntUnLock();//恢复中断 taskCB = OS_TCB_FROM_TID(taskID); taskCB->joinRetval = taskCB->taskEntry(taskCB->args[0], taskCB->args[1],//调用任务的入口函数 taskCB->args[2], taskCB->args[3]); /* 2 & 3: just for args array index */ if (!(taskCB->taskStatus & OS_TASK_FLAG_PTHREAD_JOIN)) { taskCB->joinRetval = 0;//结合数为0 } OsTaskToExit(taskCB, 0);//到这里任务跑完了要退出了 } ///任务创建参数检查 LITE_OS_SEC_TEXT_INIT STATIC UINT32 OsTaskCreateParamCheck(const UINT32 *taskID, TSK_INIT_PARAM_S *initParam, VOID **pool) { LosProcessCB *process = NULL; UINT32 poolSize = OS_SYS_MEM_SIZE; *pool = (VOID *)m_aucSysMem1;//默认使用 if (taskID == NULL) { return LOS_ERRNO_TSK_ID_INVALID; } if (initParam == NULL) { return LOS_ERRNO_TSK_PTR_NULL; } process = OS_PCB_FROM_PID(initParam->processID); if (process->processMode > OS_USER_MODE) { return LOS_ERRNO_TSK_ID_INVALID; } if (!OsProcessIsUserMode(process)) { if (initParam->pcName == NULL) { return LOS_ERRNO_TSK_NAME_EMPTY; } } if (initParam->pfnTaskEntry == NULL) {//入口函数不能为空 return LOS_ERRNO_TSK_ENTRY_NULL; } if (initParam->usTaskPrio > OS_TASK_PRIORITY_LOWEST) {//优先级必须大于31 return LOS_ERRNO_TSK_PRIOR_ERROR; } if (initParam->uwStackSize > poolSize) {//希望申请的栈大小不能大于总池子 return LOS_ERRNO_TSK_STKSZ_TOO_LARGE; } if (initParam->uwStackSize == 0) {//任何任务都必须由内核态栈,所以uwStackSize不能为0 initParam->uwStackSize = LOSCFG_BASE_CORE_TSK_DEFAULT_STACK_SIZE; } initParam->uwStackSize = (UINT32)ALIGN(initParam->uwStackSize, LOSCFG_STACK_POINT_ALIGN_SIZE); if (initParam->uwStackSize < LOS_TASK_MIN_STACK_SIZE) {//运行栈空间不能低于最低值 return LOS_ERRNO_TSK_STKSZ_TOO_SMALL; } return LOS_OK; } ///任务栈(内核态)内存分配,由内核态进程空间提供,即 KProcess 的进程空间 LITE_OS_SEC_TEXT_INIT STATIC VOID OsTaskStackAlloc(VOID **topStack, UINT32 stackSize, VOID *pool) { *topStack = (VOID *)LOS_MemAllocAlign(pool, stackSize, LOSCFG_STACK_POINT_ALIGN_SIZE); } //释放任务内核资源 STATIC VOID OsTaskKernelResourcesToFree(UINT32 syncSignal, UINTPTR topOfStack) { VOID *poolTmp = (VOID *)m_aucSysMem1; OsTaskSyncDestroy(syncSignal); (VOID)LOS_MemFree(poolTmp, (VOID *)topOfStack); } ///从回收链表中回收任务到空闲链表 LITE_OS_SEC_TEXT VOID OsTaskCBRecycleToFree() { LosTaskCB *taskCB = NULL; UINT32 intSave; SCHEDULER_LOCK(intSave); while (!LOS_ListEmpty(&g_taskRecycleList)) {//不空就一个一个回收任务 taskCB = OS_TCB_FROM_PENDLIST(LOS_DL_LIST_FIRST(&g_taskRecycleList));//取出第一个待回收任务 LOS_ListDelete(&taskCB->pendList);//从回收链表上将自己摘除 SCHEDULER_UNLOCK(intSave); OsTaskResourcesToFree(taskCB);//释放任务资源 SCHEDULER_LOCK(intSave); } SCHEDULER_UNLOCK(intSave); } LITE_OS_SEC_TEXT VOID OsTaskResourcesToFree(LosTaskCB *taskCB) { UINT32 syncSignal = LOSCFG_BASE_IPC_SEM_LIMIT; UINT32 intSave; UINTPTR topOfStack; #ifdef LOSCFG_KERNEL_VM LosProcessCB *processCB = OS_PCB_FROM_PID(taskCB->processID); if (OsProcessIsUserMode(processCB) && (taskCB->userMapBase != 0)) { SCHEDULER_LOCK(intSave); UINT32 mapBase = (UINTPTR)taskCB->userMapBase; UINT32 mapSize = taskCB->userMapSize; taskCB->userMapBase = 0; taskCB->userArea = 0; SCHEDULER_UNLOCK(intSave); LOS_ASSERT(!(processCB->vmSpace == NULL)); UINT32 ret = OsUnMMap(processCB->vmSpace, (UINTPTR)mapBase, mapSize); if ((ret != LOS_OK) && (mapBase != 0) && !(processCB->processStatus & OS_PROCESS_STATUS_INIT)) { PRINT_ERR("process(%u) unmmap user task(%u) stack failed! mapbase: 0x%x size :0x%x, error: %d\n", processCB->processID, taskCB->taskID, mapBase, mapSize, ret); } #ifdef LOSCFG_KERNEL_LITEIPC LiteIpcRemoveServiceHandle(taskCB->taskID); #endif } #endif if (taskCB->taskStatus & OS_TASK_STATUS_UNUSED) { topOfStack = taskCB->topOfStack; taskCB->topOfStack = 0; #ifdef LOSCFG_KERNEL_SMP_TASK_SYNC syncSignal = taskCB->syncSignal; taskCB->syncSignal = LOSCFG_BASE_IPC_SEM_LIMIT; #endif OsTaskKernelResourcesToFree(syncSignal, topOfStack); SCHEDULER_LOCK(intSave); OsClearSigInfoTmpList(&(taskCB->sig)); OsInsertTCBToFreeList(taskCB); SCHEDULER_UNLOCK(intSave); } return; } ///任务基本信息的初始化 LITE_OS_SEC_TEXT_INIT STATIC VOID OsTaskCBInitBase(LosTaskCB *taskCB, const VOID *stackPtr, const VOID *topStack, const TSK_INIT_PARAM_S *initParam) { taskCB->stackPointer = (VOID *)stackPtr;//内核态SP位置 taskCB->args[0] = initParam->auwArgs[0]; /* 0~3: just for args array index */ taskCB->args[1] = initParam->auwArgs[1]; taskCB->args[2] = initParam->auwArgs[2]; taskCB->args[3] = initParam->auwArgs[3]; taskCB->topOfStack = (UINTPTR)topStack; //内核态栈顶 taskCB->stackSize = initParam->uwStackSize;// taskCB->priority = initParam->usTaskPrio; taskCB->taskEntry = initParam->pfnTaskEntry; taskCB->signal = SIGNAL_NONE; #ifdef LOSCFG_KERNEL_SMP taskCB->currCpu = OS_TASK_INVALID_CPUID; taskCB->cpuAffiMask = (initParam->usCpuAffiMask) ? initParam->usCpuAffiMask : LOSCFG_KERNEL_CPU_MASK; #endif taskCB->policy = (initParam->policy == LOS_SCHED_FIFO) ? LOS_SCHED_FIFO : LOS_SCHED_RR;//调度模式 taskCB->taskStatus = OS_TASK_STATUS_INIT; if (initParam->uwResved & LOS_TASK_ATTR_JOINABLE) { taskCB->taskStatus |= OS_TASK_FLAG_PTHREAD_JOIN; LOS_ListInit(&taskCB->joinList); } taskCB->futex.index = OS_INVALID_VALUE; LOS_ListInit(&taskCB->lockList);//初始化互斥锁链表 SET_SORTLIST_VALUE(&taskCB->sortList, OS_SORT_LINK_INVALID_TIME); } ///任务初始化 STATIC UINT32 OsTaskCBInit(LosTaskCB *taskCB, const TSK_INIT_PARAM_S *initParam, const VOID *stackPtr, const VOID *topStack) { UINT32 intSave; UINT32 ret; UINT32 numCount; UINT16 mode; LosProcessCB *processCB = NULL; OsTaskCBInitBase(taskCB, stackPtr, topStack, initParam);//初始化任务的基本信息, //taskCB->stackPointer指向内核态栈 sp位置,该位置存着 任务初始上下文 SCHEDULER_LOCK(intSave); processCB = OS_PCB_FROM_PID(initParam->processID);//通过ID获取PCB ,单核进程数最多64个 taskCB->processID = processCB->processID;//进程-线程的父子关系绑定 mode = processCB->processMode;//模式方式同步process LOS_ListTailInsert(&(processCB->threadSiblingList), &(taskCB->threadList));//挂入进程的线程链表 if (mode == OS_USER_MODE) {//任务支持用户态时,将改写 taskCB->stackPointer = initParam->userParam.userSP taskCB->userArea = initParam->userParam.userArea; taskCB->userMapBase = initParam->userParam.userMapBase; taskCB->userMapSize = initParam->userParam.userMapSize; OsUserTaskStackInit(taskCB->stackPointer, (UINTPTR)taskCB->taskEntry, initParam->userParam.userSP);//初始化用户态任务栈 //这里要注意,任务的上下文是始终保存在内核栈空间,而用户态时运行在用户态栈空间.(context->SP = userSP 指向了用户态栈空间) } if (!processCB->threadNumber) {//进程线程数量为0时, processCB->threadGroupID = taskCB->taskID;//任务为线程组 组长 } processCB->threadNumber++;//这里说明 线程和TASK是一个意思 threadNumber代表活动线程数,thread消亡的时候会 threadNumber-- numCount = processCB->threadCount;//代表总线程数,包括销毁的,只要存在过的都算,这个值也就是在这里用下, processCB->threadCount++;//线程总数++,注意这个数会一直累加的,哪怕thread最后退出了,这个统计这个进程曾经存在过的线程数量 SCHEDULER_UNLOCK(intSave); if (initParam->pcName != NULL) { ret = (UINT32)OsSetTaskName(taskCB, initParam->pcName, FALSE); if (ret == LOS_OK) { return LOS_OK; } } if (snprintf_s(taskCB->taskName, OS_TCB_NAME_LEN, OS_TCB_NAME_LEN - 1, "thread%u", numCount) < 0) { return LOS_NOK; } return LOS_OK; } ///获取一个空闲TCB LITE_OS_SEC_TEXT LosTaskCB *OsGetFreeTaskCB(VOID) { UINT32 intSave; LosTaskCB *taskCB = NULL; SCHEDULER_LOCK(intSave); if (LOS_ListEmpty(&g_losFreeTask)) {//全局空闲task为空 SCHEDULER_UNLOCK(intSave); PRINT_ERR("No idle TCB in the system!\n"); #ifdef LOSCFG_DEBUG_VERSION (VOID)OsShellCmdTskInfoGet(OS_ALL_TASK_MASK, NULL, OS_PROCESS_INFO_ALL); #endif return NULL; } taskCB = OS_TCB_FROM_PENDLIST(LOS_DL_LIST_FIRST(&g_losFreeTask));//拿到第一节点并通过pendlist拿到完整的TCB LOS_ListDelete(LOS_DL_LIST_FIRST(&g_losFreeTask));//从g_losFreeTask链表中摘除自己 SCHEDULER_UNLOCK(intSave); return taskCB; } ///创建任务,并使该任务进入suspend状态,不对该任务进行调度。如果需要调度,可以调用LOS_TaskResume使该任务进入ready状态 LITE_OS_SEC_TEXT_INIT UINT32 LOS_TaskCreateOnly(UINT32 *taskID, TSK_INIT_PARAM_S *initParam) { UINT32 intSave, errRet; VOID *topStack = NULL; VOID *stackPtr = NULL; LosTaskCB *taskCB = NULL; VOID *pool = NULL; errRet = OsTaskCreateParamCheck(taskID, initParam, &pool);//参数检查 if (errRet != LOS_OK) { return errRet; } taskCB = OsGetFreeTaskCB();//从g_losFreeTask中获取,还记得吗任务池中最多默认128个 if (taskCB == NULL) { errRet = LOS_ERRNO_TSK_TCB_UNAVAILABLE; goto LOS_ERREND; } errRet = OsTaskSyncCreate(taskCB);//SMP cpu多核间负载均衡相关 if (errRet != LOS_OK) { goto LOS_ERREND_REWIND_TCB; } //OsTaskStackAlloc 只在LOS_TaskCreateOnly中被调用,此处是分配任务在内核态栈空间 OsTaskStackAlloc(&topStack, initParam->uwStackSize, pool);//为任务分配内核栈空间,注意此内存来自系统内核空间 if (topStack == NULL) { errRet = LOS_ERRNO_TSK_NO_MEMORY; goto LOS_ERREND_REWIND_SYNC; } stackPtr = OsTaskStackInit(taskCB->taskID, initParam->uwStackSize, topStack, TRUE);//初始化内核态任务栈,返回栈SP位置 errRet = OsTaskCBInit(taskCB, initParam, stackPtr, topStack);//初始化TCB,包括绑定进程等操作 if (errRet != LOS_OK) { goto LOS_ERREND_TCB_INIT; } if (OsConsoleIDSetHook != NULL) {//每个任务都可以有属于自己的控制台 OsConsoleIDSetHook(taskCB->taskID, OsCurrTaskGet()->taskID);//设置控制台ID } *taskID = taskCB->taskID; OsHookCall(LOS_HOOK_TYPE_TASK_CREATE, taskCB); return LOS_OK; LOS_ERREND_TCB_INIT: (VOID)LOS_MemFree(pool, topStack); LOS_ERREND_REWIND_SYNC: #ifdef LOSCFG_KERNEL_SMP_TASK_SYNC OsTaskSyncDestroy(taskCB->syncSignal); #endif LOS_ERREND_REWIND_TCB: SCHEDULER_LOCK(intSave); OsInsertTCBToFreeList(taskCB);//归还freetask SCHEDULER_UNLOCK(intSave); LOS_ERREND: return errRet; } ///创建任务,并使该任务进入ready状态,如果就绪队列中没有更高优先级的任务,则运行该任务 LITE_OS_SEC_TEXT_INIT UINT32 LOS_TaskCreate(UINT32 *taskID, TSK_INIT_PARAM_S *initParam) { UINT32 ret; UINT32 intSave; LosTaskCB *taskCB = NULL; if (initParam == NULL) { return LOS_ERRNO_TSK_PTR_NULL; } if (OS_INT_ACTIVE) { return LOS_ERRNO_TSK_YIELD_IN_INT; } if (OsProcessIsUserMode(OsCurrProcessGet())) { initParam->processID = OsGetKernelInitProcessID(); } else { initParam->processID = OsCurrProcessGet()->processID; } ret = LOS_TaskCreateOnly(taskID, initParam); if (ret != LOS_OK) { return ret; } taskCB = OS_TCB_FROM_TID(*taskID); SCHEDULER_LOCK(intSave); OsSchedTaskEnQueue(taskCB); SCHEDULER_UNLOCK(intSave); /* in case created task not running on this core, schedule or not depends on other schedulers status. */ LOS_MpSchedule(OS_MP_CPU_ALL); if (OS_SCHEDULER_ACTIVE) { LOS_Schedule(); } return LOS_OK; } ///恢复挂起的任务,使该任务进入ready状态 LITE_OS_SEC_TEXT_INIT UINT32 LOS_TaskResume(UINT32 taskID) { UINT32 intSave; UINT32 errRet; LosTaskCB *taskCB = NULL; BOOL needSched = FALSE; if (OS_TID_CHECK_INVALID(taskID)) { return LOS_ERRNO_TSK_ID_INVALID; } taskCB = OS_TCB_FROM_TID(taskID);//拿到任务实体 SCHEDULER_LOCK(intSave); /* clear pending signal */ taskCB->signal &= ~SIGNAL_SUSPEND;//清楚挂起信号 if (taskCB->taskStatus & OS_TASK_STATUS_UNUSED) { errRet = LOS_ERRNO_TSK_NOT_CREATED; OS_GOTO_ERREND(); } else if (!(taskCB->taskStatus & OS_TASK_STATUS_SUSPENDED)) { errRet = LOS_ERRNO_TSK_NOT_SUSPENDED; OS_GOTO_ERREND(); } taskCB->taskStatus &= ~OS_TASK_STATUS_SUSPENDED; if (!(taskCB->taskStatus & OS_CHECK_TASK_BLOCK)) { OsSchedTaskEnQueue(taskCB); if (OS_SCHEDULER_ACTIVE) { needSched = TRUE; } } SCHEDULER_UNLOCK(intSave); LOS_MpSchedule(OS_MP_CPU_ALL); if (needSched) { LOS_Schedule(); } return LOS_OK; LOS_ERREND: SCHEDULER_UNLOCK(intSave); return errRet; } /* * Check if needs to do the suspend operation on the running task. //检查是否需要对正在运行的任务执行挂起操作。 * Return TRUE, if needs to do the suspension. //如果需要暂停,返回TRUE。 * Rerturn FALSE, if meets following circumstances: //如果满足以下情况,则返回FALSE: * 1. Do the suspension across cores, if SMP is enabled //1.如果启用了SMP,则跨CPU核执行挂起操作 * 2. Do the suspension when preemption is disabled //2.当禁用抢占时则挂起 * 3. Do the suspension in hard-irq //3.在硬中断时则挂起 * then LOS_TaskSuspend will directly return with 'ret' value. //那么LOS_taskssuspend将直接返回ret值。 */ LITE_OS_SEC_TEXT_INIT STATIC BOOL OsTaskSuspendCheckOnRun(LosTaskCB *taskCB, UINT32 *ret) { /* init default out return value */ *ret = LOS_OK; #ifdef LOSCFG_KERNEL_SMP /* ASYNCHRONIZED. No need to do task lock checking */ if (taskCB->currCpu != ArchCurrCpuid()) {//跨CPU核的情况 taskCB->signal = SIGNAL_SUSPEND; LOS_MpSchedule(taskCB->currCpu);//task所属CPU执行调度 return FALSE; } #endif if (!OsPreemptableInSched()) {//不能抢占时 /* Suspending the current core's running task */ *ret = LOS_ERRNO_TSK_SUSPEND_LOCKED; return FALSE; } if (OS_INT_ACTIVE) {//正在硬中断中 /* suspend running task in interrupt */ taskCB->signal = SIGNAL_SUSPEND; return FALSE; } return TRUE; } ///任务暂停,参数可以不是当前任务,也就是说 A任务可以让B任务处于阻塞状态,挂起指定的任务,然后切换任务 LITE_OS_SEC_TEXT STATIC UINT32 OsTaskSuspend(LosTaskCB *taskCB) { UINT32 errRet; UINT16 tempStatus; tempStatus = taskCB->taskStatus; if (tempStatus & OS_TASK_STATUS_UNUSED) { return LOS_ERRNO_TSK_NOT_CREATED; } if (tempStatus & OS_TASK_STATUS_SUSPENDED) { return LOS_ERRNO_TSK_ALREADY_SUSPENDED; } if ((tempStatus & OS_TASK_STATUS_RUNNING) && //如果参数任务正在运行,注意多Cpu core情况下,贴着正在运行标签的任务并不一定是当前CPU的执行任务, !OsTaskSuspendCheckOnRun(taskCB, &errRet)) {//很有可能是别的CPU core在跑的任务 return errRet; } if (tempStatus & OS_TASK_STATUS_READY) { OsSchedTaskDeQueue(taskCB); } taskCB->taskStatus |= OS_TASK_STATUS_SUSPENDED; OsHookCall(LOS_HOOK_TYPE_MOVEDTASKTOSUSPENDEDLIST, taskCB); if (taskCB == OsCurrTaskGet()) { OsSchedResched(); } return LOS_OK; } ///外部接口,对OsTaskSuspend的封装 LITE_OS_SEC_TEXT_INIT UINT32 LOS_TaskSuspend(UINT32 taskID) { UINT32 intSave; LosTaskCB *taskCB = NULL; UINT32 errRet; if (OS_TID_CHECK_INVALID(taskID)) { return LOS_ERRNO_TSK_ID_INVALID; } taskCB = OS_TCB_FROM_TID(taskID); if (taskCB->taskStatus & OS_TASK_FLAG_SYSTEM_TASK) { return LOS_ERRNO_TSK_OPERATE_SYSTEM_TASK; } SCHEDULER_LOCK(intSave); errRet = OsTaskSuspend(taskCB); SCHEDULER_UNLOCK(intSave); return errRet; } ///设置任务为不使用状态 STATIC INLINE VOID OsTaskStatusUnusedSet(LosTaskCB *taskCB) { taskCB->taskStatus |= OS_TASK_STATUS_UNUSED; taskCB->eventMask = 0; OS_MEM_CLEAR(taskCB->taskID); } //删除一个正在运行的任务 LITE_OS_SEC_TEXT VOID OsRunTaskToDelete(LosTaskCB *runTask) { LosProcessCB *processCB = OS_PCB_FROM_PID(runTask->processID);//拿到task所属进程 OsTaskReleaseHoldLock(processCB, runTask);//task还锁 OsTaskStatusUnusedSet(runTask);//task重置为未使用状态,等待回收 LOS_ListDelete(&runTask->threadList);//从进程的线程链表中将自己摘除 processCB->threadNumber--;//进程的活动task --,注意进程还有一个记录总task的变量 processCB->threadCount LOS_ListTailInsert(&g_taskRecycleList, &runTask->pendList);//将task插入回收链表,等待回收资源再利用 OsEventWriteUnsafe(&g_resourceEvent, OS_RESOURCE_EVENT_FREE, FALSE, NULL);//发送释放资源的事件,事件由 OsResourceRecoveryTask 消费 OsSchedResched();//申请调度 return; } /** * @brief 获取参数位图中最高位为1的索引位 例如: 00110110 返回 5 * @verbatim CLZ 用于计算操作数最高端0的个数,这条指令主要用于以下两个场合   1.计算操作数规范化(使其最高位为1)时需要左移的位数   2.确定一个优先级掩码中最高优先级 * @endverbatim * @param bitmap * @return UINT16 */ /* * Check if needs to do the delete operation on the running task. * Return TRUE, if needs to do the deletion. * Rerturn FALSE, if meets following circumstances: * 1. Do the deletion across cores, if SMP is enabled * 2. Do the deletion when preemption is disabled * 3. Do the deletion in hard-irq * then LOS_TaskDelete will directly return with 'ret' value. */ /** * @brief * @verbatim 检查是否需要对正在运行的任务执行删除操作,如果需要删除,则返回TRUE。 如果满足以下情况,则返回FALSE: 1.如果启用了SMP,则跨CPU执行删除 2.禁用抢占时执行删除 3.在硬irq中删除 然后LOS_TaskDelete将直接返回ret值 * @endverbatim * @param taskCB * @param ret * @return STATIC */ STATIC BOOL OsRunTaskToDeleteCheckOnRun(LosTaskCB *taskCB, UINT32 *ret) { /* init default out return value */ *ret = LOS_OK; #ifdef LOSCFG_KERNEL_SMP /* ASYNCHRONIZED. No need to do task lock checking *///异步操作,不需要进行任务锁检查 if (taskCB->currCpu != ArchCurrCpuid()) {//任务运行在其他CPU,跨核心执行删除 /* * the task is running on another cpu. * mask the target task with "kill" signal, and trigger mp schedule * which might not be essential but the deletion could more in time. */ taskCB->signal = SIGNAL_KILL; //贴上干掉标记 LOS_MpSchedule(taskCB->currCpu);//通知任务所属CPU发生调度 *ret = OsTaskSyncWait(taskCB); //同步等待可怜的任务被干掉 return FALSE; } #endif if (!OsPreemptableInSched()) {//如果任务正在运行且调度程序已锁定,则无法删除它 /* If the task is running and scheduler is locked then you can not delete it */ *ret = LOS_ERRNO_TSK_DELETE_LOCKED; return FALSE; } if (OS_INT_ACTIVE) {//硬中断进行中...会屏蔽掉所有信号,当然包括kill了 /* * delete running task in interrupt. * mask "kill" signal and later deletion will be handled. */ taskCB->signal = SIGNAL_KILL;//硬中断后将处理删除。 return FALSE; } return TRUE; } ///删除不活动的任务 !OS_TASK_STATUS_RUNNING STATIC VOID OsTaskDeleteInactive(LosProcessCB *processCB, LosTaskCB *taskCB) { LosMux *mux = (LosMux *)taskCB->taskMux; //任务 UINT16 taskStatus = taskCB->taskStatus; LOS_ASSERT(!(taskStatus & OS_TASK_STATUS_RUNNING)); OsTaskReleaseHoldLock(processCB, taskCB); OsSchedTaskExit(taskCB); if (taskStatus & OS_TASK_STATUS_PENDING) { if (LOS_MuxIsValid(mux) == TRUE) { OsMuxBitmapRestore(mux, taskCB, (LosTaskCB *)mux->owner); } } OsTaskStatusUnusedSet(taskCB); LOS_ListDelete(&taskCB->threadList); processCB->threadNumber--; LOS_ListTailInsert(&g_taskRecycleList, &taskCB->pendList); return; } ///以不安全的方式删除参数任务 LITE_OS_SEC_TEXT UINT32 OsTaskDeleteUnsafe(LosTaskCB *taskCB, UINT32 status, UINT32 intSave) { LosProcessCB *processCB = OS_PCB_FROM_PID(taskCB->processID);//获取进程实体 UINT32 mode = processCB->processMode; UINT32 errRet = LOS_OK; if (taskCB->taskStatus & OS_TASK_FLAG_SYSTEM_TASK) {//系统任务是不能被删除的, 请您说出3个系统任务. errRet = LOS_ERRNO_TSK_OPERATE_SYSTEM_TASK; goto EXIT; } if ((taskCB->taskStatus & OS_TASK_STATUS_RUNNING) && !OsRunTaskToDeleteCheckOnRun(taskCB, &errRet)) {//正在运行且检测正在运行不能删除的情况 goto EXIT; } if (!(taskCB->taskStatus & OS_TASK_STATUS_RUNNING)) {//任务不在活动 OsTaskDeleteInactive(processCB, taskCB);//删除未活动的任务 SCHEDULER_UNLOCK(intSave);//释放自旋锁,这就是不安全的标记,函数内部并没有拿自旋锁 OsWriteResourceEvent(OS_RESOURCE_EVENT_FREE);//写一个资源释放事件,资源回收任务会收到事件,并回收任务的资源. return errRet;//消费OS_RESOURCE_EVENT_FREE事件可见于 OsResourceRecoveryTask 的处理 } OsHookCall(LOS_HOOK_TYPE_TASK_DELETE, taskCB); if (mode == OS_USER_MODE) { //用户态模式 SCHEDULER_UNLOCK(intSave);//先释放锁 OsTaskResourcesToFree(taskCB);//释放任务资源 SCHEDULER_LOCK(intSave); } #ifdef LOSCFG_KERNEL_SMP LOS_ASSERT(OsPercpuGet()->taskLockCnt == 1); #else LOS_ASSERT(OsPercpuGet()->taskLockCnt == 0); #endif OsRunTaskToDelete(taskCB);//删除一个正在运行的任务 EXIT: SCHEDULER_UNLOCK(intSave); return errRet; } ///删除指定的任务,回归任务池 LITE_OS_SEC_TEXT_INIT UINT32 LOS_TaskDelete(UINT32 taskID) { UINT32 intSave; UINT32 ret; LosTaskCB *taskCB = NULL; LosProcessCB *processCB = NULL; if (OS_TID_CHECK_INVALID(taskID)) { return LOS_ERRNO_TSK_ID_INVALID; } if (OS_INT_ACTIVE) { return LOS_ERRNO_TSK_YIELD_IN_INT; } taskCB = OS_TCB_FROM_TID(taskID); SCHEDULER_LOCK(intSave); if (taskCB->taskStatus & OS_TASK_STATUS_UNUSED) { ret = LOS_ERRNO_TSK_NOT_CREATED; OS_GOTO_ERREND(); } if (taskCB->taskStatus & (OS_TASK_FLAG_SYSTEM_TASK | OS_TASK_FLAG_NO_DELETE)) { SCHEDULER_UNLOCK(intSave); OsBackTrace(); return LOS_ERRNO_TSK_OPERATE_SYSTEM_TASK; } processCB = OS_PCB_FROM_PID(taskCB->processID); if (processCB->threadNumber == 1) {//此任务为进程的最后一个任务的处理 if (processCB == OsCurrProcessGet()) {//是否为当前任务 SCHEDULER_UNLOCK(intSave); OsProcessExit(taskCB, OS_PRO_EXIT_OK);//进程退出 return LOS_OK; } ret = LOS_ERRNO_TSK_ID_INVALID; OS_GOTO_ERREND(); } return OsTaskDeleteUnsafe(taskCB, OS_PRO_EXIT_OK, intSave);//任务以非安全模式删除 LOS_ERREND: SCHEDULER_UNLOCK(intSave); return ret; } ///任务延时等待,释放CPU,等待时间到期后该任务会重新进入ready状态 LITE_OS_SEC_TEXT UINT32 LOS_TaskDelay(UINT32 tick) { UINT32 intSave; LosTaskCB *runTask = NULL; if (OS_INT_ACTIVE) { PRINT_ERR("In interrupt not allow delay task!\n"); return LOS_ERRNO_TSK_DELAY_IN_INT; } runTask = OsCurrTaskGet(); if (runTask->taskStatus & OS_TASK_FLAG_SYSTEM_TASK) { OsBackTrace(); return LOS_ERRNO_TSK_OPERATE_SYSTEM_TASK; } if (!OsPreemptable()) { return LOS_ERRNO_TSK_DELAY_IN_LOCK; } OsHookCall(LOS_HOOK_TYPE_TASK_DELAY, tick); if (tick == 0) { return LOS_TaskYield(); } SCHEDULER_LOCK(intSave); OsSchedDelay(runTask, tick); OsHookCall(LOS_HOOK_TYPE_MOVEDTASKTODELAYEDLIST, runTask); SCHEDULER_UNLOCK(intSave); return LOS_OK; } ///获取任务的优先级 LITE_OS_SEC_TEXT_MINOR UINT16 LOS_TaskPriGet(UINT32 taskID) { UINT32 intSave; LosTaskCB *taskCB = NULL; UINT16 priority; if (OS_TID_CHECK_INVALID(taskID)) { return (UINT16)OS_INVALID; } taskCB = OS_TCB_FROM_TID(taskID); SCHEDULER_LOCK(intSave); if (taskCB->taskStatus & OS_TASK_STATUS_UNUSED) {//就这么一句话也要来个自旋锁,内核代码自旋锁真是无处不在啊 SCHEDULER_UNLOCK(intSave); return (UINT16)OS_INVALID; } priority = taskCB->priority; SCHEDULER_UNLOCK(intSave); return priority; } ///设置指定任务的优先级 LITE_OS_SEC_TEXT_MINOR UINT32 LOS_TaskPriSet(UINT32 taskID, UINT16 taskPrio) { UINT32 intSave; LosTaskCB *taskCB = NULL; if (taskPrio > OS_TASK_PRIORITY_LOWEST) { return LOS_ERRNO_TSK_PRIOR_ERROR; } if (OS_TID_CHECK_INVALID(taskID)) { return LOS_ERRNO_TSK_ID_INVALID; } taskCB = OS_TCB_FROM_TID(taskID); if (taskCB->taskStatus & OS_TASK_FLAG_SYSTEM_TASK) { return LOS_ERRNO_TSK_OPERATE_SYSTEM_TASK; } SCHEDULER_LOCK(intSave); if (taskCB->taskStatus & OS_TASK_STATUS_UNUSED) { SCHEDULER_UNLOCK(intSave); return LOS_ERRNO_TSK_NOT_CREATED; } BOOL isReady = OsSchedModifyTaskSchedParam(taskCB, taskCB->policy, taskPrio); SCHEDULER_UNLOCK(intSave); LOS_MpSchedule(OS_MP_CPU_ALL); if (isReady && OS_SCHEDULER_ACTIVE) { LOS_Schedule(); } return LOS_OK; } ///设置当前任务的优先级 LITE_OS_SEC_TEXT_MINOR UINT32 LOS_CurTaskPriSet(UINT16 taskPrio) { return LOS_TaskPriSet(OsCurrTaskGet()->taskID, taskPrio); } //当前任务释放CPU,并将其移到具有相同优先级的就绪任务队列的末尾. 读懂这个函数 你就彻底搞懂了 yield LITE_OS_SEC_TEXT_MINOR UINT32 LOS_TaskYield(VOID) { UINT32 intSave; if (OS_INT_ACTIVE) { return LOS_ERRNO_TSK_YIELD_IN_INT; } if (!OsPreemptable()) { return LOS_ERRNO_TSK_YIELD_IN_LOCK; } LosTaskCB *runTask = OsCurrTaskGet(); if (OS_TID_CHECK_INVALID(runTask->taskID)) { return LOS_ERRNO_TSK_ID_INVALID; } SCHEDULER_LOCK(intSave); /* reset timeslice of yeilded task */ OsSchedYield(); SCHEDULER_UNLOCK(intSave); return LOS_OK; } LITE_OS_SEC_TEXT_MINOR VOID LOS_TaskLock(VOID) { UINT32 intSave; intSave = LOS_IntLock(); OsCpuSchedLock(OsPercpuGet()); LOS_IntRestore(intSave); } LITE_OS_SEC_TEXT_MINOR VOID LOS_TaskUnlock(VOID) { OsCpuSchedUnlock(OsPercpuGet(), LOS_IntLock()); } //获取任务信息,给shell使用的 LITE_OS_SEC_TEXT_MINOR UINT32 LOS_TaskInfoGet(UINT32 taskID, TSK_INFO_S *taskInfo) { UINT32 intSave; LosTaskCB *taskCB = NULL; if (taskInfo == NULL) { return LOS_ERRNO_TSK_PTR_NULL; } if (OS_TID_CHECK_INVALID(taskID)) { return LOS_ERRNO_TSK_ID_INVALID; } taskCB = OS_TCB_FROM_TID(taskID); SCHEDULER_LOCK(intSave); if (taskCB->taskStatus & OS_TASK_STATUS_UNUSED) { SCHEDULER_UNLOCK(intSave); return LOS_ERRNO_TSK_NOT_CREATED; } if (!(taskCB->taskStatus & OS_TASK_STATUS_RUNNING) || OS_INT_ACTIVE) { taskInfo->uwSP = (UINTPTR)taskCB->stackPointer; } else { taskInfo->uwSP = ArchSPGet(); } taskInfo->usTaskStatus = taskCB->taskStatus; taskInfo->usTaskPrio = taskCB->priority; taskInfo->uwStackSize = taskCB->stackSize; //内核态栈大小 taskInfo->uwTopOfStack = taskCB->topOfStack;//内核态栈顶位置 taskInfo->uwEventMask = taskCB->eventMask; taskInfo->taskEvent = taskCB->taskEvent; taskInfo->pTaskMux = taskCB->taskMux; taskInfo->uwTaskID = taskID; if (strncpy_s(taskInfo->acName, LOS_TASK_NAMELEN, taskCB->taskName, LOS_TASK_NAMELEN - 1) != EOK) { PRINT_ERR("Task name copy failed!\n"); } taskInfo->acName[LOS_TASK_NAMELEN - 1] = '\0'; taskInfo->uwBottomOfStack = TRUNCATE(((UINTPTR)taskCB->topOfStack + taskCB->stackSize),//这里可以看出栈底地址是高于栈顶 OS_TASK_STACK_ADDR_ALIGN); taskInfo->uwCurrUsed = (UINT32)(taskInfo->uwBottomOfStack - taskInfo->uwSP);//当前任务栈已使用了多少 taskInfo->bOvf = OsStackWaterLineGet((const UINTPTR *)taskInfo->uwBottomOfStack,//获取栈的使用情况 (const UINTPTR *)taskInfo->uwTopOfStack, &taskInfo->uwPeakUsed); SCHEDULER_UNLOCK(intSave); return LOS_OK; } ///CPU亲和性(affinity)将任务绑在指定CPU上,用于多核CPU情况,(该函数仅在SMP模式下支持) LITE_OS_SEC_TEXT BOOL OsTaskCpuAffiSetUnsafe(UINT32 taskID, UINT16 newCpuAffiMask, UINT16 *oldCpuAffiMask) { #ifdef LOSCFG_KERNEL_SMP LosTaskCB *taskCB = OS_TCB_FROM_TID(taskID); taskCB->cpuAffiMask = newCpuAffiMask; *oldCpuAffiMask = CPUID_TO_AFFI_MASK(taskCB->currCpu); if (!((*oldCpuAffiMask) & newCpuAffiMask)) { taskCB->signal = SIGNAL_AFFI; return TRUE; } #else (VOID)taskID; (VOID)newCpuAffiMask; (VOID)oldCpuAffiMask; #endif /* LOSCFG_KERNEL_SMP */ return FALSE; } LITE_OS_SEC_TEXT_MINOR UINT32 LOS_TaskCpuAffiSet(UINT32 taskID, UINT16 cpuAffiMask) { LosTaskCB *taskCB = NULL; BOOL needSched = FALSE; UINT32 intSave; UINT16 currCpuMask; if (OS_TID_CHECK_INVALID(taskID)) {//检测taskid是否有效,task由task池分配,鸿蒙默认128个任务 ID范围[0:127] return LOS_ERRNO_TSK_ID_INVALID; } if (!(cpuAffiMask & LOSCFG_KERNEL_CPU_MASK)) {//检测cpu亲和力 return LOS_ERRNO_TSK_CPU_AFFINITY_MASK_ERR; } taskCB = OS_TCB_FROM_TID(taskID);//获取任务实体 SCHEDULER_LOCK(intSave); if (taskCB->taskStatus & OS_TASK_STATUS_UNUSED) {//贴有未使用标签的处理 SCHEDULER_UNLOCK(intSave); return LOS_ERRNO_TSK_NOT_CREATED; } needSched = OsTaskCpuAffiSetUnsafe(taskID, cpuAffiMask, &currCpuMask); SCHEDULER_UNLOCK(intSave); if (needSched && OS_SCHEDULER_ACTIVE) { LOS_MpSchedule(currCpuMask);//发送信号调度信号给目标CPU LOS_Schedule();//申请调度 } return LOS_OK; } ///查询任务被绑在哪个CPU上 LITE_OS_SEC_TEXT_MINOR UINT16 LOS_TaskCpuAffiGet(UINT32 taskID) { #ifdef LOSCFG_KERNEL_SMP #define INVALID_CPU_AFFI_MASK 0 LosTaskCB *taskCB = NULL; UINT16 cpuAffiMask; UINT32 intSave; if (OS_TID_CHECK_INVALID(taskID)) { return INVALID_CPU_AFFI_MASK; } taskCB = OS_TCB_FROM_TID(taskID);//获取任务实体 SCHEDULER_LOCK(intSave); if (taskCB->taskStatus & OS_TASK_STATUS_UNUSED) { //任务必须在使用 SCHEDULER_UNLOCK(intSave); return INVALID_CPU_AFFI_MASK; } cpuAffiMask = taskCB->cpuAffiMask; //获取亲和力掩码 SCHEDULER_UNLOCK(intSave); return cpuAffiMask; #else (VOID)taskID; return 1;//单核情况直接返回1 ,0号cpu对应0x01 #endif } /* * Description : Process pending signals tagged by others cores */ /*! 由其他CPU核触发阻塞进程的信号 函数由汇编代码调用 ..\arch\arm\arm\src\los_dispatch.S */ LITE_OS_SEC_TEXT_MINOR VOID OsTaskProcSignal(VOID) { UINT32 intSave, ret; //私有且不可中断,无需保护。这个任务在其他CPU核看到它时总是在运行,所以它在执行代码的同时也可以继续接收信号 /* * private and uninterruptable, no protection needed. * while this task is always running when others cores see it, * so it keeps recieving signals while follow code excuting. */ LosTaskCB *runTask = OsCurrTaskGet(); if (runTask->signal == SIGNAL_NONE) { return; } if (runTask->signal & SIGNAL_KILL) {//意思是其他cpu发起了要干掉你的信号 /* * clear the signal, and do the task deletion. if the signaled task has been * scheduled out, then this deletion will wait until next run. *///如果发出信号的任务已出调度就绪队列,则此删除将等待下次运行 SCHEDULER_LOCK(intSave); runTask->signal = SIGNAL_NONE;//清除信号, ret = OsTaskDeleteUnsafe(runTask, OS_PRO_EXIT_OK, intSave);//任务的自杀行动,这可是正在运行的任务. if (ret) { PRINT_ERR("Task proc signal delete task(%u) failed err:0x%x\n", runTask->taskID, ret); } } else if (runTask->signal & SIGNAL_SUSPEND) {//意思是其他cpu发起了要挂起你的信号 runTask->signal &= ~SIGNAL_SUSPEND;//任务贴上被其他CPU挂起的标签 /* suspend killed task may fail, ignore the result */ (VOID)LOS_TaskSuspend(runTask->taskID); #ifdef LOSCFG_KERNEL_SMP } else if (runTask->signal & SIGNAL_AFFI) {//意思是下次调度其他cpu要媾和你 runTask->signal &= ~SIGNAL_AFFI;//任务贴上被其他CPU媾和的标签 /* pri-queue has updated, notify the target cpu */ LOS_MpSchedule((UINT32)runTask->cpuAffiMask);//发生调度,此任务将移交给媾和CPU运行. #endif } } LITE_OS_SEC_TEXT INT32 OsSetTaskName(LosTaskCB *taskCB, const CHAR *name, BOOL setPName) { UINT32 intSave; errno_t err; LosProcessCB *processCB = NULL; const CHAR *namePtr = NULL; CHAR nameBuff[OS_TCB_NAME_LEN] = { 0 }; if ((taskCB == NULL) || (name == NULL)) { return EINVAL; } if (LOS_IsUserAddress((VADDR_T)(UINTPTR)name)) { err = LOS_StrncpyFromUser(nameBuff, (const CHAR *)name, OS_TCB_NAME_LEN); if (err < 0) { return -err; } namePtr = nameBuff; } else { namePtr = name; } SCHEDULER_LOCK(intSave); err = strncpy_s(taskCB->taskName, OS_TCB_NAME_LEN, (VOID *)namePtr, OS_TCB_NAME_LEN - 1); if (err != EOK) { err = EINVAL; goto EXIT; } err = LOS_OK; processCB = OS_PCB_FROM_PID(taskCB->processID); /* if thread is main thread, then set processName as taskName */ if ((taskCB->taskID == processCB->threadGroupID) && (setPName == TRUE)) { err = (INT32)OsSetProcessName(processCB, (const CHAR *)taskCB->taskName); if (err != LOS_OK) { err = EINVAL; } } EXIT: SCHEDULER_UNLOCK(intSave); return err; } /// //退群并发起kill信号 STATIC VOID OsExitGroupActiveTaskKilled(LosProcessCB *processCB, LosTaskCB *taskCB) { INT32 ret; taskCB->taskStatus |= OS_TASK_FLAG_EXIT_KILL; #ifdef LOSCFG_KERNEL_SMP /* The other core that the thread is running on and is currently running in a non-system call */ if (!taskCB->sig.sigIntLock && (taskCB->taskStatus & OS_TASK_STATUS_RUNNING)) { taskCB->signal = SIGNAL_KILL; LOS_MpSchedule(taskCB->currCpu); } else #endif #ifdef LOSCFG_KERNEL_VM { ret = OsTaskKillUnsafe(taskCB->taskID, SIGKILL); if (ret != LOS_OK) { PRINT_ERR("pid %u exit, Exit task group %u kill %u failed! ERROR: %d\n", taskCB->processID, OsCurrTaskGet()->taskID, taskCB->taskID, ret); } } #endif if (!(taskCB->taskStatus & OS_TASK_FLAG_PTHREAD_JOIN)) { taskCB->taskStatus |= OS_TASK_FLAG_PTHREAD_JOIN; LOS_ListInit(&taskCB->joinList); } ret = OsTaskJoinPendUnsafe(taskCB); if (ret != LOS_OK) { PRINT_ERR("pid %u exit, Exit task group %u to wait others task %u(0x%x) exit failed! ERROR: %d\n", taskCB->processID, OsCurrTaskGet()->taskID, taskCB->taskID, taskCB->taskStatus, ret); } } ///1.当前进程中的任务集体退群, 2.当前进程贴上退出标签 LITE_OS_SEC_TEXT VOID OsTaskExitGroup(UINT32 status) { UINT32 intSave; LosProcessCB *processCB = OsCurrProcessGet(); LosTaskCB *currTask = OsCurrTaskGet(); SCHEDULER_LOCK(intSave);//调度自旋锁,这块锁的代码有点多,容易出问题!出问题也不好复现,希望鸿蒙有充分测试这块的功能. @note_thinking if ((processCB->processStatus & OS_PROCESS_FLAG_EXIT) || !OsProcessIsUserMode(processCB)) { SCHEDULER_UNLOCK(intSave); return; } processCB->processStatus |= OS_PROCESS_FLAG_EXIT;//贴上进程要退出的标签 processCB->threadGroupID = currTask->taskID; LOS_DL_LIST *list = &processCB->threadSiblingList;//获取进程的任务链表遍历 LOS_DL_LIST *head = list; do { LosTaskCB *taskCB = LOS_DL_LIST_ENTRY(list->pstNext, LosTaskCB, threadList); if ((taskCB->taskStatus & (OS_TASK_STATUS_INIT | OS_TASK_STATUS_EXIT) || ((taskCB->taskStatus & OS_TASK_STATUS_READY) && !taskCB->sig.sigIntLock)) && !(taskCB->taskStatus & OS_TASK_STATUS_RUNNING)) { OsTaskDeleteInactive(processCB, taskCB);//先删除不活动的任务 } else { if (taskCB != currTask) {//非当前任务 OsExitGroupActiveTaskKilled(processCB, taskCB);//退群并发起kill信号 } else { /* Skip the current task | 跳过当前任务 */ list = list->pstNext; } } } while (head != list->pstNext);//遍历链表 SCHEDULER_UNLOCK(intSave);//释放锁 LOS_ASSERT(processCB->threadNumber == 1);//这一趟下来,进程只有一个正在活动的任务 return; } ///任务退群并销毁,进入任务的回收链表之后再进入空闲链表,等着再次被分配使用. LITE_OS_SEC_TEXT VOID OsExecDestroyTaskGroup(VOID) { OsTaskExitGroup(OS_PRO_EXIT_OK);//任务退出 OsTaskCBRecycleToFree(); } UINT32 OsUserTaskOperatePermissionsCheck(LosTaskCB *taskCB) { return OsUserProcessOperatePermissionsCheck(taskCB, OsCurrProcessGet()->processID); } UINT32 OsUserProcessOperatePermissionsCheck(LosTaskCB *taskCB, UINT32 processID) { if (taskCB == NULL) { return LOS_EINVAL; } if (processID == OS_INVALID_VALUE) { return OS_INVALID_VALUE; } if (taskCB->taskStatus & OS_TASK_STATUS_UNUSED) { return LOS_EINVAL; } if (processID != taskCB->processID) { return LOS_EPERM; } return LOS_OK; } ///创建任务之前,检查用户态任务栈的参数,是否地址在用户空间 LITE_OS_SEC_TEXT_INIT STATIC UINT32 OsCreateUserTaskParamCheck(UINT32 processID, TSK_INIT_PARAM_S *param) { UserTaskParam *userParam = NULL; if (param == NULL) { return OS_INVALID_VALUE; } userParam = ¶m->userParam; if ((processID == OS_INVALID_VALUE) && !LOS_IsUserAddress(userParam->userArea)) {//堆地址必须在用户空间 return OS_INVALID_VALUE; } if (!LOS_IsUserAddress((UINTPTR)param->pfnTaskEntry)) {//入口函数必须在用户空间 return OS_INVALID_VALUE; } //堆栈必须在用户空间 if (userParam->userMapBase && !LOS_IsUserAddressRange(userParam->userMapBase, userParam->userMapSize)) { return OS_INVALID_VALUE; } //检查堆,栈范围 if (!LOS_IsUserAddress(userParam->userSP)) { return OS_INVALID_VALUE; } return LOS_OK; } ///创建一个用户态任务 LITE_OS_SEC_TEXT_INIT UINT32 OsCreateUserTask(UINT32 processID, TSK_INIT_PARAM_S *initParam) { LosProcessCB *processCB = NULL; UINT32 taskID; UINT32 ret; UINT32 intSave; ret = OsCreateUserTaskParamCheck(processID, initParam);//检查参数,堆栈,入口地址必须在用户空间 if (ret != LOS_OK) { return ret; } //这里可看出一个任务有两个栈,内核态栈(内核指定栈大小)和用户态栈(用户指定栈大小) initParam->uwStackSize = OS_USER_TASK_SYSCALL_STACK_SIZE; initParam->usTaskPrio = OS_TASK_PRIORITY_LOWEST;//设置最低优先级 31级 initParam->policy = LOS_SCHED_RR;//调度方式为抢占式,注意鸿蒙不仅仅只支持抢占式调度方式 if (processID == OS_INVALID_VALUE) {//外面没指定进程ID的处理 SCHEDULER_LOCK(intSave); processCB = OsCurrProcessGet();//拿当前运行的进程 initParam->processID = processCB->processID;//进程ID赋值 initParam->consoleID = processCB->consoleID;//任务控制台ID归属 SCHEDULER_UNLOCK(intSave); } else {//进程已经创建 processCB = OS_PCB_FROM_PID(processID);//通过ID拿到进程PCB if (!(processCB->processStatus & (OS_PROCESS_STATUS_INIT | OS_PROCESS_STATUS_RUNNING))) {//进程未初始化和未正在运行时 return OS_INVALID_VALUE;//@note_why 为什么这两种情况下会创建任务失败 } initParam->processID = processID;//进程ID赋值 initParam->consoleID = 0;//默认0号控制台 } ret = LOS_TaskCreateOnly(&taskID, initParam);//只创建task实体,不申请调度 if (ret != LOS_OK) { return OS_INVALID_VALUE; } return taskID; } ///获取任务的调度方式 LITE_OS_SEC_TEXT INT32 LOS_GetTaskScheduler(INT32 taskID) { UINT32 intSave; LosTaskCB *taskCB = NULL; INT32 policy; if (OS_TID_CHECK_INVALID(taskID)) { return -LOS_EINVAL; } taskCB = OS_TCB_FROM_TID(taskID);//通过任务ID获得任务TCB SCHEDULER_LOCK(intSave); if (taskCB->taskStatus & OS_TASK_STATUS_UNUSED) {//状态不能是没有在使用 policy = -LOS_EINVAL; OS_GOTO_ERREND(); } policy = taskCB->policy;//任务的调度方式 LOS_ERREND: SCHEDULER_UNLOCK(intSave); return policy; } //设置任务的调度信息 LITE_OS_SEC_TEXT INT32 LOS_SetTaskScheduler(INT32 taskID, UINT16 policy, UINT16 priority) { UINT32 intSave; BOOL needSched = FALSE; if (OS_TID_CHECK_INVALID(taskID)) { return LOS_ESRCH; } if (priority > OS_TASK_PRIORITY_LOWEST) { return LOS_EINVAL; } if ((policy != LOS_SCHED_FIFO) && (policy != LOS_SCHED_RR)) { return LOS_EINVAL; } SCHEDULER_LOCK(intSave); needSched = OsSchedModifyTaskSchedParam(OS_TCB_FROM_TID(taskID), policy, priority); SCHEDULER_UNLOCK(intSave); LOS_MpSchedule(OS_MP_CPU_ALL); if (needSched && OS_SCHEDULER_ACTIVE) { LOS_Schedule(); } return LOS_OK; } STATIC UINT32 OsTaskJoinCheck(UINT32 taskID) { if (OS_TID_CHECK_INVALID(taskID)) { return LOS_EINVAL; } if (OS_INT_ACTIVE) { return LOS_EINTR; } if (!OsPreemptable()) { return LOS_EINVAL; } if (taskID == OsCurrTaskGet()->taskID) { return LOS_EDEADLK; } return LOS_OK; } UINT32 LOS_TaskJoin(UINT32 taskID, UINTPTR *retval) { UINT32 intSave; LosTaskCB *runTask = OsCurrTaskGet(); LosTaskCB *taskCB = NULL; UINT32 errRet; errRet = OsTaskJoinCheck(taskID); if (errRet != LOS_OK) { return errRet; } taskCB = OS_TCB_FROM_TID(taskID); SCHEDULER_LOCK(intSave); if (taskCB->taskStatus & OS_TASK_STATUS_UNUSED) { SCHEDULER_UNLOCK(intSave); return LOS_EINVAL; } if (runTask->processID != taskCB->processID) { SCHEDULER_UNLOCK(intSave); return LOS_EPERM; } errRet = OsTaskJoinPendUnsafe(taskCB); SCHEDULER_UNLOCK(intSave); if (errRet == LOS_OK) { LOS_Schedule(); if (retval != NULL) { *retval = (UINTPTR)taskCB->joinRetval; } (VOID)LOS_TaskDelete(taskID); return LOS_OK; } return errRet; } UINT32 LOS_TaskDetach(UINT32 taskID) { UINT32 intSave; LosTaskCB *runTask = OsCurrTaskGet(); LosTaskCB *taskCB = NULL; UINT32 errRet; if (OS_TID_CHECK_INVALID(taskID)) { return LOS_EINVAL; } if (OS_INT_ACTIVE) { return LOS_EINTR; } taskCB = OS_TCB_FROM_TID(taskID); SCHEDULER_LOCK(intSave); if (taskCB->taskStatus & OS_TASK_STATUS_UNUSED) { SCHEDULER_UNLOCK(intSave); return LOS_EINVAL; } if (runTask->processID != taskCB->processID) { SCHEDULER_UNLOCK(intSave); return LOS_EPERM; } if (taskCB->taskStatus & OS_TASK_STATUS_EXIT) { SCHEDULER_UNLOCK(intSave); return LOS_TaskJoin(taskID, NULL); } errRet = OsTaskSetDetachUnsafe(taskCB); SCHEDULER_UNLOCK(intSave); return errRet; } LITE_OS_SEC_TEXT UINT32 LOS_GetSystemTaskMaximum(VOID) { return g_taskMaxNum; } LITE_OS_SEC_TEXT VOID OsWriteResourceEvent(UINT32 events) { (VOID)LOS_EventWrite(&g_resourceEvent, events); } LITE_OS_SEC_TEXT VOID OsWriteResourceEventUnsafe(UINT32 events) { (VOID)OsEventWriteUnsafe(&g_resourceEvent, events, FALSE, NULL); } ///资源回收任务 STATIC VOID OsResourceRecoveryTask(VOID) { UINT32 ret; while (1) {//死循环,回收资源不存在退出情况,只要系统在运行资源就需要回收 ret = LOS_EventRead(&g_resourceEvent, OS_RESOURCE_EVENT_MASK, LOS_WAITMODE_OR | LOS_WAITMODE_CLR, LOS_WAIT_FOREVER);//读取资源事件 if (ret & (OS_RESOURCE_EVENT_FREE | OS_RESOURCE_EVENT_OOM)) {//收到资源释放或内存异常情况 OsTaskCBRecycleToFree(); OsProcessCBRecycleToFree();//回收进程到空闲进程池 } #ifdef LOSCFG_ENABLE_OOM_LOOP_TASK //内存溢出监测任务开关 if (ret & OS_RESOURCE_EVENT_OOM) {//触发了这个事件 (VOID)OomCheckProcess();//检查进程的内存溢出情况 } #endif } } ///创建一个回收资源的任务 LITE_OS_SEC_TEXT UINT32 OsResourceFreeTaskCreate(VOID) { UINT32 ret; UINT32 taskID; TSK_INIT_PARAM_S taskInitParam; ret = LOS_EventInit((PEVENT_CB_S)&g_resourceEvent);//初始化资源事件 if (ret != LOS_OK) { return LOS_NOK; } (VOID)memset_s((VOID *)(&taskInitParam), sizeof(TSK_INIT_PARAM_S), 0, sizeof(TSK_INIT_PARAM_S)); taskInitParam.pfnTaskEntry = (TSK_ENTRY_FUNC)OsResourceRecoveryTask;//入口函数 taskInitParam.uwStackSize = OS_TASK_RESOURCE_STATIC_SIZE; taskInitParam.pcName = "ResourcesTask"; taskInitParam.usTaskPrio = OS_TASK_RESOURCE_FREE_PRIORITY;// 5 ,优先级很高 ret = LOS_TaskCreate(&taskID, &taskInitParam); if (ret == LOS_OK) { OS_TCB_FROM_TID(taskID)->taskStatus |= OS_TASK_FLAG_NO_DELETE; } return ret; } LOS_MODULE_INIT(OsResourceFreeTaskCreate, LOS_INIT_LEVEL_KMOD_TASK);//资源回收任务初始化