/***************************************************************************** * Copyright (c) 2022, Nations Technologies Inc. * * All rights reserved. * **************************************************************************** * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the disclaimer below. * * Nations' name may not be used to endorse or promote products derived from * this software without specific prior written permission. * * DISCLAIMER: THIS SOFTWARE IS PROVIDED BY NATIONS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * DISCLAIMED. IN NO EVENT SHALL NATIONS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file n32l40x_i2c.h * @author Nations * @version v1.2.0 * * @copyright Copyright (c) 2022, Nations Technologies Inc. All rights reserved. */ #ifndef __N32L40X_I2C_H__ #define __N32L40X_I2C_H__ #ifdef __cplusplus extern "C" { #endif #include "n32l40x.h" /** @addtogroup n32l40x_StdPeriph_Driver * @{ */ /** @addtogroup I2C * @{ */ /** @addtogroup I2C_Exported_Types * @{ */ /** * @brief I2C Init structure definition */ typedef struct { uint32_t ClkSpeed; /*!< Specifies the clock frequency. This parameter must be set to a value lower than 400kHz */ uint16_t BusMode; /*!< Specifies the I2C mode. This parameter can be a value of @ref I2C_BusMode */ uint16_t FmDutyCycle; /*!< Specifies the I2C fast mode duty cycle. This parameter can be a value of @ref I2C_duty_cycle_in_fast_mode */ uint16_t OwnAddr1; /*!< Specifies the first device own address. This parameter can be a 7-bit or 10-bit address. */ uint16_t AckEnable; /*!< Enables or disables the acknowledgement. This parameter can be a value of @ref I2C_acknowledgement */ uint16_t AddrMode; /*!< Specifies if 7-bit or 10-bit address is acknowledged. This parameter can be a value of @ref I2C_acknowledged_address */ } I2C_InitType; /** * @} */ /** @addtogroup I2C_Exported_Constants * @{ */ #define IS_I2C_PERIPH(PERIPH) (((PERIPH) == I2C1) || ((PERIPH) == I2C2)) /** @addtogroup I2C_BusMode * @{ */ #define I2C_BUSMODE_I2C ((uint16_t)0x0000) #define I2C_BUSMODE_SMBDEVICE ((uint16_t)0x0002) #define I2C_BUSMODE_SMBHOST ((uint16_t)0x000A) #define IS_I2C_BUS_MODE(MODE) \ (((MODE) == I2C_BUSMODE_I2C) || ((MODE) == I2C_BUSMODE_SMBDEVICE) || ((MODE) == I2C_BUSMODE_SMBHOST)) /** * @} */ /** @addtogroup I2C_duty_cycle_in_fast_mode * @{ */ #define I2C_FMDUTYCYCLE_16_9 ((uint16_t)0x4000) /*!< I2C fast mode Tlow/Thigh = 16/9 */ #define I2C_FMDUTYCYCLE_2 ((uint16_t)0xBFFF) /*!< I2C fast mode Tlow/Thigh = 2 */ #define IS_I2C_FM_DUTY_CYCLE(CYCLE) (((CYCLE) == I2C_FMDUTYCYCLE_16_9) || ((CYCLE) == I2C_FMDUTYCYCLE_2)) /** * @} */ /** @addtogroup I2C_acknowledgement * @{ */ #define I2C_ACKEN ((uint16_t)0x0400) #define I2C_ACKDIS ((uint16_t)0x0000) #define IS_I2C_ACK_STATE(STATE) (((STATE) == I2C_ACKEN) || ((STATE) == I2C_ACKDIS)) /** * @} */ /** @addtogroup I2C_transfer_direction * @{ */ #define I2C_DIRECTION_SEND ((uint8_t)0x00) #define I2C_DIRECTION_RECV ((uint8_t)0x01) #define IS_I2C_DIRECTION(DIRECTION) (((DIRECTION) == I2C_DIRECTION_SEND) || ((DIRECTION) == I2C_DIRECTION_RECV)) /** * @} */ /** @addtogroup I2C_acknowledged_address * @{ */ #define I2C_ADDR_MODE_7BIT ((uint16_t)0x4000) #define I2C_ADDR_MODE_10BIT ((uint16_t)0xC000) #define IS_I2C_ADDR_MODE(ADDRESS) (((ADDRESS) == I2C_ADDR_MODE_7BIT) || ((ADDRESS) == I2C_ADDR_MODE_10BIT)) /** * @} */ /** @addtogroup I2C_registers * @{ */ #define I2C_REG_CTRL1 ((uint8_t)0x00) #define I2C_REG_CTRL2 ((uint8_t)0x04) #define I2C_REG_OADDR1 ((uint8_t)0x08) #define I2C_REG_OADDR2 ((uint8_t)0x0C) #define I2C_REG_DAT ((uint8_t)0x10) #define I2C_REG_STS1 ((uint8_t)0x14) #define I2C_REG_STS2 ((uint8_t)0x18) #define I2C_REG_CLKCTRL ((uint8_t)0x1C) #define I2C_REG_TMRISE ((uint8_t)0x20) #define IS_I2C_REG(REGISTER) \ (((REGISTER) == I2C_REG_CTRL1) || ((REGISTER) == I2C_REG_CTRL2) || ((REGISTER) == I2C_REG_OADDR1) \ || ((REGISTER) == I2C_REG_OADDR2) || ((REGISTER) == I2C_REG_DAT) || ((REGISTER) == I2C_REG_STS1) \ || ((REGISTER) == I2C_REG_STS2) || ((REGISTER) == I2C_REG_CLKCTRL) || ((REGISTER) == I2C_REG_TMRISE)) /** * @} */ /** @addtogroup I2C_SMBus_alert_pin_level * @{ */ #define I2C_SMBALERT_LOW ((uint16_t)0x2000) #define I2C_SMBALERT_HIGH ((uint16_t)0xDFFF) #define IS_I2C_SMB_ALERT(ALERT) (((ALERT) == I2C_SMBALERT_LOW) || ((ALERT) == I2C_SMBALERT_HIGH)) /** * @} */ /** @addtogroup I2C_PEC_position * @{ */ #define I2C_PEC_POS_NEXT ((uint16_t)0x0800) #define I2C_PEC_POS_CURRENT ((uint16_t)0xF7FF) #define IS_I2C_PEC_POS(POSITION) (((POSITION) == I2C_PEC_POS_NEXT) || ((POSITION) == I2C_PEC_POS_CURRENT)) /** * @} */ /** @addtogroup I2C_NCAK_position * @{ */ #define I2C_NACK_POS_NEXT ((uint16_t)0x0800) #define I2C_NACK_POS_CURRENT ((uint16_t)0xF7FF) #define IS_I2C_NACK_POS(POSITION) (((POSITION) == I2C_NACK_POS_NEXT) || ((POSITION) == I2C_NACK_POS_CURRENT)) /** * @} */ /** @addtogroup I2C_interrupts_definition * @{ */ #define I2C_INT_BUF ((uint16_t)0x0400) #define I2C_INT_EVENT ((uint16_t)0x0200) #define I2C_INT_ERR ((uint16_t)0x0100) #define IS_I2C_CFG_INT(IT) ((((IT) & (uint16_t)0xF8FF) == 0x00) && ((IT) != 0x00)) /** * @} */ /** @addtogroup I2C_interrupts_definition * @{ */ #define I2C_INT_SMBALERT ((uint32_t)0x01008000) #define I2C_INT_TIMOUT ((uint32_t)0x01004000) #define I2C_INT_PECERR ((uint32_t)0x01001000) #define I2C_INT_OVERRUN ((uint32_t)0x01000800) #define I2C_INT_ACKFAIL ((uint32_t)0x01000400) #define I2C_INT_ARLOST ((uint32_t)0x01000200) #define I2C_INT_BUSERR ((uint32_t)0x01000100) #define I2C_INT_TXDATE ((uint32_t)0x06000080) #define I2C_INT_RXDATNE ((uint32_t)0x06000040) #define I2C_INT_STOPF ((uint32_t)0x02000010) #define I2C_INT_ADDR10F ((uint32_t)0x02000008) #define I2C_INT_BYTEF ((uint32_t)0x02000004) #define I2C_INT_ADDRF ((uint32_t)0x02000002) #define I2C_INT_STARTBF ((uint32_t)0x02000001) #define IS_I2C_CLR_INT(IT) ((((IT) & (uint16_t)0x20FF) == 0x00) && ((IT) != (uint16_t)0x00)) #define IS_I2C_GET_INT(IT) \ (((IT) == I2C_INT_SMBALERT) || ((IT) == I2C_INT_TIMOUT) || ((IT) == I2C_INT_PECERR) || ((IT) == I2C_INT_OVERRUN) \ || ((IT) == I2C_INT_ACKFAIL) || ((IT) == I2C_INT_ARLOST) || ((IT) == I2C_INT_BUSERR) || ((IT) == I2C_INT_TXDATE) \ || ((IT) == I2C_INT_RXDATNE) || ((IT) == I2C_INT_STOPF) || ((IT) == I2C_INT_ADDR10F) || ((IT) == I2C_INT_BYTEF) \ || ((IT) == I2C_INT_ADDRF) || ((IT) == I2C_INT_STARTBF)) /** * @} */ /** @addtogroup I2C_flags_definition * @{ */ /** * @brief STS2 register flags */ #define I2C_FLAG_DUALFLAG ((uint32_t)0x00800000) #define I2C_FLAG_SMBHADDR ((uint32_t)0x00400000) #define I2C_FLAG_SMBDADDR ((uint32_t)0x00200000) #define I2C_FLAG_GCALLADDR ((uint32_t)0x00100000) #define I2C_FLAG_TRF ((uint32_t)0x00040000) #define I2C_FLAG_BUSY ((uint32_t)0x00020000) #define I2C_FLAG_MSMODE ((uint32_t)0x00010000) /** * @brief STS1 register flags */ #define I2C_FLAG_SMBALERT ((uint32_t)0x10008000) #define I2C_FLAG_TIMOUT ((uint32_t)0x10004000) #define I2C_FLAG_PECERR ((uint32_t)0x10001000) #define I2C_FLAG_OVERRUN ((uint32_t)0x10000800) #define I2C_FLAG_ACKFAIL ((uint32_t)0x10000400) #define I2C_FLAG_ARLOST ((uint32_t)0x10000200) #define I2C_FLAG_BUSERR ((uint32_t)0x10000100) #define I2C_FLAG_TXDATE ((uint32_t)0x10000080) #define I2C_FLAG_RXDATNE ((uint32_t)0x10000040) #define I2C_FLAG_STOPF ((uint32_t)0x10000010) #define I2C_FLAG_ADDR10F ((uint32_t)0x10000008) #define I2C_FLAG_BYTEF ((uint32_t)0x10000004) #define I2C_FLAG_ADDRF ((uint32_t)0x10000002) #define I2C_FLAG_STARTBF ((uint32_t)0x10000001) #define IS_I2C_CLR_FLAG(FLAG) ((((FLAG) & (uint16_t)0x20FF) == 0x00) && ((FLAG) != (uint16_t)0x00)) #define IS_I2C_GET_FLAG(FLAG) \ (((FLAG) == I2C_FLAG_DUALFLAG) || ((FLAG) == I2C_FLAG_SMBHADDR) || ((FLAG) == I2C_FLAG_SMBDADDR) \ || ((FLAG) == I2C_FLAG_GCALLADDR) || ((FLAG) == I2C_FLAG_TRF) || ((FLAG) == I2C_FLAG_BUSY) \ || ((FLAG) == I2C_FLAG_MSMODE) || ((FLAG) == I2C_FLAG_SMBALERT) || ((FLAG) == I2C_FLAG_TIMOUT) \ || ((FLAG) == I2C_FLAG_PECERR) || ((FLAG) == I2C_FLAG_OVERRUN) || ((FLAG) == I2C_FLAG_ACKFAIL) \ || ((FLAG) == I2C_FLAG_ARLOST) || ((FLAG) == I2C_FLAG_BUSERR) || ((FLAG) == I2C_FLAG_TXDATE) \ || ((FLAG) == I2C_FLAG_RXDATNE) || ((FLAG) == I2C_FLAG_STOPF) || ((FLAG) == I2C_FLAG_ADDR10F) \ || ((FLAG) == I2C_FLAG_BYTEF) || ((FLAG) == I2C_FLAG_ADDRF) || ((FLAG) == I2C_FLAG_STARTBF)) /** * @} */ /** @addtogroup I2C_Events * @{ */ /*======================================== I2C Master Events (Events grouped in order of communication) ==========================================*/ /** * @brief Communication start * * After sending the START condition (I2C_GenerateStart() function) the master * has to wait for this event. It means that the Start condition has been correctly * released on the I2C bus (the bus is free, no other devices is communicating). * */ /* Master mode */ #define I2C_ROLE_MASTER ((uint32_t)0x00010000) /* MSMODE */ /* --EV5 */ #define I2C_EVT_MASTER_MODE_FLAG ((uint32_t)0x00030001) /* BUSY, MSL and SB flag */ /** * @brief Address Acknowledge * * After checking on EV5 (start condition correctly released on the bus), the * master sends the address of the slave(s) with which it will communicate * (I2C_SendAddr7bit() function, it also determines the direction of the communication: * Master transmitter or Receiver). Then the master has to wait that a slave acknowledges * his address. If an acknowledge is sent on the bus, one of the following events will * be set: * * 1) In case of Master Receiver (7-bit addressing): the I2C_EVT_MASTER_RXMODE_FLAG * event is set. * * 2) In case of Master Transmitter (7-bit addressing): the I2C_EVT_MASTER_TXMODE_FLAG * is set * * 3) In case of 10-Bit addressing mode, the master (just after generating the START * and checking on EV5) has to send the header of 10-bit addressing mode (I2C_SendData() * function). Then master should wait on EV9. It means that the 10-bit addressing * header has been correctly sent on the bus. Then master should send the second part of * the 10-bit address (LSB) using the function I2C_SendAddr7bit(). Then master * should wait for event EV6. * */ /* --EV6 */ #define I2C_EVT_MASTER_TXMODE_FLAG ((uint32_t)0x00070082) /* BUSY, MSL, ADDR, TXE and TRA flags */ #define I2C_EVT_MASTER_RXMODE_FLAG ((uint32_t)0x00030002) /* BUSY, MSL and ADDR flags */ /* --EV9 */ #define I2C_EVT_MASTER_MODE_ADDRESS10_FLAG ((uint32_t)0x00030008) /* BUSY, MSL and ADD10 flags */ /** * @brief Communication events * * If a communication is established (START condition generated and slave address * acknowledged) then the master has to check on one of the following events for * communication procedures: * * 1) Master Receiver mode: The master has to wait on the event EV7 then to read * the data received from the slave (I2C_RecvData() function). * * 2) Master Transmitter mode: The master has to send data (I2C_SendData() * function) then to wait on event EV8 or EV8_2. * These two events are similar: * - EV8 means that the data has been written in the data register and is * being shifted out. * - EV8_2 means that the data has been physically shifted out and output * on the bus. * In most cases, using EV8 is sufficient for the application. * Using EV8_2 leads to a slower communication but ensure more reliable test. * EV8_2 is also more suitable than EV8 for testing on the last data transmission * (before Stop condition generation). * * @note In case the user software does not guarantee that this event EV7 is * managed before the current byte end of transfer, then user may check on EV7 * and BTF flag at the same time (ie. (I2C_EVT_MASTER_DATA_RECVD_FLAG | I2C_FLAG_BYTEF)). * In this case the communication may be slower. * */ /* Master RECEIVER mode -----------------------------*/ /* --EV7 */ #define I2C_EVT_MASTER_DATA_RECVD_FLAG ((uint32_t)0x00030040) /* BUSY, MSL and RXNE flags */ /* EV7x shifter register full */ #define I2C_EVT_MASTER_SFT_DATA_RECVD_FLAG ((uint32_t)0x00030044) /* BUSY, MSMODE, BSF and RXDATNE flags */ /* Master TRANSMITTER mode --------------------------*/ /* --EV8 */ #define I2C_EVT_MASTER_DATA_SENDING ((uint32_t)0x00070080) /* TRA, BUSY, MSL, TXE flags */ /* --EV8_2 */ #define I2C_EVT_MASTER_DATA_SENDED ((uint32_t)0x00070084) /* TRA, BUSY, MSL, TXE and BTF flags */ /*======================================== I2C Slave Events (Events grouped in order of communication) ==========================================*/ /** * @brief Communication start events * * Wait on one of these events at the start of the communication. It means that * the I2C peripheral detected a Start condition on the bus (generated by master * device) followed by the peripheral address. The peripheral generates an ACK * condition on the bus (if the acknowledge feature is enabled through function * I2C_ConfigAck()) and the events listed above are set : * * 1) In normal case (only one address managed by the slave), when the address * sent by the master matches the own address of the peripheral (configured by * OwnAddr1 field) the I2C_EVENT_SLAVE_XXX_ADDRESS_MATCHED event is set * (where XXX could be TRANSMITTER or RECEIVER). * * 2) In case the address sent by the master matches the second address of the * peripheral (configured by the function I2C_ConfigOwnAddr2() and enabled * by the function I2C_EnableDualAddr()) the events I2C_EVENT_SLAVE_XXX_SECONDADDRESS_MATCHED * (where XXX could be TRANSMITTER or RECEIVER) are set. * * 3) In case the address sent by the master is General Call (address 0x00) and * if the General Call is enabled for the peripheral (using function I2C_EnableGeneralCall()) * the following event is set I2C_EVT_SLAVE_GCALLADDR_MATCHED. * */ /* --EV1 (all the events below are variants of EV1) */ /* 1) Case of One Single Address managed by the slave */ #define I2C_EVT_SLAVE_RECV_ADDR_MATCHED ((uint32_t)0x00020002) /* BUSY and ADDR flags */ #define I2C_EVT_SLAVE_SEND_ADDR_MATCHED ((uint32_t)0x00060082) /* TRA, BUSY, TXE and ADDR flags */ /* 2) Case of Dual address managed by the slave */ #define I2C_EVT_SLAVE_RECV_ADDR2_MATCHED ((uint32_t)0x00820000) /* DUALF and BUSY flags */ #define I2C_EVT_SLAVE_SEND_ADDR2_MATCHED ((uint32_t)0x00860080) /* DUALF, TRA, BUSY and TXE flags */ /* 3) Case of General Call enabled for the slave */ #define I2C_EVT_SLAVE_GCALLADDR_MATCHED ((uint32_t)0x00120000) /* GENCALL and BUSY flags */ /** * @brief Communication events * * Wait on one of these events when EV1 has already been checked and: * * - Slave RECEIVER mode: * - EV2: When the application is expecting a data byte to be received. * - EV4: When the application is expecting the end of the communication: master * sends a stop condition and data transmission is stopped. * * - Slave Transmitter mode: * - EV3: When a byte has been transmitted by the slave and the application is expecting * the end of the byte transmission. The two events I2C_EVT_SLAVE_DATA_SENDED and * I2C_EVT_SLAVE_DATA_SENDING are similar. The second one can optionally be * used when the user software doesn't guarantee the EV3 is managed before the * current byte end of transfer. * - EV3_2: When the master sends a NACK in order to tell slave that data transmission * shall end (before sending the STOP condition). In this case slave has to stop sending * data bytes and expect a Stop condition on the bus. * * @note In case the user software does not guarantee that the event EV2 is * managed before the current byte end of transfer, then user may check on EV2 * and BTF flag at the same time (ie. (I2C_EVT_SLAVE_DATA_RECVD | I2C_FLAG_BYTEF)). * In this case the communication may be slower. * */ /* Slave RECEIVER mode --------------------------*/ /* --EV2 */ #define I2C_EVT_SLAVE_DATA_RECVD ((uint32_t)0x00020040) /* BUSY and RXNE flags */ /* --EV2x */ #define I2C_EVT_SLAVE_DATA_RECVD_NOBUSY ((uint32_t)0x00000040) /* no BUSY and RXDATNE flags */ /* --EV4 */ #define I2C_EVT_SLAVE_STOP_RECVD ((uint32_t)0x00000010) /* STOPF flag */ /* Slave TRANSMITTER mode -----------------------*/ /* --EV3 */ #define I2C_EVT_SLAVE_DATA_SENDED ((uint32_t)0x00060084) /* TRA, BUSY, TXE and BTF flags */ #define I2C_EVT_SLAVE_DATA_SENDING ((uint32_t)0x00060080) /* TRA, BUSY and TXE flags */ /* --EV3_2 */ #define I2C_EVT_SLAVE_ACK_MISS ((uint32_t)0x00000400) /* AF flag */ /*=========================== End of Events Description ==========================================*/ #define IS_I2C_EVT(EVENT) \ (((EVENT) == I2C_EVT_SLAVE_SEND_ADDR_MATCHED) || ((EVENT) == I2C_EVT_SLAVE_RECV_ADDR_MATCHED) \ || ((EVENT) == I2C_EVT_SLAVE_SEND_ADDR2_MATCHED) || ((EVENT) == I2C_EVT_SLAVE_RECV_ADDR2_MATCHED) \ || ((EVENT) == I2C_EVT_SLAVE_GCALLADDR_MATCHED) || ((EVENT) == I2C_EVT_SLAVE_DATA_RECVD) \ || ((EVENT) == (I2C_EVT_SLAVE_DATA_RECVD | I2C_FLAG_DUALFLAG)) \ || ((EVENT) == (I2C_EVT_SLAVE_DATA_RECVD | I2C_FLAG_GCALLADDR)) || ((EVENT) == I2C_EVT_SLAVE_DATA_SENDED) \ || ((EVENT) == (I2C_EVT_SLAVE_DATA_SENDED | I2C_FLAG_DUALFLAG)) \ || ((EVENT) == (I2C_EVT_SLAVE_DATA_SENDED | I2C_FLAG_GCALLADDR)) || ((EVENT) == I2C_EVT_SLAVE_STOP_RECVD) \ || ((EVENT) == I2C_EVT_MASTER_MODE_FLAG) || ((EVENT) == I2C_EVT_MASTER_TXMODE_FLAG) \ || ((EVENT) == I2C_EVT_MASTER_RXMODE_FLAG) || ((EVENT) == I2C_EVT_MASTER_DATA_RECVD_FLAG) \ || ((EVENT) == I2C_EVT_MASTER_DATA_SENDED) || ((EVENT) == I2C_EVT_MASTER_DATA_SENDING) \ || ((EVENT) == I2C_EVT_MASTER_MODE_ADDRESS10_FLAG) || ((EVENT) == I2C_EVT_SLAVE_ACK_MISS)) /** * @} */ /** @addtogroup I2C_own_address1 * @{ */ #define IS_I2C_OWN_ADDR1(ADDRESS1) ((ADDRESS1) <= 0x3FF) /** * @} */ /** @addtogroup I2C_clock_speed * @{ */ //#define IS_I2C_CLK_SPEED(SPEED) (((SPEED) >= 0x1) && ((SPEED) <= 400000)) #define IS_I2C_CLK_SPEED(SPEED) (((SPEED) >= 0x1) && ((SPEED) <= 1000000)) /** * @} */ /** * @} */ /** @addtogroup I2C_Exported_Macros * @{ */ /** * @} */ /** @addtogroup I2C_Exported_Functions * @{ */ void I2C_DeInit(I2C_Module* I2Cx); void I2C_Init(I2C_Module* I2Cx, I2C_InitType* I2C_InitStruct); void I2C_InitStruct(I2C_InitType* I2C_InitStruct); void I2C_Enable(I2C_Module* I2Cx, FunctionalState Cmd); void I2C_EnableDMA(I2C_Module* I2Cx, FunctionalState Cmd); void I2C_EnableDmaLastSend(I2C_Module* I2Cx, FunctionalState Cmd); void I2C_GenerateStart(I2C_Module* I2Cx, FunctionalState Cmd); void I2C_GenerateStop(I2C_Module* I2Cx, FunctionalState Cmd); void I2C_ConfigAck(I2C_Module* I2Cx, FunctionalState Cmd); void I2C_ConfigOwnAddr2(I2C_Module* I2Cx, uint8_t Address); void I2C_EnableDualAddr(I2C_Module* I2Cx, FunctionalState Cmd); void I2C_EnableGeneralCall(I2C_Module* I2Cx, FunctionalState Cmd); void I2C_ConfigInt(I2C_Module* I2Cx, uint16_t I2C_IT, FunctionalState Cmd); void I2C_SendData(I2C_Module* I2Cx, uint8_t Data); uint8_t I2C_RecvData(I2C_Module* I2Cx); void I2C_SendAddr7bit(I2C_Module* I2Cx, uint8_t Address, uint8_t I2C_Direction); uint16_t I2C_GetRegister(I2C_Module* I2Cx, uint8_t I2C_Register); void I2C_EnableSoftwareReset(I2C_Module* I2Cx, FunctionalState Cmd); void I2C_ConfigNackLocation(I2C_Module* I2Cx, uint16_t I2C_NACKPosition); void I2C_ConfigSmbusAlert(I2C_Module* I2Cx, uint16_t I2C_SMBusAlert); void I2C_SendPEC(I2C_Module* I2Cx, FunctionalState Cmd); void I2C_ConfigPecLocation(I2C_Module* I2Cx, uint16_t I2C_PECPosition); void I2C_ComputePec(I2C_Module* I2Cx, FunctionalState Cmd); uint8_t I2C_GetPec(I2C_Module* I2Cx); void I2C_EnableArp(I2C_Module* I2Cx, FunctionalState Cmd); void I2C_EnableExtendClk(I2C_Module* I2Cx, FunctionalState Cmd); void I2C_ConfigFastModeDutyCycle(I2C_Module* I2Cx, uint16_t FmDutyCycle); /** * @brief **************************************************************************************** * * I2C State Monitoring Functions * **************************************************************************************** * This I2C driver provides three different ways for I2C state monitoring * depending on the application requirements and constraints: * * * 1) Basic state monitoring: * Using I2C_CheckEvent() function: * It compares the status registers (STS1 and STS2) content to a given event * (can be the combination of one or more flags). * It returns SUCCESS if the current status includes the given flags * and returns ERROR if one or more flags are missing in the current status. * - When to use: * - This function is suitable for most applications as well as for startup * activity since the events are fully described in the product reference manual * (RM0008). * - It is also suitable for users who need to define their own events. * - Limitations: * - If an error occurs (ie. error flags are set besides to the monitored flags), * the I2C_CheckEvent() function may return SUCCESS despite the communication * hold or corrupted real state. * In this case, it is advised to use error interrupts to monitor the error * events and handle them in the interrupt IRQ handler. * * @note * For error management, it is advised to use the following functions: * - I2C_ConfigInt() to configure and enable the error interrupts (I2C_INT_ERR). * - I2Cx_ER_IRQHandler() which is called when the error interrupt occurs. * Where x is the peripheral instance (I2C1, I2C2 ...) * - I2C_GetFlag() or I2C_GetIntStatus() to be called into I2Cx_ER_IRQHandler() * in order to determine which error occurred. * - I2C_ClrFlag() or I2C_ClrIntPendingBit() and/or I2C_EnableSoftwareReset() * and/or I2C_GenerateStop() in order to clear the error flag and source, * and return to correct communication status. * * * 2) Advanced state monitoring: * Using the function I2C_GetLastEvent() which returns the image of both status * registers in a single word (uint32_t) (Status Register 2 value is shifted left * by 16 bits and concatenated to Status Register 1). * - When to use: * - This function is suitable for the same applications above but it allows to * overcome the limitations of I2C_GetFlag() function (see below). * The returned value could be compared to events already defined in the * library (n32l40x_i2c.h) or to custom values defined by user. * - This function is suitable when multiple flags are monitored at the same time. * - At the opposite of I2C_CheckEvent() function, this function allows user to * choose when an event is accepted (when all events flags are set and no * other flags are set or just when the needed flags are set like * I2C_CheckEvent() function). * - Limitations: * - User may need to define his own events. * - Same remark concerning the error management is applicable for this * function if user decides to check only regular communication flags (and * ignores error flags). * * * 3) Flag-based state monitoring: * Using the function I2C_GetFlag() which simply returns the status of * one single flag (ie. I2C_FLAG_RXDATNE ...). * - When to use: * - This function could be used for specific applications or in debug phase. * - It is suitable when only one flag checking is needed (most I2C events * are monitored through multiple flags). * - Limitations: * - When calling this function, the Status register is accessed. Some flags are * cleared when the status register is accessed. So checking the status * of one Flag, may clear other ones. * - Function may need to be called twice or more in order to monitor one * single event. * */ /** * * 1) Basic state monitoring ******************************************************************************* */ ErrorStatus I2C_CheckEvent(I2C_Module* I2Cx, uint32_t I2C_EVENT); /** * * 2) Advanced state monitoring ******************************************************************************* */ uint32_t I2C_GetLastEvent(I2C_Module* I2Cx); /** * * 3) Flag-based state monitoring ******************************************************************************* */ FlagStatus I2C_GetFlag(I2C_Module* I2Cx, uint32_t I2C_FLAG); /** * ******************************************************************************* */ void I2C_ClrFlag(I2C_Module* I2Cx, uint32_t I2C_FLAG); INTStatus I2C_GetIntStatus(I2C_Module* I2Cx, uint32_t I2C_IT); void I2C_ClrIntPendingBit(I2C_Module* I2Cx, uint32_t I2C_IT); #ifdef __cplusplus } #endif #endif /*__N32L40X_I2C_H */ /** * @} */ /** * @} */ /** * @} */