{ "keywords": [], "export": [ "arma.json" ], "时间序列": { "keywords": [], "children": [ { "时间序列基础": { "keywords": [], "children": [ { "含有重复索引的时间序列": { "keywords": [], "children": [] } } ] } }, { "时区处理": { "keywords": [], "children": [ { "时区的本地化和转换": { "keywords": [], "children": [] } }, { "时区感知时间戳对象的操作": { "keywords": [], "children": [] } }, { "不同时区间的操作": { "keywords": [], "children": [] } } ] } }, { "时间区间和区间算术": { "keywords": [], "children": [ { "区间频率转换": { "keywords": [], "children": [] } }, { "季度区间频率": { "keywords": [], "children": [] } }, { "将时间戳转换为区间(以及逆转换)": { "keywords": [], "children": [] } }, { "从数组生成PeriodIndex": { "keywords": [], "children": [] } } ] } }, { "重新采样与频率转换": { "keywords": [], "children": [ { "向下采样": { "keywords": [], "children": [] } }, { "向上采样与插值": { "keywords": [], "children": [] } }, { "使用区间进行重新采样": { "keywords": [], "children": [] } } ] } }, { "移动窗口函数": { "keywords": [], "children": [ { "指数加权函数": { "keywords": [], "children": [] } }, { "二元移动窗口函数": { "keywords": [], "children": [] } }, { "用户自定义的移动窗口函数": { "keywords": [], "children": [] } } ] } } ] }, "node_id": "python-3-241", "children": [ { "变化的分类": { "keywords": [], "children": [], "node_id": "python-4-1402" } }, { "包含趋势的序列分析": { "keywords": [], "children": [ { "曲线拟合": { "keywords": [], "children": [], "node_id": "python-5-1324" } }, { "从时间序列中去除趋势": { "keywords": [], "children": [], "node_id": "python-5-1325" } } ], "node_id": "python-4-1403" } }, { "包含周期性的序列数据分析": { "keywords": [], "children": [], "node_id": "python-4-1404" } }, { "从时间序列中去除周期性": { "keywords": [], "children": [ { "滤波": { "keywords": [], "children": [], "node_id": "python-5-1326" } }, { "差分": { "keywords": [], "children": [], "node_id": "python-5-1327" } } ], "node_id": "python-4-1405" } }, { "平稳时间序列": { "keywords": [], "children": [ { "平稳过程": { "keywords": [], "children": [], "node_id": "python-5-1328" } }, { "自相关和相关图": { "keywords": [], "children": [], "node_id": "python-5-1329" } }, { "自协方差和自相关函数的估计": { "keywords": [], "children": [], "node_id": "python-5-1330" } } ], "node_id": "python-4-1406" } }, { "使用Python进行时间序列分析": { "keywords": [], "children": [ { "有用的方法": { "keywords": [], "children": [], "node_id": "python-5-1331" } }, { "自回归过程": { "keywords": [], "children": [], "node_id": "python-5-1332" } }, { "估计AR过程的参数": { "keywords": [], "children": [], "node_id": "python-5-1333" } } ], "node_id": "python-4-1407" } }, { "混合ARMA模型": { "keywords": [], "children": [], "node_id": "python-4-1408" } }, { "集成ARMA模型": { "keywords": [], "children": [], "node_id": "python-4-1409" } }, { "一个特殊的场景": { "keywords": [], "children": [], "node_id": "python-4-1410" } }, { "数据缺失": { "keywords": [], "children": [], "node_id": "python-4-1411" } } ] }