{ "export": [ "cv.json" ], "keywords": [], "children": [ { "数字图像处理基础": { "keywords": [], "children": [ { "数字图像处理": { "keywords": [], "children": [], "node_id": "python-5-1081" } }, { "图像三要素": { "keywords": [], "children": [], "node_id": "python-5-1082" } }, { "像素及图像类型": { "keywords": [], "children": [], "node_id": "python-5-1083" } }, { "图像信号数字转换": { "keywords": [], "children": [], "node_id": "python-5-1084" } } ], "node_id": "python-4-1324" } }, { "OpenCV基础": { "keywords": [], "children": [ { "安装配置": { "keywords": [], "children": [], "node_id": "python-5-1085" } }, { "OpenCV基础语法": { "keywords": [], "children": [], "node_id": "python-5-1086" } }, { "几何图形绘制": { "keywords": [], "children": [], "node_id": "python-5-1087" } } ], "node_id": "python-4-1325" } }, { "图像处理入门": { "keywords": [], "children": [ { "读取显示图像": { "keywords": [], "children": [], "node_id": "python-5-1088" } }, { "读取修改像素": { "keywords": [], "children": [], "node_id": "python-5-1089" } }, { "创建复制保存图像": { "keywords": [], "children": [], "node_id": "python-5-1090" } }, { "获取图像属性及通道": { "keywords": [], "children": [], "node_id": "python-5-1091" } } ], "node_id": "python-4-1326" } }, { "图像算数与逻辑运算": { "keywords": [], "children": [ { "图像加法运算": { "keywords": [], "children": [], "node_id": "python-5-1092" } }, { "图像减法运算": { "keywords": [], "children": [], "node_id": "python-5-1093" } }, { "图像与运算": { "keywords": [], "children": [], "node_id": "python-5-1094" } }, { "图像或运算": { "keywords": [], "children": [], "node_id": "python-5-1095" } }, { "图像异或运算": { "keywords": [], "children": [], "node_id": "python-5-1096" } }, { "图像非运算": { "keywords": [], "children": [], "node_id": "python-5-1097" } } ], "node_id": "python-4-1327" } }, { "图像几何变换": { "keywords": [], "children": [ { "平移变换": { "keywords": [], "children": [], "node_id": "python-5-1098" } }, { "缩放变换": { "keywords": [], "children": [], "node_id": "python-5-1099" } }, { "旋转变换": { "keywords": [], "children": [], "node_id": "python-5-1100" } }, { "镜像变换": { "keywords": [], "children": [], "node_id": "python-5-1101" } }, { "仿射变换": { "keywords": [], "children": [], "node_id": "python-5-1102" } }, { "透视变换": { "keywords": [], "children": [], "node_id": "python-5-1103" } } ], "node_id": "python-4-1328" } }, { "图像量化与采样": { "keywords": [], "children": [ { "图像量化处理": { "keywords": [], "children": [], "node_id": "python-5-1104" } }, { "图像采样处理": { "keywords": [], "children": [], "node_id": "python-5-1105" } }, { "图像金字塔": { "keywords": [], "children": [], "node_id": "python-5-1106" } }, { "局部马赛克处理": { "keywords": [], "children": [], "node_id": "python-5-1107" } } ], "node_id": "python-4-1329" } }, { "直方图统计": { "keywords": [], "children": [ { "直方图概述": { "keywords": [], "children": [], "node_id": "python-5-1108" } }, { "直方图绘制": { "keywords": [], "children": [], "node_id": "python-5-1109" } }, { "掩膜直方图": { "keywords": [], "children": [], "node_id": "python-5-1110" } }, { "H-S直方图": { "keywords": [], "children": [], "node_id": "python-5-1111" } }, { "直方图对比": { "keywords": [], "children": [], "node_id": "python-5-1112" } } ], "node_id": "python-4-1330" } }, { "图像增强": { "keywords": [], "children": [ { "图像增强": { "keywords": [], "children": [], "node_id": "python-5-1113" } }, { "直方图均衡化": { "keywords": [], "children": [], "node_id": "python-5-1114" } }, { "局部直方图均衡化": { "keywords": [], "children": [], "node_id": "python-5-1115" } }, { "自动色彩均衡化": { "keywords": [], "children": [], "node_id": "python-5-1116" } }, { "图像去雾": { "keywords": [], "children": [], "node_id": "python-5-1117" } } ], "node_id": "python-4-1331" } }, { "图像平滑": { "keywords": [], "children": [ { "图像平滑概述": { "keywords": [], "children": [], "node_id": "python-5-1118" } }, { "均值滤波": { "keywords": [], "children": [], "node_id": "python-5-1119" } }, { "方框滤波": { "keywords": [], "children": [], "node_id": "python-5-1120" } }, { "高斯滤波": { "keywords": [], "children": [], "node_id": "python-5-1121" } }, { "中值滤波": { "keywords": [], "children": [], "node_id": "python-5-1122" } }, { "双边滤波": { "keywords": [], "children": [], "node_id": "python-5-1123" } } ], "node_id": "python-4-1332" } }, { "图像锐化及边缘检测": { "keywords": [], "children": [ { "一阶微分算法、二阶微分算子": { "keywords": [], "children": [], "node_id": "python-5-1124" } }, { "Roberts算子": { "keywords": [], "children": [], "node_id": "python-5-1125" } }, { "Prewitt算子": { "keywords": [], "children": [], "node_id": "python-5-1126" } }, { "Sobel算子": { "keywords": [], "children": [], "node_id": "python-5-1127" } }, { "Laplacian算子": { "keywords": [], "children": [], "node_id": "python-5-1128" } }, { "Scharr算子": { "keywords": [], "children": [], "node_id": "python-5-1129" } }, { "Canny算子": { "keywords": [], "children": [], "node_id": "python-5-1130" } }, { "LOG算子": { "keywords": [], "children": [], "node_id": "python-5-1131" } } ], "node_id": "python-4-1333" } }, { "图像形态学处理": { "keywords": [], "children": [ { "图像腐蚀": { "keywords": [], "children": [], "node_id": "python-5-1132" } }, { "图像膨胀": { "keywords": [], "children": [], "node_id": "python-5-1133" } }, { "图像开运算": { "keywords": [], "children": [], "node_id": "python-5-1134" } }, { "图像闭运算": { "keywords": [], "children": [], "node_id": "python-5-1135" } }, { "图像梯度运算": { "keywords": [], "children": [], "node_id": "python-5-1136" } }, { "图像顶帽运算": { "keywords": [], "children": [], "node_id": "python-5-1137" } }, { "图像底帽运算": { "keywords": [], "children": [], "node_id": "python-5-1138" } } ], "node_id": "python-4-1334" } }, { "图像分割": { "keywords": [], "children": [ { "基于阈值的图像分割": { "keywords": [], "children": [], "node_id": "python-5-1139" } }, { "基于边缘检测的图像分割": { "keywords": [], "children": [], "node_id": "python-5-1140" } }, { "基于纹理背景的图像分割": { "keywords": [], "children": [], "node_id": "python-5-1141" } }, { "基于K-Means聚类的区域分割": { "keywords": [], "children": [], "node_id": "python-5-1142" } }, { "基于均值漂移算法的图像分割": { "keywords": [], "children": [], "node_id": "python-5-1143" } }, { "基于分水岭算法的图像分割": { "keywords": [], "children": [], "node_id": "python-5-1144" } }, { "图像漫水填充分割": { "keywords": [], "children": [], "node_id": "python-5-1145" } }, { "文字区域分割及定位": { "keywords": [], "children": [], "node_id": "python-5-1146" } } ], "node_id": "python-4-1335" } }, { "傅里叶变换": { "keywords": [], "children": [ { "傅里叶变换": { "keywords": [], "children": [], "node_id": "python-5-1147" } }, { "傅里叶逆变换": { "keywords": [], "children": [], "node_id": "python-5-1148" } }, { "高通滤波器": { "keywords": [], "children": [], "node_id": "python-5-1149" } }, { "低通滤波器": { "keywords": [], "children": [], "node_id": "python-5-1150" } } ], "node_id": "python-4-1336" } }, { "霍夫变换": { "keywords": [], "children": [ { "霍夫变换": { "keywords": [], "children": [], "node_id": "python-5-1151" } }, { "霍夫线变换": { "keywords": [], "children": [], "node_id": "python-5-1152" } }, { "霍夫圆变换": { "keywords": [], "children": [], "node_id": "python-5-1153" } } ], "node_id": "python-4-1337" } }, { "图像特效处理": { "keywords": [], "children": [ { "图像毛玻璃特效": { "keywords": [], "children": [], "node_id": "python-5-1154" } }, { "图像浮雕特效": { "keywords": [], "children": [], "node_id": "python-5-1155" } }, { "图像素描特效": { "keywords": [], "children": [], "node_id": "python-5-1156" } }, { "图像怀旧特效": { "keywords": [], "children": [], "node_id": "python-5-1157" } }, { "图像流年特效": { "keywords": [], "children": [], "node_id": "python-5-1158" } }, { "图像滤镜特效": { "keywords": [], "children": [], "node_id": "python-5-1159" } }, { "图像水波特效": { "keywords": [], "children": [], "node_id": "python-5-1160" } }, { "图像卡通特效": { "keywords": [], "children": [], "node_id": "python-5-1161" } } ], "node_id": "python-4-1338" } }, { "图像分类": { "keywords": [], "children": [ { "图像分类概述": { "keywords": [], "children": [], "node_id": "python-5-1162" } }, { "基于机器学习的图像分类": { "keywords": [], "children": [], "node_id": "python-5-1163" } }, { "基于深度学习的图像分类": { "keywords": [], "children": [], "node_id": "python-5-1164" } }, { "LeNet": { "keywords": [], "children": [], "node_id": "python-5-1165" } }, { "VGG": { "keywords": [], "children": [], "node_id": "python-5-1166" } }, { "AlexNet": { "keywords": [], "children": [], "node_id": "python-5-1167" } }, { "ResNet": { "keywords": [], "children": [], "node_id": "python-5-1168" } } ], "node_id": "python-4-1339" } }, { "人脸识别": { "keywords": [], "children": [], "node_id": "python-4-1340" } }, { "目标检测": { "keywords": [], "children": [ { "目标检测概述": { "keywords": [], "children": [], "node_id": "python-5-1169" } }, { "RCNN": { "keywords": [], "children": [], "node_id": "python-5-1170" } }, { "Fast-RCNN": { "keywords": [], "children": [], "node_id": "python-5-1171" } }, { "SPPNet": { "keywords": [], "children": [], "node_id": "python-5-1172" } }, { "Mask-RCNN": { "keywords": [], "children": [], "node_id": "python-5-1173" } }, { "SSD": { "keywords": [], "children": [], "node_id": "python-5-1174" } }, { "YOLO系列算法": { "keywords": [], "children": [], "node_id": "python-5-1175" } } ], "node_id": "python-4-1341" } }, { "深度神经网络概述": { "keywords": [], "children": [ { "创建神经网络块": { "keywords": [], "children": [], "node_id": "python-5-1176" } }, { "TensorFlow介绍": { "keywords": [], "children": [], "node_id": "python-5-1177" } }, { "MNIST数据集介绍": { "keywords": [], "children": [], "node_id": "python-5-1178" } }, { "Keras深度学习库概述": { "keywords": [], "children": [], "node_id": "python-5-1179" } }, { "基于Keras和MNIST的手写数字识别": { "keywords": [], "children": [ { "训练和测试数据的检索": { "keywords": [], "children": [], "node_id": "python-6-178" } }, { "训练数据的可视化": { "keywords": [], "children": [], "node_id": "python-6-179" } }, { "创建神经网络": { "keywords": [], "children": [], "node_id": "python-6-180" } }, { "训练神经网络": { "keywords": [], "children": [], "node_id": "python-6-181" } }, { "测试": { "keywords": [], "children": [], "node_id": "python-6-182" } } ], "node_id": "python-5-1180" } }, { "理解反向传播": { "keywords": [], "children": [], "node_id": "python-5-1181" } } ], "node_id": "python-4-1342" } }, { "卷积神经网络介绍": { "keywords": [], "children": [ { "CNN历史": { "keywords": [], "children": [], "node_id": "python-5-1182" } }, { "卷积神经网络": { "keywords": [], "children": [ { "计算机如何解释图像": { "keywords": [], "children": [], "node_id": "python-6-183" } }, { "编码实现图像可视化": { "keywords": [], "children": [], "node_id": "python-6-184" } }, { "dropout": { "keywords": [], "children": [], "node_id": "python-6-185" } }, { "输入层": { "keywords": [], "children": [], "node_id": "python-6-186" } }, { "卷积层": { "keywords": [], "children": [], "node_id": "python-6-187" } }, { "池化层": { "keywords": [], "children": [], "node_id": "python-6-188" } } ], "node_id": "python-5-1183" } } ], "node_id": "python-4-1343" } }, { "构建CNN并进行性能优化": { "keywords": [], "children": [ { "CNN架构和DNN的缺点": { "keywords": [], "children": [ { "卷积操作": { "keywords": [], "children": [], "node_id": "python-6-189" } }, { "池化、步长和填充操作": { "keywords": [], "children": [], "node_id": "python-6-190" } } ], "node_id": "python-5-1184" } }, { "TensorFlow中的卷积和池化操作": { "keywords": [], "children": [ { "在TensorFlow中应用池化操作": { "keywords": [], "children": [], "node_id": "python-6-191" } }, { "TensorFlow中的卷积操作": { "keywords": [], "children": [], "node_id": "python-6-192" } } ], "node_id": "python-5-1185" } }, { "训练CNN": { "keywords": [], "children": [ { "初始化权重和偏置": { "keywords": [], "children": [], "node_id": "python-6-193" } }, { "正则化": { "keywords": [], "children": [], "node_id": "python-6-194" } }, { "激活函数": { "keywords": [], "children": [], "node_id": "python-6-195" } } ], "node_id": "python-5-1186" } }, { "模型性能优化": { "keywords": [], "children": [ { "隐含层数量": { "keywords": [], "children": [], "node_id": "python-6-196" } }, { "每个隐含层的神经元个数": { "keywords": [], "children": [], "node_id": "python-6-197" } }, { "批标准化": { "keywords": [], "children": [], "node_id": "python-6-198" } }, { "高级正则化及过拟合的避免": { "keywords": [], "children": [], "node_id": "python-6-199" } }, { "运用哪个优化器": { "keywords": [], "children": [], "node_id": "python-6-200" } }, { "内存调优": { "keywords": [], "children": [], "node_id": "python-6-201" } }, { "层的位置调优": { "keywords": [], "children": [], "node_id": "python-6-202" } }, { "综合所有操作创建第二个CNN": { "keywords": [], "children": [], "node_id": "python-6-203" } }, { "数据集描述和预处理": { "keywords": [], "children": [], "node_id": "python-6-204" } }, { "创建CNN模型": { "keywords": [], "children": [], "node_id": "python-6-205" } } ], "node_id": "python-5-1187" } } ], "node_id": "python-4-1344" } }, { "经典的CNN模型架构": { "keywords": [], "children": [ { "ImageNet介绍": { "keywords": [], "children": [], "node_id": "python-5-1188" } }, { "AlexNet架构": { "keywords": [], "children": [], "node_id": "python-5-1189" } }, { "VGGNet架构": { "keywords": [], "children": [], "node_id": "python-5-1190" } }, { "GoogLeNet架构": { "keywords": [], "children": [ { "架构洞察": { "keywords": [], "children": [], "node_id": "python-6-206" } }, { "inception模块": { "keywords": [], "children": [], "node_id": "python-6-207" } } ], "node_id": "python-5-1191" } }, { "ResNet架构": { "keywords": [], "children": [], "node_id": "python-5-1192" } } ], "node_id": "python-4-1345" } }, { "转移学习": { "keywords": [], "children": [ { "特征提取方法": { "keywords": [], "children": [ { "目标数据集较小且与原始训练集相似": { "keywords": [], "children": [], "node_id": "python-6-208" } }, { "目标数据集较小且与原始训练集不同": { "keywords": [], "children": [], "node_id": "python-6-209" } }, { "目标数据集很大且与原始训练集相似": { "keywords": [], "children": [], "node_id": "python-6-210" } }, { "目标数据集很大且与原始训练集不同": { "keywords": [], "children": [], "node_id": "python-6-211" } } ], "node_id": "python-5-1193" } }, { "转移学习示例": { "keywords": [], "children": [], "node_id": "python-5-1194" } }, { "多任务学习": { "keywords": [], "children": [], "node_id": "python-5-1195" } } ], "node_id": "python-4-1346" } }, { "CNN自编码器": { "keywords": [], "children": [ { "自编码器介绍": { "keywords": [], "children": [], "node_id": "python-5-1196" } }, { "卷积自编码器": { "keywords": [], "children": [], "node_id": "python-5-1197" } }, { "应用": { "keywords": [], "children": [], "node_id": "python-5-1198" } } ], "node_id": "python-4-1347" } }, { "GAN:使用CNN生成新图像": { "keywords": [], "children": [ { "Pix2pix:基于GAN的图像翻译": { "keywords": [], "children": [ { "CycleGAN": { "keywords": [], "children": [], "node_id": "python-6-212" } }, { "训练GAN模型": { "keywords": [], "children": [], "node_id": "python-6-213" } } ], "node_id": "python-5-1199" } }, { "GAN的代码示例": { "keywords": [], "children": [ { "计算损失": { "keywords": [], "children": [], "node_id": "python-6-214" } }, { "半监督学习和GAN": { "keywords": [], "children": [], "node_id": "python-6-215" } } ], "node_id": "python-5-1200" } }, { "特征匹配": { "keywords": [], "children": [ { "基于半监督分类的GAN示例": { "keywords": [], "children": [], "node_id": "python-6-216" } }, { "深度卷积GAN": { "keywords": [], "children": [], "node_id": "python-6-217" } } ], "node_id": "python-5-1201" } } ], "node_id": "python-4-1348" } }, { "CNN和视觉模型的注意力机制": { "keywords": [], "children": [ { "图像描述中的注意力机制": { "keywords": [], "children": [], "node_id": "python-5-1202" } }, { "注意力类型": { "keywords": [], "children": [ { "硬注意力": { "keywords": [], "children": [], "node_id": "python-6-218" } }, { "软注意力": { "keywords": [], "children": [], "node_id": "python-6-219" } } ], "node_id": "python-5-1203" } }, { "运用注意力改善视觉模型": { "keywords": [], "children": [ { "视觉CNN模型次优性能的原因": { "keywords": [], "children": [], "node_id": "python-6-220" } }, { "循环视觉注意力模型": { "keywords": [], "children": [], "node_id": "python-6-221" } } ], "node_id": "python-5-1204" } }, { "参考文献": { "keywords": [], "children": [], "node_id": "python-5-1205" } } ], "node_id": "python-4-1349" } } ], "node_id": "python-3-247" }