Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
CSDN 技术社区
skill_tree_opencv
提交
699801ef
S
skill_tree_opencv
项目概览
CSDN 技术社区
/
skill_tree_opencv
通知
45
Star
9
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
2
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
S
skill_tree_opencv
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
2
Issue
2
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
699801ef
编写于
12月 15, 2021
作者:
X
xiaozhi_5638
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
上传车辆检测题目
上级
cbe28620
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
547 addition
and
0 deletion
+547
-0
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/MY_TEST/8.h264
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/MY_TEST/8.h264
+0
-0
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/config.json
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/config.json
+6
-0
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/obj.names
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/obj.names
+5
-0
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/opencv-yolo-inference-vehicle.md
...初阶/7.OpenCV中的深度学习/5.车辆检测/opencv-yolo-inference-vehicle.md
+250
-0
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/opencv-yolo-inference-vehicle.py
...初阶/7.OpenCV中的深度学习/5.车辆检测/opencv-yolo-inference-vehicle.py
+104
-0
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/vehicle-detection.gif
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/vehicle-detection.gif
+0
-0
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/yolov3-tiny.cfg
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/yolov3-tiny.cfg
+182
-0
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/yolov3-tiny.weights
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/yolov3-tiny.weights
+0
-0
未找到文件。
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/MY_TEST/8.h264
0 → 100755
浏览文件 @
699801ef
文件已添加
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/config.json
0 → 100644
浏览文件 @
699801ef
{
"keywords"
:
[],
"children"
:
[],
"export"
:
[]
}
\ No newline at end of file
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/obj.names
0 → 100755
浏览文件 @
699801ef
person
car
bus
truck
2wheel
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/opencv-yolo-inference-vehicle.md
0 → 100755
浏览文件 @
699801ef
# opencv-yolo-tiny车辆检测
`opencv.dnn`
模块已经支持大部分格式的深度学习模型推理,该模块可以直接加载
`tensorflow`
、
`darknet`
、
`pytorch`
等常见深度学习框架训练出来的模型,并运行推理得到模型输出结果。
`opecnv.dnn`
模块已经作为一种模型部署方式,应用在工业落地实际场景中。
![](
./vehicle-detection.gif
)
模型具体加载和使用流程如下:
1.
加载网络,读取模型、网络结构配置等文件
2.
创建输入,
`opencv.dnn`
模块对图片输入有特殊格式要求
3.
运行推理
4.
解析输出
5.
应用输出、显示输出
下面是
`opencv.dnn`
模块加载
`yolov3-tiny`
车辆检测模型并运行推理的代码,请你补充TO-DO相关代码(本题考察
`yolo系列`
检测模型输出解析):
```
python
import
numpy
as
np
import
cv2
import
os
import
time
from
numpy
import
array
# some variables
weightsPath
=
'./yolov3-tiny.weights'
configPath
=
'./yolov3-tiny.cfg'
labelsPath
=
'./obj.names'
LABELS
=
open
(
labelsPath
).
read
().
strip
().
split
(
"
\n
"
)
colors
=
[(
255
,
255
,
0
),
(
255
,
0
,
255
),
(
0
,
255
,
255
),
(
0
,
255
,
0
),
(
255
,
0
,
255
)]
min_score
=
0.3
# read darknet weights using opencv.dnn module
net
=
cv2
.
dnn
.
readNetFromDarknet
(
configPath
,
weightsPath
)
# read video using opencv
cap
=
cv2
.
VideoCapture
(
'./MY_TEST/8.h264'
)
# loop for inference
while
True
:
boxes
=
[]
confidences
=
[]
classIDs
=
[]
start
=
time
.
time
()
ret
,
frame
=
cap
.
read
()
frame
=
cv2
.
resize
(
frame
,
(
744
,
416
),
interpolation
=
cv2
.
INTER_CUBIC
)
image
=
frame
(
H
,
W
)
=
image
.
shape
[
0
:
2
]
# get output layer names
ln
=
net
.
getLayerNames
()
out
=
net
.
getUnconnectedOutLayers
()
x
=
[]
for
i
in
out
:
x
.
append
(
ln
[
i
[
0
]
-
1
])
ln
=
x
# create input data package with current frame
blob
=
cv2
.
dnn
.
blobFromImage
(
image
,
1
/
255.0
,
(
416
,
416
),
swapRB
=
True
,
crop
=
False
)
# set as input
net
.
setInput
(
blob
)
# run!
layerOutputs
=
net
.
forward
(
ln
)
# post-process
# parsing the output and run nms
# TO-DO your code...
cv2
.
namedWindow
(
'Image'
,
cv2
.
WINDOW_NORMAL
)
cv2
.
imshow
(
"Image"
,
image
)
# print fps
stop
=
time
.
time
()
fps
=
1
/
(
stop
-
start
)
print
(
'fps>>> :'
,
fps
)
# normal codes when displaying video
c
=
cv2
.
waitKey
(
1
)
&
0xff
if
c
==
27
:
cap
.
release
()
break
cv2
.
destroyAllWindows
()
```
## 答案
```
python
for
output
in
layerOutputs
:
for
detection
in
output
:
scores
=
detection
[
5
:]
# class id
classID
=
np
.
argmax
(
scores
)
# get score by classid
score
=
scores
[
classID
]
# ignore if score is too low
if
score
>=
min_score
:
box
=
detection
[
0
:
4
]
*
np
.
array
([
W
,
H
,
W
,
H
])
(
centerX
,
centerY
,
width
,
height
)
=
box
.
astype
(
"int"
)
x
=
int
(
centerX
-
(
width
/
2
))
y
=
int
(
centerY
-
(
height
/
2
))
boxes
.
append
([
x
,
y
,
int
(
width
),
int
(
height
)])
confidences
.
append
(
float
(
score
))
classIDs
.
append
(
classID
)
# run nms using opencv.dnn module
idxs
=
cv2
.
dnn
.
NMSBoxes
(
boxes
,
confidences
,
0.2
,
0.3
)
# render on image
idxs
=
array
(
idxs
)
box_seq
=
idxs
.
flatten
()
if
len
(
idxs
)
>
0
:
for
seq
in
box_seq
:
(
x
,
y
)
=
(
boxes
[
seq
][
0
],
boxes
[
seq
][
1
])
(
w
,
h
)
=
(
boxes
[
seq
][
2
],
boxes
[
seq
][
3
])
# draw what you want
color
=
colors
[
classIDs
[
seq
]]
cv2
.
rectangle
(
image
,
(
x
,
y
),
(
x
+
w
,
y
+
h
),
color
,
2
)
text
=
"{}: {:.3f}"
.
format
(
LABELS
[
classIDs
[
seq
]],
confidences
[
seq
])
cv2
.
putText
(
image
,
text
,
(
x
,
y
-
5
),
cv2
.
FONT_HERSHEY_SIMPLEX
,
0.3
,
color
,
1
)
```
## scores解析错误
```
python
for
output
in
layerOutputs
:
for
detection
in
output
:
scores
=
detection
[
5
:]
# class id
classID
=
np
.
argmax
(
scores
)
# get score
score
=
detection
[
4
]
# ignore if score is too low
if
score
>=
min_score
:
box
=
detection
[
0
:
4
]
*
np
.
array
([
W
,
H
,
W
,
H
])
(
centerX
,
centerY
,
width
,
height
)
=
box
.
astype
(
"int"
)
x
=
int
(
centerX
-
(
width
/
2
))
y
=
int
(
centerY
-
(
height
/
2
))
boxes
.
append
([
x
,
y
,
int
(
width
),
int
(
height
)])
confidences
.
append
(
float
(
score
))
classIDs
.
append
(
classID
)
# run nms using opencv.dnn module
idxs
=
cv2
.
dnn
.
NMSBoxes
(
boxes
,
confidences
,
0.2
,
0.3
)
# render on image
idxs
=
array
(
idxs
)
box_seq
=
idxs
.
flatten
()
if
len
(
idxs
)
>
0
:
for
seq
in
box_seq
:
(
x
,
y
)
=
(
boxes
[
seq
][
0
],
boxes
[
seq
][
1
])
(
w
,
h
)
=
(
boxes
[
seq
][
2
],
boxes
[
seq
][
3
])
# draw what you want
color
=
colors
[
classIDs
[
seq
]]
cv2
.
rectangle
(
image
,
(
x
,
y
),
(
x
+
w
,
y
+
h
),
color
,
2
)
text
=
"{}: {:.3f}"
.
format
(
LABELS
[
classIDs
[
seq
]],
confidences
[
seq
])
cv2
.
putText
(
image
,
text
,
(
x
,
y
-
5
),
cv2
.
FONT_HERSHEY_SIMPLEX
,
0.3
,
color
,
1
)
```
## box坐标没有还原到原始输入尺寸
```
python
for
output
in
layerOutputs
:
for
detection
in
output
:
scores
=
detection
[
5
:]
# class id
classID
=
np
.
argmax
(
scores
)
# get score by classid
score
=
scores
[
classID
]
# ignore if score is too low
if
score
>=
min_score
:
box
=
detection
[
0
:
4
]
(
centerX
,
centerY
,
width
,
height
)
=
box
.
astype
(
"int"
)
x
=
int
(
centerX
-
(
width
/
2
))
y
=
int
(
centerY
-
(
height
/
2
))
boxes
.
append
([
x
,
y
,
int
(
width
),
int
(
height
)])
confidences
.
append
(
float
(
score
))
classIDs
.
append
(
classID
)
# run nms using opencv.dnn module
idxs
=
cv2
.
dnn
.
NMSBoxes
(
boxes
,
confidences
,
0.2
,
0.3
)
# render on image
idxs
=
array
(
idxs
)
box_seq
=
idxs
.
flatten
()
if
len
(
idxs
)
>
0
:
for
seq
in
box_seq
:
(
x
,
y
)
=
(
boxes
[
seq
][
0
],
boxes
[
seq
][
1
])
(
w
,
h
)
=
(
boxes
[
seq
][
2
],
boxes
[
seq
][
3
])
# draw what you want
color
=
colors
[
classIDs
[
seq
]]
cv2
.
rectangle
(
image
,
(
x
,
y
),
(
x
+
w
,
y
+
h
),
color
,
2
)
text
=
"{}: {:.3f}"
.
format
(
LABELS
[
classIDs
[
seq
]],
confidences
[
seq
])
cv2
.
putText
(
image
,
text
,
(
x
,
y
-
5
),
cv2
.
FONT_HERSHEY_SIMPLEX
,
0.3
,
color
,
1
)
```
## box左上角坐标解析错误
```
python
for
output
in
layerOutputs
:
for
detection
in
output
:
scores
=
detection
[
5
:]
# class id
classID
=
np
.
argmax
(
scores
)
# get score by classid
score
=
scores
[
classID
]
# ignore if score is too low
if
score
>=
min_score
:
box
=
detection
[
0
:
4
]
*
np
.
array
([
W
,
H
,
W
,
H
])
(
x
,
y
,
width
,
height
)
=
box
.
astype
(
"int"
)
boxes
.
append
([
x
,
y
,
int
(
width
),
int
(
height
)])
confidences
.
append
(
float
(
score
))
classIDs
.
append
(
classID
)
# run nms using opencv.dnn module
idxs
=
cv2
.
dnn
.
NMSBoxes
(
boxes
,
confidences
,
0.2
,
0.3
)
# render on image
idxs
=
array
(
idxs
)
box_seq
=
idxs
.
flatten
()
if
len
(
idxs
)
>
0
:
for
seq
in
box_seq
:
(
x
,
y
)
=
(
boxes
[
seq
][
0
],
boxes
[
seq
][
1
])
(
w
,
h
)
=
(
boxes
[
seq
][
2
],
boxes
[
seq
][
3
])
# draw what you want
color
=
colors
[
classIDs
[
seq
]]
cv2
.
rectangle
(
image
,
(
x
,
y
),
(
x
+
w
,
y
+
h
),
color
,
2
)
text
=
"{}: {:.3f}"
.
format
(
LABELS
[
classIDs
[
seq
]],
confidences
[
seq
])
cv2
.
putText
(
image
,
text
,
(
x
,
y
-
5
),
cv2
.
FONT_HERSHEY_SIMPLEX
,
0.3
,
color
,
1
)
```
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/opencv-yolo-inference-vehicle.py
0 → 100755
浏览文件 @
699801ef
import
numpy
as
np
import
cv2
import
os
import
time
from
numpy
import
array
# some variables
weightsPath
=
'./yolov3-tiny.weights'
configPath
=
'./yolov3-tiny.cfg'
labelsPath
=
'./obj.names'
LABELS
=
open
(
labelsPath
).
read
().
strip
().
split
(
"
\n
"
)
colors
=
[(
255
,
255
,
0
),
(
255
,
0
,
255
),
(
0
,
255
,
255
),
(
0
,
255
,
0
),
(
255
,
0
,
255
)]
min_score
=
0.3
# read darknet weights using opencv.dnn module
net
=
cv2
.
dnn
.
readNetFromDarknet
(
configPath
,
weightsPath
)
# read video using opencv
cap
=
cv2
.
VideoCapture
(
'./MY_TEST/8.h264'
)
# loop for inference
while
True
:
boxes
=
[]
confidences
=
[]
classIDs
=
[]
start
=
time
.
time
()
ret
,
frame
=
cap
.
read
()
frame
=
cv2
.
resize
(
frame
,
(
744
,
416
),
interpolation
=
cv2
.
INTER_CUBIC
)
image
=
frame
(
H
,
W
)
=
image
.
shape
[
0
:
2
]
# get output layer names
ln
=
net
.
getLayerNames
()
out
=
net
.
getUnconnectedOutLayers
()
x
=
[]
for
i
in
out
:
x
.
append
(
ln
[
i
[
0
]
-
1
])
ln
=
x
# create input data package with current frame
blob
=
cv2
.
dnn
.
blobFromImage
(
image
,
1
/
255.0
,
(
416
,
416
),
swapRB
=
True
,
crop
=
False
)
# set as input
net
.
setInput
(
blob
)
# run!
layerOutputs
=
net
.
forward
(
ln
)
# post-process
# parsing the output and run nms
for
output
in
layerOutputs
:
for
detection
in
output
:
scores
=
detection
[
5
:]
# class id
classID
=
np
.
argmax
(
scores
)
# get score by classid
score
=
scores
[
classID
]
# ignore if score is too low
if
score
>=
min_score
:
box
=
detection
[
0
:
4
]
*
np
.
array
([
W
,
H
,
W
,
H
])
(
centerX
,
centerY
,
width
,
height
)
=
box
.
astype
(
"int"
)
x
=
int
(
centerX
-
(
width
/
2
))
y
=
int
(
centerY
-
(
height
/
2
))
boxes
.
append
([
x
,
y
,
int
(
width
),
int
(
height
)])
confidences
.
append
(
float
(
score
))
classIDs
.
append
(
classID
)
# run nms using opencv.dnn module
idxs
=
cv2
.
dnn
.
NMSBoxes
(
boxes
,
confidences
,
0.2
,
0.3
)
# render on image
idxs
=
array
(
idxs
)
box_seq
=
idxs
.
flatten
()
if
len
(
idxs
)
>
0
:
for
seq
in
box_seq
:
(
x
,
y
)
=
(
boxes
[
seq
][
0
],
boxes
[
seq
][
1
])
(
w
,
h
)
=
(
boxes
[
seq
][
2
],
boxes
[
seq
][
3
])
# draw what you want
color
=
colors
[
classIDs
[
seq
]]
cv2
.
rectangle
(
image
,
(
x
,
y
),
(
x
+
w
,
y
+
h
),
color
,
2
)
text
=
"{}: {:.3f}"
.
format
(
LABELS
[
classIDs
[
seq
]],
confidences
[
seq
])
cv2
.
putText
(
image
,
text
,
(
x
,
y
-
5
),
cv2
.
FONT_HERSHEY_SIMPLEX
,
0.3
,
color
,
1
)
cv2
.
namedWindow
(
'Image'
,
cv2
.
WINDOW_NORMAL
)
cv2
.
imshow
(
"Image"
,
image
)
# print fps
stop
=
time
.
time
()
fps
=
1
/
(
stop
-
start
)
print
(
'fps>>> :'
,
fps
)
# normal codes when displaying video
c
=
cv2
.
waitKey
(
1
)
&
0xff
if
c
==
27
:
cap
.
release
()
break
cv2
.
destroyAllWindows
()
\ No newline at end of file
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/vehicle-detection.gif
0 → 100755
浏览文件 @
699801ef
因为 它太大了无法显示 image diff 。你可以改为
查看blob
。
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/yolov3-tiny.cfg
0 → 100755
浏览文件 @
699801ef
[net]
# Testing
#batch=1
#subdivisions=1
# Training
batch=64
subdivisions=4
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
burn_in=1000
max_batches = 300000
policy=steps
steps=50000,100000
scales=.1,.1
[convolutional]
batch_normalize=1
filters=16
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=1
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
###########
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=30
activation=linear
[yolo]
mask = 3,4,5
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
classes=5
num=6
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 8
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=30
activation=linear
[yolo]
mask = 0,1,2
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
classes=5
num=6
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
data/1.OpenCV初阶/7.OpenCV中的深度学习/5.车辆检测/yolov3-tiny.weights
0 → 100755
浏览文件 @
699801ef
文件已添加
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录