提交 4fc0300c 编写于 作者: 幻灰龙's avatar 幻灰龙

Merge branch 'hhhhhhhhhhwwwwwwwwww-master-patch-00708' into 'master'

上传模型文件txt

See merge request !29
name: "MobileNet-SSD"
input: "data"
input_shape {
dim: 1
dim: 3
dim: 300
dim: 300
}
layer {
name: "conv0"
type: "Convolution"
bottom: "data"
top: "conv0"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 32
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv0/relu"
type: "ReLU"
bottom: "conv0"
top: "conv0"
}
layer {
name: "conv1/dw"
type: "Convolution"
bottom: "conv0"
top: "conv1/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 32
pad: 1
kernel_size: 3
group: 32
engine: CAFFE
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv1/dw/relu"
type: "ReLU"
bottom: "conv1/dw"
top: "conv1/dw"
}
layer {
name: "conv1"
type: "Convolution"
bottom: "conv1/dw"
top: "conv1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 64
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv1/relu"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "conv2/dw"
type: "Convolution"
bottom: "conv1"
top: "conv2/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
stride: 2
group: 64
engine: CAFFE
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv2/dw/relu"
type: "ReLU"
bottom: "conv2/dw"
top: "conv2/dw"
}
layer {
name: "conv2"
type: "Convolution"
bottom: "conv2/dw"
top: "conv2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 128
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv2/relu"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "conv3/dw"
type: "Convolution"
bottom: "conv2"
top: "conv3/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
group: 128
engine: CAFFE
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv3/dw/relu"
type: "ReLU"
bottom: "conv3/dw"
top: "conv3/dw"
}
layer {
name: "conv3"
type: "Convolution"
bottom: "conv3/dw"
top: "conv3"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 128
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv3/relu"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4/dw"
type: "Convolution"
bottom: "conv3"
top: "conv4/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 2
group: 128
engine: CAFFE
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv4/dw/relu"
type: "ReLU"
bottom: "conv4/dw"
top: "conv4/dw"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv4/dw"
top: "conv4"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 256
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv4/relu"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5/dw"
type: "Convolution"
bottom: "conv4"
top: "conv5/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 256
engine: CAFFE
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv5/dw/relu"
type: "ReLU"
bottom: "conv5/dw"
top: "conv5/dw"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv5/dw"
top: "conv5"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 256
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv5/relu"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "conv6/dw"
type: "Convolution"
bottom: "conv5"
top: "conv6/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 2
group: 256
engine: CAFFE
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv6/dw/relu"
type: "ReLU"
bottom: "conv6/dw"
top: "conv6/dw"
}
layer {
name: "conv6"
type: "Convolution"
bottom: "conv6/dw"
top: "conv6"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 512
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv6/relu"
type: "ReLU"
bottom: "conv6"
top: "conv6"
}
layer {
name: "conv7/dw"
type: "Convolution"
bottom: "conv6"
top: "conv7/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv7/dw/relu"
type: "ReLU"
bottom: "conv7/dw"
top: "conv7/dw"
}
layer {
name: "conv7"
type: "Convolution"
bottom: "conv7/dw"
top: "conv7"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 512
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv7/relu"
type: "ReLU"
bottom: "conv7"
top: "conv7"
}
layer {
name: "conv8/dw"
type: "Convolution"
bottom: "conv7"
top: "conv8/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv8/dw/relu"
type: "ReLU"
bottom: "conv8/dw"
top: "conv8/dw"
}
layer {
name: "conv8"
type: "Convolution"
bottom: "conv8/dw"
top: "conv8"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 512
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv8/relu"
type: "ReLU"
bottom: "conv8"
top: "conv8"
}
layer {
name: "conv9/dw"
type: "Convolution"
bottom: "conv8"
top: "conv9/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv9/dw/relu"
type: "ReLU"
bottom: "conv9/dw"
top: "conv9/dw"
}
layer {
name: "conv9"
type: "Convolution"
bottom: "conv9/dw"
top: "conv9"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 512
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv9/relu"
type: "ReLU"
bottom: "conv9"
top: "conv9"
}
layer {
name: "conv10/dw"
type: "Convolution"
bottom: "conv9"
top: "conv10/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv10/dw/relu"
type: "ReLU"
bottom: "conv10/dw"
top: "conv10/dw"
}
layer {
name: "conv10"
type: "Convolution"
bottom: "conv10/dw"
top: "conv10"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 512
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv10/relu"
type: "ReLU"
bottom: "conv10"
top: "conv10"
}
layer {
name: "conv11/dw"
type: "Convolution"
bottom: "conv10"
top: "conv11/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv11/dw/relu"
type: "ReLU"
bottom: "conv11/dw"
top: "conv11/dw"
}
layer {
name: "conv11"
type: "Convolution"
bottom: "conv11/dw"
top: "conv11"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 512
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv11/relu"
type: "ReLU"
bottom: "conv11"
top: "conv11"
}
layer {
name: "conv12/dw"
type: "Convolution"
bottom: "conv11"
top: "conv12/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 2
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv12/dw/relu"
type: "ReLU"
bottom: "conv12/dw"
top: "conv12/dw"
}
layer {
name: "conv12"
type: "Convolution"
bottom: "conv12/dw"
top: "conv12"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 1024
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv12/relu"
type: "ReLU"
bottom: "conv12"
top: "conv12"
}
layer {
name: "conv13/dw"
type: "Convolution"
bottom: "conv12"
top: "conv13/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 1024
pad: 1
kernel_size: 3
group: 1024
engine: CAFFE
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv13/dw/relu"
type: "ReLU"
bottom: "conv13/dw"
top: "conv13/dw"
}
layer {
name: "conv13"
type: "Convolution"
bottom: "conv13/dw"
top: "conv13"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 1024
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv13/relu"
type: "ReLU"
bottom: "conv13"
top: "conv13"
}
layer {
name: "conv14_1"
type: "Convolution"
bottom: "conv13"
top: "conv14_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 256
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv14_1/relu"
type: "ReLU"
bottom: "conv14_1"
top: "conv14_1"
}
layer {
name: "conv14_2"
type: "Convolution"
bottom: "conv14_1"
top: "conv14_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv14_2/relu"
type: "ReLU"
bottom: "conv14_2"
top: "conv14_2"
}
layer {
name: "conv15_1"
type: "Convolution"
bottom: "conv14_2"
top: "conv15_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 128
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv15_1/relu"
type: "ReLU"
bottom: "conv15_1"
top: "conv15_1"
}
layer {
name: "conv15_2"
type: "Convolution"
bottom: "conv15_1"
top: "conv15_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv15_2/relu"
type: "ReLU"
bottom: "conv15_2"
top: "conv15_2"
}
layer {
name: "conv16_1"
type: "Convolution"
bottom: "conv15_2"
top: "conv16_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 128
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv16_1/relu"
type: "ReLU"
bottom: "conv16_1"
top: "conv16_1"
}
layer {
name: "conv16_2"
type: "Convolution"
bottom: "conv16_1"
top: "conv16_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv16_2/relu"
type: "ReLU"
bottom: "conv16_2"
top: "conv16_2"
}
layer {
name: "conv17_1"
type: "Convolution"
bottom: "conv16_2"
top: "conv17_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 64
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv17_1/relu"
type: "ReLU"
bottom: "conv17_1"
top: "conv17_1"
}
layer {
name: "conv17_2"
type: "Convolution"
bottom: "conv17_1"
top: "conv17_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv17_2/relu"
type: "ReLU"
bottom: "conv17_2"
top: "conv17_2"
}
layer {
name: "conv11_mbox_loc"
type: "Convolution"
bottom: "conv11"
top: "conv11_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 12
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv11_mbox_loc_perm"
type: "Permute"
bottom: "conv11_mbox_loc"
top: "conv11_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv11_mbox_loc_flat"
type: "Flatten"
bottom: "conv11_mbox_loc_perm"
top: "conv11_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv11_mbox_conf"
type: "Convolution"
bottom: "conv11"
top: "conv11_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 63
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv11_mbox_conf_perm"
type: "Permute"
bottom: "conv11_mbox_conf"
top: "conv11_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv11_mbox_conf_flat"
type: "Flatten"
bottom: "conv11_mbox_conf_perm"
top: "conv11_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv11_mbox_priorbox"
type: "PriorBox"
bottom: "conv11"
bottom: "data"
top: "conv11_mbox_priorbox"
prior_box_param {
min_size: 60.0
aspect_ratio: 2.0
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
offset: 0.5
}
}
layer {
name: "conv13_mbox_loc"
type: "Convolution"
bottom: "conv13"
top: "conv13_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 24
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv13_mbox_loc_perm"
type: "Permute"
bottom: "conv13_mbox_loc"
top: "conv13_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv13_mbox_loc_flat"
type: "Flatten"
bottom: "conv13_mbox_loc_perm"
top: "conv13_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv13_mbox_conf"
type: "Convolution"
bottom: "conv13"
top: "conv13_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 126
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv13_mbox_conf_perm"
type: "Permute"
bottom: "conv13_mbox_conf"
top: "conv13_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv13_mbox_conf_flat"
type: "Flatten"
bottom: "conv13_mbox_conf_perm"
top: "conv13_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv13_mbox_priorbox"
type: "PriorBox"
bottom: "conv13"
bottom: "data"
top: "conv13_mbox_priorbox"
prior_box_param {
min_size: 105.0
max_size: 150.0
aspect_ratio: 2.0
aspect_ratio: 3.0
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
offset: 0.5
}
}
layer {
name: "conv14_2_mbox_loc"
type: "Convolution"
bottom: "conv14_2"
top: "conv14_2_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 24
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv14_2_mbox_loc_perm"
type: "Permute"
bottom: "conv14_2_mbox_loc"
top: "conv14_2_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv14_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv14_2_mbox_loc_perm"
top: "conv14_2_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv14_2_mbox_conf"
type: "Convolution"
bottom: "conv14_2"
top: "conv14_2_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 126
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv14_2_mbox_conf_perm"
type: "Permute"
bottom: "conv14_2_mbox_conf"
top: "conv14_2_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv14_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv14_2_mbox_conf_perm"
top: "conv14_2_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv14_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv14_2"
bottom: "data"
top: "conv14_2_mbox_priorbox"
prior_box_param {
min_size: 150.0
max_size: 195.0
aspect_ratio: 2.0
aspect_ratio: 3.0
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
offset: 0.5
}
}
layer {
name: "conv15_2_mbox_loc"
type: "Convolution"
bottom: "conv15_2"
top: "conv15_2_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 24
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv15_2_mbox_loc_perm"
type: "Permute"
bottom: "conv15_2_mbox_loc"
top: "conv15_2_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv15_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv15_2_mbox_loc_perm"
top: "conv15_2_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv15_2_mbox_conf"
type: "Convolution"
bottom: "conv15_2"
top: "conv15_2_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 126
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv15_2_mbox_conf_perm"
type: "Permute"
bottom: "conv15_2_mbox_conf"
top: "conv15_2_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv15_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv15_2_mbox_conf_perm"
top: "conv15_2_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv15_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv15_2"
bottom: "data"
top: "conv15_2_mbox_priorbox"
prior_box_param {
min_size: 195.0
max_size: 240.0
aspect_ratio: 2.0
aspect_ratio: 3.0
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
offset: 0.5
}
}
layer {
name: "conv16_2_mbox_loc"
type: "Convolution"
bottom: "conv16_2"
top: "conv16_2_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 24
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv16_2_mbox_loc_perm"
type: "Permute"
bottom: "conv16_2_mbox_loc"
top: "conv16_2_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv16_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv16_2_mbox_loc_perm"
top: "conv16_2_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv16_2_mbox_conf"
type: "Convolution"
bottom: "conv16_2"
top: "conv16_2_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 126
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv16_2_mbox_conf_perm"
type: "Permute"
bottom: "conv16_2_mbox_conf"
top: "conv16_2_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv16_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv16_2_mbox_conf_perm"
top: "conv16_2_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv16_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv16_2"
bottom: "data"
top: "conv16_2_mbox_priorbox"
prior_box_param {
min_size: 240.0
max_size: 285.0
aspect_ratio: 2.0
aspect_ratio: 3.0
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
offset: 0.5
}
}
layer {
name: "conv17_2_mbox_loc"
type: "Convolution"
bottom: "conv17_2"
top: "conv17_2_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 24
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv17_2_mbox_loc_perm"
type: "Permute"
bottom: "conv17_2_mbox_loc"
top: "conv17_2_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv17_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv17_2_mbox_loc_perm"
top: "conv17_2_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv17_2_mbox_conf"
type: "Convolution"
bottom: "conv17_2"
top: "conv17_2_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 126
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv17_2_mbox_conf_perm"
type: "Permute"
bottom: "conv17_2_mbox_conf"
top: "conv17_2_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv17_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv17_2_mbox_conf_perm"
top: "conv17_2_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv17_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv17_2"
bottom: "data"
top: "conv17_2_mbox_priorbox"
prior_box_param {
min_size: 285.0
max_size: 300.0
aspect_ratio: 2.0
aspect_ratio: 3.0
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
offset: 0.5
}
}
layer {
name: "mbox_loc"
type: "Concat"
bottom: "conv11_mbox_loc_flat"
bottom: "conv13_mbox_loc_flat"
bottom: "conv14_2_mbox_loc_flat"
bottom: "conv15_2_mbox_loc_flat"
bottom: "conv16_2_mbox_loc_flat"
bottom: "conv17_2_mbox_loc_flat"
top: "mbox_loc"
concat_param {
axis: 1
}
}
layer {
name: "mbox_conf"
type: "Concat"
bottom: "conv11_mbox_conf_flat"
bottom: "conv13_mbox_conf_flat"
bottom: "conv14_2_mbox_conf_flat"
bottom: "conv15_2_mbox_conf_flat"
bottom: "conv16_2_mbox_conf_flat"
bottom: "conv17_2_mbox_conf_flat"
top: "mbox_conf"
concat_param {
axis: 1
}
}
layer {
name: "mbox_priorbox"
type: "Concat"
bottom: "conv11_mbox_priorbox"
bottom: "conv13_mbox_priorbox"
bottom: "conv14_2_mbox_priorbox"
bottom: "conv15_2_mbox_priorbox"
bottom: "conv16_2_mbox_priorbox"
bottom: "conv17_2_mbox_priorbox"
top: "mbox_priorbox"
concat_param {
axis: 2
}
}
layer {
name: "mbox_conf_reshape"
type: "Reshape"
bottom: "mbox_conf"
top: "mbox_conf_reshape"
reshape_param {
shape {
dim: 0
dim: -1
dim: 21
}
}
}
layer {
name: "mbox_conf_softmax"
type: "Softmax"
bottom: "mbox_conf_reshape"
top: "mbox_conf_softmax"
softmax_param {
axis: 2
}
}
layer {
name: "mbox_conf_flatten"
type: "Flatten"
bottom: "mbox_conf_softmax"
top: "mbox_conf_flatten"
flatten_param {
axis: 1
}
}
layer {
name: "detection_out"
type: "DetectionOutput"
bottom: "mbox_loc"
bottom: "mbox_conf_flatten"
bottom: "mbox_priorbox"
top: "detection_out"
include {
phase: TEST
}
detection_output_param {
num_classes: 21
share_location: true
background_label_id: 0
nms_param {
nms_threshold: 0.45
top_k: 100
}
code_type: CENTER_SIZE
keep_top_k: 100
confidence_threshold: 0.25
}
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册