# 函数的重写 我们需要编写一个函数`gaussian`,使其生成服从正态分布$N\left(\mu, \sigma^2\right)$的随机数。其中$\mu$为数学期望,$\sigma^2$为方差,关于正态分布可以参考[百度百科](https://baike.baidu.com/item/%E6%AD%A3%E6%80%81%E5%88%86%E5%B8%83/829892)。现已有函数如下: ```java import java.util.Random; public class TestMain { private static final Random random = new Random(); private static double gaussian(double mu, double sigma2) { return Math.sqrt(sigma2) * random.nextGaussian() + mu; } } ``` 但上述函数仍然需要我们传入$\mu$和$\sigma^2$的值,这会在实际使用这一函数的时候带来麻烦。 为了解决这一问题,我们需要对函数进行重写,使之能快速产生: 1. 数学期望$\mu = 0$的正态分布随机数 2. 服从标准正态分布($\mu = 0$,$\sigma^2 = 1$)的随机数 以达成简化`gaussian`函数使用的效果,以下选项正确的是? ## 答案 ```java import java.util.Random; public class TestMain { private static final Random random = new Random(); private static double gaussian() { return gaussian(0, 1); } private static double gaussian(double sigma2) { return gaussian(0, sigma2); } private static double gaussian(double mu, double sigma2) { return Math.sqrt(sigma2) * random.nextGaussian() + mu; } } ``` ## 选项 ### Python味的默认值,然而Java并不支持 ```java import java.util.Random; public class TestMain { private static final Random random = new Random(); private static double gaussian(double mu = 0, double sigma2 = 1) { return Math.sqrt(sigma2) * random.nextGaussian() + mu; } } ``` ### 用法正确,但不符合题目要求 ```java import java.util.Random; public class TestMain { private static final Random random = new Random(); private static double gaussian() { return gaussian(0, 1); } private static double gaussian(double mu) { return gaussian(mu, 1); } private static double gaussian(double mu, double sigma2) { return Math.sqrt(sigma2) * random.nextGaussian() + mu; } } ``` ### Python味的默认值,Java并不支持,就一个也不成 ```java import java.util.Random; public class TestMain { private static final Random random = new Random(); private static double gaussian() { return gaussian(0, 1); } private static double gaussian(double mu, double sigma2 = 1) { return Math.sqrt(sigma2) * random.nextGaussian() + mu; } } ``` ### 函数重写时的标识符必须可区分 ```java import java.util.Random; public class TestMain { private static final Random random = new Random(); private static double gaussian() { return gaussian(0, 1); } private static double gaussian(double sigma2) { return gaussian(0, sigma2); } private static double gaussian(double mu, double sigma2) { return Math.sqrt(sigma2) * random.nextGaussian() + mu; } private static double gaussian(double sigma2, double mu) { return Math.sqrt(sigma2) * random.nextGaussian() + mu; } } ```