n 皇后问题 研究的是如何将 n
个皇后放置在 n×n
的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n
,返回 n 皇后问题 不同的解决方案的数量。
示例 1:
输入:n = 4
输出:2
解释:如上图所示,4 皇后问题存在两个不同的解法。
示例 2:
输入:n = 1
输出:1
提示:
1 <= n <= 9
- 皇后彼此不能相互攻击,也就是说:任何两个皇后都不能处于同一条横行、纵行或斜线上。
以下程序实现了这一功能,请你填补空白处内容:
```java
class Solution {
private boolean col[];
private boolean dia1[];
private boolean dia2[];
public int totalNQueens(int n) {
col = new boolean[n];
dia1 = new boolean[2 * n - 1];
dia2 = new boolean[2 * n - 1];
return putQueen(n, 0);
}
private int putQueen(int n, int index) {
int res = 0;
if (index == n) {
return 1;
}
for (int i = 0; i < n; i++) {
if (!col[i] && !dia1[i - index + n - 1] && !dia2[i + index]) {
________________________;
}
}
return res;
}
}
```
## template
```java
class Solution {
private boolean col[];
private boolean dia1[];
private boolean dia2[];
public int totalNQueens(int n) {
col = new boolean[n];
dia1 = new boolean[2 * n - 1];
dia2 = new boolean[2 * n - 1];
return putQueen(n, 0);
}
private int putQueen(int n, int index) {
int res = 0;
if (index == n) {
return 1;
}
for (int i = 0; i < n; i++) {
if (!col[i] && !dia1[i - index + n - 1] && !dia2[i + index]) {
col[i] = true;
dia1[i - index + n - 1] = true;
dia2[i + index] = true;
res += putQueen(n, index + 1);
col[i] = false;
dia1[i - index + n - 1] = false;
dia2[i + index] = false;
}
}
return res;
}
}
```
## 答案
```java
col[i] = true;
dia1[i - index + n - 1] = true;
dia2[i + index] = true;
res += putQueen(n, index + 1);
col[i] = false;
dia1[i - index + n - 1] = false;
dia2[i + index] = false;
```
## 选项
### A
```java
col[i] = false;
dia1[i - index + n - 1] = false;
dia2[i + index] = false;
res += putQueen(n, index + 1);
col[i] = true;
dia1[i - index + n - 1] = true;
dia2[i + index] = true;
```
### B
```java
col[i] = false;
dia1[i - index + n - 1] = false;
dia2[i + index] = false;
res += putQueen(n, index);
col[i] = true;
dia1[i - index + n - 1] = true;
dia2[i + index] = true;
```
### C
```java
col[i] = true;
dia1[i - index + n - 1] = true;
dia2[i + index] = true;
res += putQueen(n, index);
col[i] = false;
dia1[i - index + n - 1] = false;
dia2[i + index] = false;
```