# N皇后 II

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回 n 皇后问题 不同的解决方案的数量。

 

示例 1:

输入:n = 4
输出:2
解释:如上图所示,4 皇后问题存在两个不同的解法。
    

示例 2:

输入:n = 1
输出:1
    

 

提示:

  • 1 <= n <= 9
  • 皇后彼此不能相互攻击,也就是说:任何两个皇后都不能处于同一条横行、纵行或斜线上。
以下程序实现了这一功能,请你填补空白处内容: ```java class Solution { private boolean col[]; private boolean dia1[]; private boolean dia2[]; public int totalNQueens(int n) { col = new boolean[n]; dia1 = new boolean[2 * n - 1]; dia2 = new boolean[2 * n - 1]; return putQueen(n, 0); } private int putQueen(int n, int index) { int res = 0; if (index == n) { return 1; } for (int i = 0; i < n; i++) { if (!col[i] && !dia1[i - index + n - 1] && !dia2[i + index]) { ________________________; } } return res; } } ``` ## template ```java class Solution { private boolean col[]; private boolean dia1[]; private boolean dia2[]; public int totalNQueens(int n) { col = new boolean[n]; dia1 = new boolean[2 * n - 1]; dia2 = new boolean[2 * n - 1]; return putQueen(n, 0); } private int putQueen(int n, int index) { int res = 0; if (index == n) { return 1; } for (int i = 0; i < n; i++) { if (!col[i] && !dia1[i - index + n - 1] && !dia2[i + index]) { col[i] = true; dia1[i - index + n - 1] = true; dia2[i + index] = true; res += putQueen(n, index + 1); col[i] = false; dia1[i - index + n - 1] = false; dia2[i + index] = false; } } return res; } } ``` ## 答案 ```java col[i] = true; dia1[i - index + n - 1] = true; dia2[i + index] = true; res += putQueen(n, index + 1); col[i] = false; dia1[i - index + n - 1] = false; dia2[i + index] = false; ``` ## 选项 ### A ```java col[i] = false; dia1[i - index + n - 1] = false; dia2[i + index] = false; res += putQueen(n, index + 1); col[i] = true; dia1[i - index + n - 1] = true; dia2[i + index] = true; ``` ### B ```java col[i] = false; dia1[i - index + n - 1] = false; dia2[i + index] = false; res += putQueen(n, index); col[i] = true; dia1[i - index + n - 1] = true; dia2[i + index] = true; ``` ### C ```java col[i] = true; dia1[i - index + n - 1] = true; dia2[i + index] = true; res += putQueen(n, index); col[i] = false; dia1[i - index + n - 1] = false; dia2[i + index] = false; ```