# 搜索二维矩阵
编写一个高效的算法来判断 m x n
矩阵中,是否存在一个目标值。该矩阵具有如下特性:
- 每行中的整数从左到右按升序排列。
- 每行的第一个整数大于前一行的最后一个整数。
示例 1:
输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
输出:true
示例 2:
输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
输出:false
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 100
-104 <= matrix[i][j], target <= 104
## template
```java
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix.length == 0 || matrix[0].length == 0)
return false;
int begin, mid, end;
begin = mid = 0;
int len1 = matrix.length, len2 = matrix[0].length;
end = len1 * len2 - 1;
while (begin < end) {
mid = (begin + end) / 2;
if (matrix[mid / len2][mid % len2] < target)
begin = mid + 1;
else
end = mid;
}
return matrix[begin / len2][begin % len2] == target;
}
}
```
## 答案
```java
```
## 选项
### A
```java
```
### B
```java
```
### C
```java
```