# 区间和的个数
给你一个整数数组 nums 以及两个整数 lower 和 upper 。求数组中,值位于范围 [lower, upper] (包含 lower 和 upper)之内的 区间和的个数 。
区间和 S(i, j) 表示在 nums 中,位置从 i 到 j 的元素之和,包含 i 和 j (i ≤ j)。
示例 1:
输入:nums = [-2,5,-1], lower = -2, upper = 2
输出:3
解释:存在三个区间:[0,0]、[2,2] 和 [0,2] ,对应的区间和分别是:-2 、-1 、2 。
示例 2:
输入:nums = [0], lower = 0, upper = 0
输出:1
提示:
1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
-105 <= lower <= upper <= 105
- 题目数据保证答案是一个 32 位 的整数
## template
```java
class Solution {
public int countRangeSum(int[] nums, long lower, long upper) {
long sums[] = new long[nums.length];
for (int i = 0; i < nums.length; i++) {
sums[i] = ((i - 1 >= 0) ? sums[i - 1] : 0) + nums[i];
}
int result = divideAndConquer(sums, 0, sums.length - 1, upper, lower);
return result;
}
private int divideAndConquer(long sums[], int start, int end, long upper, long lower) {
if (start > end)
return 0;
if (start == end)
return (sums[start] <= upper && sums[start] >= lower) ? 1 : 0;
int mid = (start + end) / 2;
int counts = 0;
counts += divideAndConquer(sums, start, mid, upper, lower);
counts += divideAndConquer(sums, mid + 1, end, upper, lower);
int ls = start, le = mid;
while (le >= start && sums[mid + 1] - sums[le] <= upper)
le--;
for (int r = mid + 1; r <= end; r++) {
while (ls <= mid && sums[r] - sums[ls] >= lower)
ls++;
while (le + 1 <= mid && sums[r] - sums[le + 1] > upper)
le++;
if (ls - le - 1 < 0)
continue;
counts += (ls - le - 1);
}
ls = start;
int i = 0, r = mid + 1;
long merged[] = new long[end - start + 1];
while (ls <= mid || r <= end) {
if (ls > mid || (r <= end && sums[r] < sums[ls])) {
merged[i++] = sums[r++];
} else {
merged[i++] = sums[ls++];
}
}
for (i = 0; i < merged.length; i++) {
sums[start + i] = merged[i];
}
return counts;
}
}
```
## 答案
```java
```
## 选项
### A
```java
```
### B
```java
```
### C
```java
```