给出一个二维整数网格 grid
,网格中的每个值表示该位置处的网格块的颜色。
只有当两个网格块的颜色相同,而且在四个方向中任意一个方向上相邻时,它们属于同一连通分量。
连通分量的边界是指连通分量中的所有与不在分量中的正方形相邻(四个方向上)的所有正方形,或者在网格的边界上(第一行/列或最后一行/列)的所有正方形。
给出位于 (r0, c0)
的网格块和颜色 color
,使用指定颜色 color
为所给网格块的连通分量的边界进行着色,并返回最终的网格 grid
。
示例 1:
输入:grid = [[1,1],[1,2]], r0 = 0, c0 = 0, color = 3 输出:[[3, 3], [3, 2]]
示例 2:
输入:grid = [[1,2,2],[2,3,2]], r0 = 0, c0 = 1, color = 3 输出:[[1, 3, 3], [2, 3, 3]]
示例 3:
输入:grid = [[1,1,1],[1,1,1],[1,1,1]], r0 = 1, c0 = 1, color = 2 输出:[[2, 2, 2], [2, 1, 2], [2, 2, 2]]
提示:
1 <= grid.length <= 50
1 <= grid[0].length <= 50
1 <= grid[i][j] <= 1000
0 <= r0 < grid.length
0 <= c0 < grid[0].length
1 <= color <= 1000