n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
    给你一个整数 n ,返回 n 皇后问题 不同的解决方案的数量。
     
    
        
            示例 1:
             
            输入:n = 4
输出:2
解释:如上图所示,4 皇后问题存在两个不同的解法。
    
            示例 2:
            输入:n = 1
输出:1
    
             
            提示:
            
                - 1 <= n <= 9
- 皇后彼此不能相互攻击,也就是说:任何两个皇后都不能处于同一条横行、纵行或斜线上。
 
     
 
以下程序实现了这一功能,请你填补空白处内容:
```python
class Solution(object):
	def __init__(self):
		self.count = 0
	def totalNQueens(self, n):
		self.dfs(0, n, 0, 0, 0)
		return self.count
	def dfs(self, row, n, column, diag, antiDiag):
		if row == n:
			self.count += 1
			return
		for index in range(n):
			isColSafe = (1 << index) & column == 0
			isDigSafe = (1 << (n - 1 + row - index)) & diag == 0
			isAntiDiagSafe = (1 << (row + index)) & antiDiag == 0
			if isAntiDiagSafe and isColSafe and isDigSafe:
				_________________________;
if __name__ == '__main__':
	s = Solution()
	print (s.totalNQueens(4))
```
## template
```python
class Solution(object):
	def __init__(self):
		self.count = 0
	def totalNQueens(self, n):
		self.dfs(0, n, 0, 0, 0)
		return self.count
	def dfs(self, row, n, column, diag, antiDiag):
		if row == n:
			self.count += 1
			return
		for index in range(n):
			isColSafe = (1 << index) & column == 0
			isDigSafe = (1 << (n - 1 + row - index)) & diag == 0
			isAntiDiagSafe = (1 << (row + index)) & antiDiag == 0
			if isAntiDiagSafe and isColSafe and isDigSafe:
				self.dfs(row + 1,  n, (1 << index) | column,
						 (1 << (n - 1 + row - index)) | diag,
						 (1 << (row + index)) | antiDiag)
if __name__ == '__main__':
	s = Solution()
	print (s.totalNQueens(4))
```
## 答案
```python
self.dfs(row + 1,  n, (1 << index) | column,
        (1 << (n - 1 + row - index)) | diag,
        (1 << (row + index)) | antiDiag)
```
## 选项
### A
```python
self.dfs(row + 1,  n, (index >> 1) | column,
        (1 << (n - 1 + row - index)) | diag,
        (1 << (row + index)) | antiDiag)
```
### B
```python
self.dfs(row + 1,  n, (index >> 1) | column,
        (1 << (n + 1 + row - index)) | diag,
        (1 << (row + index)) | antiDiag)
```
### C
```python
self.dfs(row + 1,  n, (1 << index) | column,
        (1 << (n + 1 + row - index)) | diag,
        (1 << (row + index)) | antiDiag)
```