n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
    给你一个整数 n ,返回 n 皇后问题 不同的解决方案的数量。
     
    
        
            示例 1:
             
            输入:n = 4
输出:2
解释:如上图所示,4 皇后问题存在两个不同的解法。
    
            示例 2:
            输入:n = 1
输出:1
    
             
            提示:
            
                - 1 <= n <= 9
- 皇后彼此不能相互攻击,也就是说:任何两个皇后都不能处于同一条横行、纵行或斜线上。
 
     
 
以下程序实现了这一功能,请你填补空白处内容:
```java
class Solution {
	private boolean col[];
	private boolean dia1[];
	private boolean dia2[];
	public int totalNQueens(int n) {
		col = new boolean[n];
		dia1 = new boolean[2 * n - 1];
		dia2 = new boolean[2 * n - 1];
		return putQueen(n, 0);
	}
	private int putQueen(int n, int index) {
		int res = 0;
		if (index == n) {
			return 1;
		}
		for (int i = 0; i < n; i++) {
			if (!col[i] && !dia1[i - index + n - 1] && !dia2[i + index]) {
				________________________;
			}
		}
		return res;
	}
}
```
## template
```java
class Solution {
	private boolean col[];
	private boolean dia1[];
	private boolean dia2[];
	public int totalNQueens(int n) {
		col = new boolean[n];
		dia1 = new boolean[2 * n - 1];
		dia2 = new boolean[2 * n - 1];
		return putQueen(n, 0);
	}
	private int putQueen(int n, int index) {
		int res = 0;
		if (index == n) {
			return 1;
		}
		for (int i = 0; i < n; i++) {
			if (!col[i] && !dia1[i - index + n - 1] && !dia2[i + index]) {
				col[i] = true;
				dia1[i - index + n - 1] = true;
				dia2[i + index] = true;
				res += putQueen(n, index + 1);
				col[i] = false;
				dia1[i - index + n - 1] = false;
				dia2[i + index] = false;
			}
		}
		return res;
	}
}
```
## 答案
```java
col[i] = true;
dia1[i - index + n - 1] = true;
dia2[i + index] = true;
res += putQueen(n, index + 1);
col[i] = false;
dia1[i - index + n - 1] = false;
dia2[i + index] = false;
```
## 选项
### A
```java
col[i] = false;
dia1[i - index + n - 1] = false;
dia2[i + index] = false;
res += putQueen(n, index + 1);
col[i] = true;
dia1[i - index + n - 1] = true;
dia2[i + index] = true;
```
### B
```java
col[i] = false;
dia1[i - index + n - 1] = false;
dia2[i + index] = false;
res += putQueen(n, index);
col[i] = true;
dia1[i - index + n - 1] = true;
dia2[i + index] = true;
```
### C
```java
col[i] = true;
dia1[i - index + n - 1] = true;
dia2[i + index] = true;
res += putQueen(n, index);
col[i] = false;
dia1[i - index + n - 1] = false;
dia2[i + index] = false;
```