# 逆波兰表达式求值

根据 逆波兰表示法,求表达式的值。

有效的算符包括 +-*/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。

 

说明:

 

示例 1:

输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9

示例 2:

输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6

示例 3:

输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:
该算式转化为常见的中缀算术表达式为:
  ((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22

 

提示:

 

逆波兰表达式:

逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。

逆波兰表达式主要有以下两个优点:

## template ```python class Solution(object): def evalRPN(self, tokens): """ :type tokens: List[str] :rtype: int """ stack = [] for token in tokens: if token not in ["+", "-", "*", "/"]: stack.append(int(token)) else: num1 = stack.pop() num2 = stack.pop() if token == "+": stack.append(num1 + num2) elif token == "-": stack.append(num2 - num1) elif token == "*": stack.append(num1 * num2) elif token == "/": if num1 * num2 < 0: result = -((-num2) // num1) stack.append(result) else: stack.append(num2 // num1) print(stack) return stack.pop() ``` ## 答案 ```python ``` ## 选项 ### A ```python ``` ### B ```python ``` ### C ```python ```