# 不同路径 II

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 10 来表示。

 

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:
2
解释:
3x3 网格的正中间有一个障碍物。从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:
1

 

提示:

以下错误的选项是?

## aop ### before ```cpp #include using namespace std; ``` ### after ```cpp int main() { Solution sol; int a = 2; int b = 4; vector> obstacleGrid = vector>(a, vector(b)) = {{0, 0, 0, 0}, {0, 1, 2, 3}}; int res; res = sol.uniquePathsWithObstacles(obstacleGrid); cout << res; return 0; } ``` ## 答案 ```cpp class Solution { public: int dp[110]; int uniquePathsWithObstacles(vector> &obstacleGrid) { int m = obstacleGrid.size(), n = obstacleGrid[0].size(); if (obstacleGrid[0][0] == 1 || obstacleGrid[m - 1][n - 1] == 1) return 0; dp[1] = 1; for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (obstacleGrid[i - 1][j - 1] == 0) dp[j] += dp[j - 1]; else dp[j] = 0; } } return dp[n]; } }; ``` ## 选项 ### A ```cpp class Solution { public: int uniquePathsWithObstacles(vector> &obstacleGrid) { int m = obstacleGrid.size(), n = obstacleGrid[0].size(); vector> dp(m, vector(n, 0)); for (int i = 0; i < m && obstacleGrid[i][0] != 1; i++) { dp[i][0] = 1; } for (int i = 0; i < n && obstacleGrid[0][i] != 1; i++) { dp[0][i] = 1; } for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { if (obstacleGrid[i][j] != 1) { dp[i][j] = dp[i - 1][j] + dp[i][j - 1]; } } } return dp[m - 1][n - 1]; } }; ``` ### B ```cpp class Solution { public: int uniquePathsWithObstacles(vector> &obstacleGrid) { int m = obstacleGrid.size(); int n = obstacleGrid[0].size(); int p[m][n]; int k = 0; while (k < m && obstacleGrid[k][0] != 1) p[k++][0] = 1; while (k < m) p[k++][0] = 0; k = 0; while (k < n && obstacleGrid[0][k] != 1) p[0][k++] = 1; while (k < n) p[0][k++] = 0; for (int i = 1; i < m; i++) for (int j = 1; j < n; j++) { if (obstacleGrid[i][j] == 1) p[i][j] = 0; else p[i][j] = p[i - 1][j] + p[i][j - 1]; } return p[m - 1][n - 1]; } }; ``` ### C ```cpp class Solution { public: int uniquePathsWithObstacles(vector> &obstacleGrid) { if (obstacleGrid.size() == 0 || obstacleGrid[0].size() == 0) return 0; int m = obstacleGrid.size(); int n = obstacleGrid[0].size(); vector> info(m, vector(n, 0)); for (int i = 0; i < m; ++i) { if (obstacleGrid[i][0] == 1) { for (int j = i; j < m; j++) { info[j][0] = 0; } break; } else info[i][0] = 1; } for (int i = 0; i < n; ++i) { if (obstacleGrid[0][i] == 1) { for (int j = i; j < n; ++j) { info[0][j] = 0; } break; } else info[0][i] = 1; } for (int i = 1; i < m; ++i) { for (int j = 1; j < n; ++j) { if (obstacleGrid[i][j] == 1) { info[i][j] = 0; } else { info[i][j] = info[i - 1][j] + info[i][j - 1]; } } } return info[m - 1][n - 1]; } }; ```