# 矩阵中的最长递增路径
给定一个 m x n
整数矩阵 matrix
,找出其中 最长递增路径 的长度。
对于每个单元格,你可以往上,下,左,右四个方向移动。 你 不能 在 对角线 方向上移动或移动到 边界外(即不允许环绕)。
示例 1:
输入:matrix = [[9,9,4],[6,6,8],[2,1,1]]
输出:4
解释:最长递增路径为 [1, 2, 6, 9]
。
示例 2:
输入:matrix = [[3,4,5],[3,2,6],[2,2,1]]
输出:4
解释:最长递增路径是 [3, 4, 5, 6]
。注意不允许在对角线方向上移动。
示例 3:
输入:matrix = [[1]]
输出:1
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
0 <= matrix[i][j] <= 231 - 1
以下错误的选项是?
## aop
### before
```c
#include
using namespace std;
```
### after
```c
```
## 答案
```c
class Solution
{
public:
int m, n;
vector> memo;
int dfs(vector> &matrix, int x, int y)
{
if (memo[x][y] != -1)
return memo[x][y];
int ret = 1;
if (x > 0 && matrix[x - 1][y] > matrix[x][y])
ret = max(ret, 1 + dfs(matrix, x - 1, y - 1));
if (x < m - 1 && matrix[x + 1][y] > matrix[x][y])
ret = max(ret, 1 + dfs(matrix, x + 1, y + 1));
if (y > 0 && matrix[x][y - 1] > matrix[x][y])
ret = max(ret, 1 + dfs(matrix, x, y - 1));
if (y < n - 1 && matrix[x][y + 1] > matrix[x][y])
ret = max(ret, 1 + dfs(matrix, x, y + 1));
memo[x][y] = ret;
return ret;
}
int longestIncreasingPath(vector> &matrix)
{
m = matrix.size();
if (m == 0)
return 0;
n = matrix[0].size();
memo.resize(m);
int ans = 1;
for (int i = 0; i < m; ++i)
memo[i].resize(n, -1);
for (int i = 0; i < m; ++i)
{
for (int j = 0; j < n; ++j)
{
int temp = dfs(matrix, i, j);
ans = ans < temp ? temp : ans;
}
}
return ans;
}
};
```
## 选项
### A
```c
class Solution
{
public:
vector> state = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
int longestIncreasingPath(vector> &matrix)
{
int n = matrix.size();
if (n == 0)
return 0;
int m = matrix[0].size();
vector> dp(n, vector(m, 0));
int res = 0;
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
res = max(dfs(dp, matrix, i, j), res);
return res;
}
int dfs(vector> &dp, vector> matrix, int i, int j)
{
if (dp[i][j] != 0)
return dp[i][j];
dp[i][j] = 1;
for (vector s : state)
{
int x = i + s[0];
int y = j + s[1];
if (x >= 0 && x < matrix.size() && y >= 0 && y < matrix[0].size() && matrix[i][j] < matrix[x][y])
dp[i][j] = max(dp[i][j], dfs(dp, matrix, x, y) + 1);
}
return dp[i][j];
}
};
```
### B
```c
class Solution
{
public:
vector> use;
int dfs(int i, int j, vector> &matrix, int m, int n)
{
int len = 1, size, ans = 0;
if (i - 1 >= 0 && matrix[i - 1][j] > matrix[i][j])
{
if (use[i - 1][j] == 0)
len = max(len, dfs(i - 1, j, matrix, m, n) + 1);
else
len = max(len, use[i - 1][j] + 1);
}
if (j - 1 >= 0 && matrix[i][j - 1] > matrix[i][j])
{
if (use[i][j - 1] == 0)
len = max(len, dfs(i, j - 1, matrix, m, n) + 1);
else
len = max(len, use[i][j - 1] + 1);
}
if (i + 1 < m && matrix[i + 1][j] > matrix[i][j])
{
if (use[i + 1][j] == 0)
len = max(len, dfs(i + 1, j, matrix, m, n) + 1);
else
len = max(len, use[i + 1][j] + 1);
}
if (j + 1 < n && matrix[i][j + 1] > matrix[i][j])
{
if (use[i][j + 1] == 0)
len = max(len, dfs(i, j + 1, matrix, m, n) + 1);
else
len = max(len, use[i][j + 1] + 1);
}
use[i][j] = len;
return len;
}
int longestIncreasingPath(vector> &matrix)
{
if (matrix.empty() || matrix[0].empty())
return 0;
int m = matrix.size(), n = matrix[0].size();
use = vector(m, vector(n, 0));
int i, j;
int ans = 0;
for (int i = 0; i < m; i++)
{
for (int j = 0; j < n; j++)
{
if (!use[i][j])
ans = max(ans, dfs(i, j, matrix, m, n));
}
}
return ans;
}
};
```
### C
```c
class Solution
{
public:
static constexpr int dirs[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
int m, n;
int longestIncreasingPath(vector> &matrix)
{
if (matrix.size() == 0 || matrix[0].size() == 0)
{
return 0;
}
m = matrix.size();
n = matrix[0].size();
int res = 0;
auto memo = vector>(m, vector(n, 0));
for (int i = 0; i < m; ++i)
{
for (int j = 0; j < n; ++j)
{
if (memo[i][j])
res = max(res, memo[i][j]);
else
res = max(res, dfs(i, j, matrix, memo));
}
}
return res;
}
int dfs(int i, int j, vector> &matrix, vector> &memo)
{
int temp = 1;
for (int k = 0; k < 4; ++k)
{
int x = i + dirs[k][0];
int y = j + dirs[k][1];
if ((x >= 0) && (x < m) && (y >= 0) && (y < n) && (matrix[i][j] < matrix[x][y]))
{
if (memo[x][y])
temp = max(temp, memo[x][y] + 1);
else
temp = max(temp, dfs(x, y, matrix, memo) + 1);
}
}
memo[i][j] = temp;
return temp;
}
};
```