# 搜索二维矩阵

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:

 

示例 1:

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
输出:
true

示例 2:

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
输出:
false

 

提示:

以下错误的选项是?

## aop ### before ```c #include using namespace std; ``` ### after ```c int main() { Solution sol; int a = 3, b = 4; vector> matrix = vector>(a, vector(b)) = {{1, 3, 5, 7}, {10, 11, 16, 20}, {23, 30, 34, 60}}; int target = 3; bool res; res = sol.searchMatrix(matrix, target); cout << res; return 0; } ``` ## 答案 ```c class Solution { public: bool searchMatrix(vector> &matrix, int target) { if (matrix.size() == 0 || matrix[0].size() == 0 || target < matrix[0][0] || target > matrix[matrix.size() - 1][matrix[0].size() - 1]) return false; int up = 0, down = matrix.size() - 1, left = 0, right = matrix[0].size() - 1; while (up < down) { int mid = up + (down - up + 1) / 2; if (matrix[mid][0] == target) return true; else if (matrix[mid][0] > target) down = mid - 1; else up = mid + 1; } while (left < right) { int mid = left + (right - left + 1) / 2; if (matrix[up][mid] == target) return true; else if (matrix[up][mid] > target) right = mid - 1; else left = mid + 1; } if (matrix[up][left] == target) return true; return false; } }; ``` ## 选项 ### A ```c class Solution { public: bool searchMatrix(vector> &matrix, int target) { if (matrix.size() == 0 || matrix[0].size() == 0) return false; decltype(matrix.size()) row_front = 0, c_front = 0, row_back = matrix.size(), c_back = matrix[0].size(); while (row_front < row_back) { auto k = row_front + (row_back - row_front) / 2; if (matrix[k][0] == target) { return true; } else if (matrix[k][0] < target) { row_front = k + 1; } else if (matrix[k][0] > target) { row_back = k; } } if (row_front == 0) { return false; } decltype(matrix.size()) target_line = row_front - 1; while (c_front < c_back) { auto j = c_front + (c_back - c_front) / 2; if (matrix[target_line][j] == target) { return true; } else if (matrix[target_line][j] < target) { c_front = j + 1; } else if (matrix[target_line][j] > target) { c_back = j; } } return false; } }; ``` ### B ```c class Solution { public: bool searchMatrix(vector> &matrix, int target) { if (matrix.empty()) return false; int m = matrix.size(); int n = matrix[0].size(); int left = 0; int right = m * n - 1; while (left <= right) { int middle = (left + right) / 2; int middle_element = matrix[middle / n][middle % n]; if (middle_element == target) return true; else if (middle_element < target) left = middle + 1; else right = middle - 1; } return false; } }; ``` ### C ```c class Solution { public: bool searchMatrix(vector> &matrix, int target) { if (matrix.empty()) return false; int m = matrix.size(); int n = matrix[0].size(); int row = 0, col = n - 1; while (row < m && col >= 0) { if (matrix[row][col] < target && col == n - 1) row++; else if (matrix[row][col] == target) return true; else col--; } return false; } }; ```