# 旋转图像

给定一个 × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。

你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。

 

示例 1:

输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:
[[7,4,1],[8,5,2],[9,6,3]]

示例 2:

输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
输出:
[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]

示例 3:

输入:matrix = [[1]]
输出:
[[1]]

示例 4:

输入:matrix = [[1,2],[3,4]]
输出:
[[3,1],[4,2]]

 

提示:

以下错误的选项是?

## aop ### before ```c ``` ### after ```c ``` ## 答案 ```c class Solution { public: void rotate(vector> &matrix) { int n = matrix.size(); int temp = 0; for (int i = 0; i < n; ++i) { for (int j = i; j < n; ++j) { temp = matrix[i][j]; matrix[i][j] = matrix[n - j - 1][i]; matrix[j][i] = temp; } } for (int i = 0; i < n; ++i) { reverse(matrix[i].begin(), matrix[i].end()); } } }; ``` ## 选项 ### A ```c class Solution { public: void rotate(vector> &matrix) { int temp = 0; int n = matrix.size(); for (int i = 0; i < n / 2; i++) { for (int j = i; j < n - i - 1; j++) { temp = matrix[i][j]; matrix[i][j] = matrix[n - j - 1][i]; matrix[n - j - 1][i] = matrix[n - i - 1][n - j - 1]; matrix[n - i - 1][n - j - 1] = matrix[j][n - i - 1]; matrix[j][n - i - 1] = temp; } } } }; ``` ### B ```c class Solution { public: void rotate(vector> &matrix) { int n = matrix.size(); int tmp = 0; for (int i = 0; i < n; i++) for (int j = i; j < n; j++) { tmp = matrix[j][i]; matrix[j][i] = matrix[i][j]; matrix[i][j] = tmp; } for (int i = 0; i < n; i++) for (int j = 0; j < n / 2; j++) { tmp = matrix[i][j]; matrix[i][j] = matrix[i][n - j - 1]; matrix[i][n - j - 1] = tmp; } } }; ``` ### C ```c class Solution { public: void rotate(vector> &matrix) { int n = matrix.size(); vector> matrix_temp = matrix; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { matrix_temp[j][n - i - 1] = matrix[i][j]; } } matrix = matrix_temp; } }; ```