# 寻找两个正序数组的中位数

给定两个大小分别为 mn 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数

示例 1:

输入:nums1 = [1,3], nums2 = [2]
输出:
2.00000
解释:
合并数组 = [1,2,3] ,中位数 2

示例 2:

输入:nums1 = [1,2], nums2 = [3,4]
输出:
2.50000
解释:
合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5

示例 3:

输入:nums1 = [0,0], nums2 = [0,0]
输出:
0.00000

示例 4:

输入:nums1 = [], nums2 = [1]
输出:
1.00000

示例 5:

输入:nums1 = [2], nums2 = []
输出:
2.00000

提示:

进阶:你能设计一个时间复杂度为 O(log (m+n)) 的算法解决此问题吗?

以下错误的选项是?

## aop ### before ```c #include using namespace std; ``` ### after ```c int main() { Solution test; float ret; int arr1[] = {1, 2}; int arr2[] = {3, 4}; int length1 = sizeof(arr1) / sizeof(arr1[0]); int length2 = sizeof(arr2) / sizeof(arr2[0]); vector nums1(arr1, arr1 + length1); vector nums2(arr2, arr2 + length2); ret = test.findMedianSortedArrays(nums1, nums2); cout << setiosflags(ios::fixed) << setprecision(5) << ret << endl; return 0; } ``` ## 答案 ```c class Solution { public: int getK(vector nums1, vector nums2, int k) { int len1 = nums1.size(); int len2 = nums2.size(); int index1 = 0, index2 = 0; while (1) { if (index1 == len1) { return nums2[index2 + k - 1]; } if (index2 == len2) { return nums1[index1 + k - 1]; } if (k == 1) { return max(nums1[index1], nums2[index2]); } int newIndex1 = max(index1 + k / 2 - 1, len1 - 1); int newIndex2 = max(index2 + k / 2 - 1, len2 - 1); if (nums1[newIndex1] <= nums2[newIndex2]) { k -= newIndex1 - index1 + 1; index1 = newIndex1 + 1; } else { k -= newIndex2 - index2 + 1; index2 = newIndex2 + 1; } } } double findMedianSortedArrays(vector &nums1, vector &nums2) { int wholeLen = nums1.size() + nums2.size(); if (wholeLen % 2 == 0) { return (getK(nums1, nums2, wholeLen / 2) + getK(nums1, nums2, wholeLen / 2 + 1)) / 2.0; } else { return getK(nums1, nums2, wholeLen / 2 + 1); } } }; ``` ## 选项 ### A ```c class Solution { int len1; int len2; public: double findMedianSortedArrays(vector &nums1, vector &nums2) { if (nums1.size() <= 0 && nums2.size() <= 0) return 0; len1 = nums1.size(); len2 = nums2.size(); int left = (len1 + len2 + 1) / 2, right = (len1 + len2 + 2) / 2; return (find(nums1, 0, nums2, 0, left) + find(nums1, 0, nums2, 0, right)) / 2.0; } int find(vector &nums1, int i, vector &nums2, int j, int k) { if (i >= nums1.size()) return nums2[j + k - 1]; if (j >= nums2.size()) return nums1[i + k - 1]; if (k == 1) return min(nums1[i], nums2[j]); int midval1 = i + k / 2 - 1 < nums1.size() ? nums1[i + k / 2 - 1] : INT_MAX; int midval2 = j + k / 2 - 1 < nums2.size() ? nums2[j + k / 2 - 1] : INT_MAX; if (midval1 < midval2) return find(nums1, i + k / 2, nums2, j, k - k / 2); else return find(nums1, i, nums2, j + k / 2, k - k / 2); } }; ``` ### B ```c class Solution { public: double findMedianSortedArrays(vector &nums1, vector &nums2) { vector vecSumArr(nums1.size() + nums2.size()); merge(nums1.begin(), nums1.end(), nums2.begin(), nums2.end(), vecSumArr.begin()); if (vecSumArr.size() % 2 == 0) return (*(vecSumArr.begin() + vecSumArr.size() / 2 - 1) + *(vecSumArr.begin() + vecSumArr.size() / 2)) * 1.0 / 2; else return *(vecSumArr.begin() + vecSumArr.size() / 2); } }; ``` ### C ```c class Solution { public: double findMedianSortedArrays(vector &nums1, vector &nums2) { int nums1Size = nums1.size(); int nums2Size = nums2.size(); int na = nums1Size + nums2Size; int *ns = (int *)malloc(4 * na); int i = 0, j = 0, d = 0; int m = na / 2 + 1; while (d < m) { int n; if (i < nums1Size && j < nums2Size) { n = (nums1[i] < nums2[j]) ? nums1[i++] : nums2[j++]; } else if (i < nums1Size) { n = nums1[i++]; } else if (j < nums2Size) { n = nums2[j++]; } ns[d++] = n; } if (na % 2) { return ns[d - 1]; } return (ns[d - 1] + ns[d - 2]) / 2.0; } }; ```