# 逆波兰表达式求值
根据 逆波兰表示法,求表达式的值。
有效的算符包括 +
、-
、*
、/
。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
说明:
- 整数除法只保留整数部分。
- 给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例 1:
输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:
该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
提示:
1 <= tokens.length <= 104
tokens[i]
要么是一个算符("+"
、"-"
、"*"
或 "/"
),要么是一个在范围 [-200, 200]
内的整数
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
- 平常使用的算式则是一种中缀表达式,如
( 1 + 2 ) * ( 3 + 4 )
。
- 该算式的逆波兰表达式写法为
( ( 1 2 + ) ( 3 4 + ) * )
。
逆波兰表达式主要有以下两个优点:
- 去掉括号后表达式无歧义,上式即便写成
1 2 + 3 4 + *
也可以依据次序计算出正确结果。
- 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。
以下错误的选项是?
## aop
### before
```cpp
#include
using namespace std;
```
### after
```cpp
```
## 答案
```cpp
class Solution
{
public:
int evalRPN(vector &tokens)
{
stack stk;
int n = tokens.size();
for (int i = 0; i < n; i++)
{
string token = tokens[i];
if (isNumber(token))
{
stk.push(atoi(token.c_str()));
}
else
{
int num2 = stk.top();
int num1 = stk.top();
switch (token[0])
{
case '+':
stk.push(num1 + num2);
break;
case '-':
stk.push(num1 - num2);
break;
case '*':
stk.push(num1 * num2);
break;
case '/':
stk.push(num1 / num2);
break;
}
}
}
return stk.top();
}
bool isNumber(string token)
{
return !(token == "+" || token == "-" || token == "*" || token == "/");
}
};
```
## 选项
### A
```cpp
class Solution
{
public:
int isNumber(string s)
{
return !(s == "+" || s == "-" || s == "*" || s == "/");
}
int evalRPN(vector &tokens)
{
stack stk;
int len = tokens.size();
for (int i = 0; i < len; ++i)
{
string str = tokens[i];
if (isNumber(str))
{
stk.push(atoi(str.c_str()));
}
else
{
int a = stk.top();
stk.pop();
int b = stk.top();
stk.pop();
switch (str[0])
{
case '+':
stk.push(b + a);
break;
case '-':
stk.push(b - a);
break;
case '*':
stk.push(b * a);
break;
case '/':
stk.push(b / a);
break;
}
}
}
return stk.top();
}
};
```
### B
```cpp
class Solution
{
public:
int evalRPN(vector &tokens)
{
stack sp;
int n = tokens.size();
for (int i = 0; i < n; i++)
{
if (tokens[i] == "+")
{
int x = sp.top();
sp.pop();
int y = sp.top();
sp.pop();
sp.push(x + y);
}
else if (tokens[i] == "-")
{
int x = sp.top();
sp.pop();
int y = sp.top();
sp.pop();
sp.push(y - x);
}
else if (tokens[i] == "*")
{
int x = sp.top();
sp.pop();
int y = sp.top();
sp.pop();
sp.push(x * y);
}
else if (tokens[i] == "/")
{
int x = sp.top();
sp.pop();
int y = sp.top();
sp.pop();
sp.push(y / x);
}
else
{
sp.push(stoi(tokens[i]));
}
}
return sp.top();
}
};
```
### C
```cpp
class Solution
{
public:
int evalRPN(vector &tokens)
{
stack num;
for (int i = 0; i < tokens.size(); ++i)
{
if (tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/")
{
int j;
int a = num.top();
num.pop();
int b = num.top();
num.pop();
if (tokens[i] == "+")
j = b + a;
else if (tokens[i] == "-")
j = b - a;
else if (tokens[i] == "*")
j = b * a;
else
j = b / a;
num.push(j);
}
else
{
num.push(stoi(tokens[i]));
}
}
return num.top();
}
};
```